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1 Introduction

The Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU)
was co-located with the Onward and OOPSLA conferences in Orlando, Florida, USA from 25-29
October 2009. This technical report is a summary of the workshop including the proceedings.

2 Scope

Programming languages exist to enable programmers to develop software effectively. But how ef-
ficiently programmers can write software depends on the usability of the languages and tools that
they develop with. The aim of this workshop is to discuss methods, metrics and techniques for
evaluating the usability of languages and language tools. The supposed benefits of such languages
and tools cover a large space, including making programs easier to read, write, and maintain; allow-
ing programmers to write more flexible and powerful programs; and restricting programs to make
them more safe and secure. We plan to gather the intersection of researchers in the programming
language, programming tool, and human-computer interaction communities to share their research
and discuss the future of evaluation and usability of programming languages and tools. We are
also interested in the input of other members of the programming research community working
on related areas, such as refactoring, design patterns, program analysis, program comprehension,
software visualization, end-user programming, and other programming language paradigms.

At the Programming Languages Grand Challenges panel at POPL 2009, Greg Morrisett claimed
that one of the great neglected areas in programming languages research is the bridge between
programming languages and human-computer interaction: the evaluation of the usability of pro-
gramming languages and tools. This is evident by the recent research programs of major languages
conferences such as POPL, PLDI, OOPSLA, and ECOOP. The object-oriented conferences tend
to have at least one or two papers in the areas of corpus analysis or evaluation methodologies,
but the authors of the papers seem to avoid using the results of their studies to make conclusions
about the languages or tools themselves. Software engineering and human-computer interaction
conferences tend to have better support of language usability analysis (CHI 2009 had three tracks
that showcase research in this direction), but have limited visibility to the programming languages
community.

This workshop aims to begin filling that void by developing and stimulating discussion of us-
ability and evaluation of programming languages and tools with respect to language design and
related areas. We will consider: empirical studies of programming languages; methodologies and
philosophies behind language and tool evaluation; software design metrics and their relations to the
underlying language; user studies of language features and software engineering tools; visual tech-
niques for understanding programming languages; critical comparisons of programming paradigms,
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such as object-oriented vs. functional; and tools to support evaluating programming languages.
We have two goals:

1. Develop a research community that shares ideas and collaborates on research related to the
evaluation and usability of languages and tools.

2. Encourage the languages and tools communities to think more critically about how usability
affects the design and adoption of languages and tools.

3 Committees

The workshop was organised by members working on the New Zealand Software Process and Prod-
uct Improvement (SPPI) Project. The program committee comprised of international researchers
from the areas of programming languages, software engineering, and human computer interaction.

3.1 Organising Committee

• Craig Anslow - is a PhD student in the School of Engineering and Computer Science at Vic-
toria University of Wellington, New Zealand. His PhD research focuses on Multi-touch Table
User Interfaces for Collaborative Software Visualization and is supervised by James Noble
and Stuart Marshall. Craig has experience in building applications to support the evaluation
of programming languages using information visualization and multi-touch techniques.

• Shane Markstrum - recently defended his PhD in the Department of Computer Science,
University of California, Los Angeles, USA. His PhD dissertation is titled Enforcing and
Validating User-Extensible Type Systems and was supervised by Todd Millstein. Shane has
extensive experience in building domain-specific languages for type systems and building
plugins for Eclipse that focus on language-oriented features. Shane has joined the faculty of
Bucknell University as an assistant professor of Computer Science.

• Emerson Murphy-Hill - is currently a postdoctoral fellow at the University of British Columbia
in the Software Practices Lab with Gail Murphy, researching how software developers find
and adopt software tools. He recieved is Ph.D. from Portland State University in 2009. His
research interests include human-computer interaction and software tools.

3.2 Program Committee

We thank out program committee for reviewing the papers and giving valuable feedback on the
design of our workshop.

• Craig Anslow - Victoria University of Wellington, New Zealand

• Andrew Black - Portland State University, USA

• Larry Constantine - University of Madeira, Portugal

• Jeff Foster - University of Maryland, College Park, USA

• Bob Fuhrer - IBM Research, USA

• Donna Malayeri - Carnegie Mellon University, USA

• Shane Markstrum - University of California, Los Angeles / Bucknell University, USA

• Stuart Marshall - Victoria University of Wellington, New Zealand

• Todd Millstein - University of California, Los Angeles, USA

• Emerson Murphy-Hill - University of British Columbia, Canada

• James Noble - Victoria University of Wellington, New Zealand

• Ewan Tempero - University of Auckland, New Zealand
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4 Workshop Program

The programme was divided into a keynote, paper sessions, discussions of the papers, and a panel.
The workshop began with a Welcome and Introduction by the organising committee.

Larry Constantine then gave an interesting keynote that covered the usability of programming
tools and inspired participants to start thinking more about designing tools to increase usability.
A couple of exercises were conducted to illustrate ways in which participants could increase the
usability of tools.

11 papers were submitted and 8 papers were accepted for presentation. The papers covered
visualization and analysis and why they affect the usability of language, types and APIs and why we
might not want them, and non-traditional programming models and the problem with user studies
with them. Discussion sessions were followed at the end of each paper session which allowed the
audience to engage more about the topic.

The workshop concluded with an exciting panel with industry programming languages and
HCI veterans as panelists and the topic of discussion was “Bridging the gap between Programming
Languages and HCI”. The workshop was moderated by Andrew Black.

Breaks and lunch provided a good opportunity for discussion at the workshop. Lunch was had
at a nearby restaurant. Concluding the workshop attendees mixed with each other at the OOPSLA
Reception.

Table 1: PLATEAU Workshop Program.

0830-0900 Welcome and Introductions
0900-1000 Keynote - Larry Constantine ”User Experience Design for Programming Languages

and Tools”
1000-1030 Morning Break
Session 1. Visualization and Analysis (why they affect the usability of language)
1030-1050 Jennifer Baldwin, Del Myers, Margaret-Anne Storey, and Yvonne Coady. Assembly

Visualization and Analysis: An Old Dog CAN Learn New Tricks!
1050-1110 Yit Phang Khoo, Jeff Foster, Michael Hicks and Vibha Sazawal. Triaging Checklists:

a Substitute for a PhD in Static Analysis
1110-1130 Christine A. Halverson and Jeffrey Carver. Climbing the Plateau: Getting from Study

Design to Data that Means Something
1130-1200 Discussion on the role and value of data presentation/visualization in evaluating

languages and tools
1200-1330 Lunch Break
Session 2. Types and APIs (why we might not want them)
1330-1350 Akira Tanaka. Language and Library API Design for Usability of Ruby
1350-1410 Mark Daly, Vibha Sazawal and Jeffrey Foster. Work In Progress: an Empirical Study of

Static Typing in Ruby
1410-1430 Stefan Hanenberg. What is the Impact of Type Systems on Programming Time? - First

Empirical Results
1430-1500 Discussion on the role and value of user studies vs. code surveys and how to evaluate

the effectiveness of types and APIs
1500-1530 Afternoon Break
Session 3. Non-traditional Programming Models (the problem with user studies)
1530-1550 Meredydd Luff. Empirically Investigating Parallel Programming Paradigms: A Null

Result
1550-1610 Nan Zang. End User Programming Opportunities and Challenges on the Web
1610-1625 Discussion on evalution strategies for fringe or non-traditional programming models
1625-1630 Organizers report and participant feedback
1630-1730 Panel - ”Bridging the Gap between Programming Languages and Human-Computer

Interaction”
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5 Keynote

Speaker Larry Constantine. Professor in the Department of Mathematics and Engineering at
the University of Madeira, Portugal and Director of the Laboratory for Usage-centered Software
Engineering.

Title User Experience Design for Programming Languages and Tools.

Abstract Users are often at best an afterthought among software developerseven when they
themselves are the users! Usability of programming languages and tools is all too often equated
with raw functionality or casually dismissed as a matter of mere syntactic sugar. In one sense
the usability issues for programming languages and tools are nothing special. Whether its a UML
modeling tool or a Web 2.0 ERP system, on the other side of the screen is a human eye and
hand coordinated by a human brain. The same broad principles and specific techniques of sound
interaction design apply.

This keynote by an award-winning interaction designer and design methodologist attempts to
frame the issues in the usability of the tools we use, exploring the dimensions of user experience
in programming languages and tools, as well as examining what might be unique or special about
our experience as users. Specific recommendations and proposals for improving the usability and
user experience of languages and tools are presented.

Bio Larry Constantine, IDSA, is a Professor in the Department of Mathematics and Engineering
at the University of Madeira where he teaches in the dual-degree program that he helped organize
with Carnegie-Mellon University in the United States. He heads the Laboratory for Usage-centered
Software Engineering, a research and development group dedicated to making technology more
useful and usable. One of the pioneers of modern software engineering, he is an award-winning
designer and author, recipient of the 2009 Stevens Award for his contributions to design and design
methods, and a Fellow of the Association for Computing Machinery.

6 Panel

Are today’s programming languages as easy to read and write as they could be? Are they good
at communicating the programmer’s intent to others? Can programing language designers learn
anything from the Human-Computer Interaction community that will help us design better lan-
guages?

We held a workshop on this area entitled: “Bridging the Gap Between Programming Languages
and Human-Computer Interaction”. The workshop was moderated by Andrew Black and had three
distinguished panelists who discussed their ideas around this issue, and opened the discussion to
the workshop participants.

• Larry Constantine - Professor, University of Madeira, Portugal

• Dan Ingalls - Distinguished Engineer, Sun Microsystems Laboratories, USA

• Robert Biddle - Professor of Human-Computer Interaction, Carleton University, Canada
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Assembly Code Visualization and Analysis:
An Old Dog CAN Learn New Tricks!

Jennifer Baldwin, Del Myers, Margaret-Anne Storey, Yvonne Coady
University of Victoria

{jbaldwin, delmyers, mstorey, ycoady}@cs.uvic.ca

Abstract
Software engineering practices and tools have had a signifi-
cant impact on productivity, time to market, comprehension,
maintenance and evolution of software in general. Low-level
systems have been largely overlooked in this arena, partially
due to the complexities they offer and partially due to the
inherent “bare bones” nature of the domain. The fact is that
anyone can understand a few lines of assembly, even hun-
dreds, but when you move into the tens of thousands or more,
most people will require additional cognitive support. This
lends an opportunity to explore the application of state-of-
the-art high-level theories to low-level practice. Our initial
investigations indicate that there are real issues that even ex-
perienced developers face, such as the overwhelming size
but also obfuscation of system function in malware. We be-
lieve modern tools can help in this domain, and this paper
explores the ways in which we believe visualization will be
of particular importance.

1. Introduction
Program comprehension is complex and time-consuming,
particularly in manually tuned, low-level system codebases
such as those written in assembly language. The current lack
of adequate tool support for these kinds of systems further
exacerbates this problem. Whereas engineers of higher-level
systems quite often rely on tools for effectively navigating
codebases and analyzing design, corresponding support for
lower-level systems is severely lacking.

The ultimate target of this research is to address open
issues in the area of assembly code comprehension. This
goal will require a theory of how assembly programmers
comprehend code and the challenges which they face. Sec-
ond, we will build prototype tools that will be evaluated at
a later stage of our work. This framework of tools will be
designed to allow software architects, developers, support
engineers, testers and security analysts to better compre-

Copyright is held by the author/owner(s). This paper was published in the proceedings
of the Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU) at the ACM Onward! Conference. October, 2009. Orlando, Florida, USA.

hend large, monolithic, complex system infrastructures (in
excess of 100 KLOC and 10,000 branches). The resulting
prototypes should allow developers to more easily maintain
code or implement new features, even in legacy code, and
should also speed up the analysis of malware, thereby en-
abling shorter turnaround times. Most importantly, as the as-
sembly developer workforce ages, these tools aim to lessen
issues linked to situations when the expert leaves the team.

1.1 Motivation
Though program understanding has received much attention
from the research community, these approaches and corre-
sponding tools only have limited application to large scale
low-level systems. Even fundamental characteristics such as
control flow and data flow are exceedingly hard to track at
scale in the systems we propose to target. Though metamod-
els often serve to aid comprehension of higher-level systems,
no widely accepted metamodels currently exist for assembly
or even C.

Irreducibility of Control Flow Graphs A number of soft-
ware code analysis methods assume reducible control flow
graphs. Unfortunately, assembly source code development
leads to heavily optimized control flow with multiple en-
tries and multiple exits. An example of such a control flow
graph is depicted in Figure 1 [1]. This image was built with
GraphViz [2] using a program written in the IBM HLASM
code [3], which contains no concept of subroutines, only
conventions. The hexagon node is the entry point, and the
trapezoid node is the exit point of the routine. Two shaded
oval nodes represent calls to other subroutines and the other
oval nodes represent linear blocks. There are several loops
with multiple entries and multiple exits, a characteristic
common to highly tuned low-level systems and malware
programs, which means that this graph cannot be reduced to
a single node and is irreducible.

Difficult Decomposition of Complex Control Flow Graphs
The intertwining of multiple computation threads in a single
source code module often results in complex control flow
graphs for which decompositions are not easy, as shown in
Figure 2 [1]. One of the key aspects of any software compre-
hension activity is the amount of information required to be



Figure 1. Irreducible Control Flow Graph.

Figure 2. Complex Control Flow Graph.

understood. New methods and techniques targeting legacy
code need to take this complexity into account by potentially
grouping related control flow abstractions accordingly.

These images are not meant to show bad programming
structure, but instead a structure that is almost unavaoidable
in assembly programming. While these particular images are
provided by CA for HLASM, this same principle holds for
applications written in different assembly dialects. For ex-
ample, developers at the Department of National Defense
(DND) have issues with the intentional obfuscation in mal-
ware, so that it is exceedlingly difficult to pinpoint the secu-
rity threat it contains.

This paper is organized as follows: Section 2 describes
an initial user study. Section 3 discusses the related tools
we have studied while Section 4 introduces the prototype
extensions of these tools in regards to assembly language.
Section 5 ends with future work.

2. Initial Findings: Assembly Programmer
Tool Needs

In March 2009, we visited the CA PTC (Prague Technol-
ogy Center). CA PTC is known primarily for its mainframe
computer and distributed computing applications and solu-
tions used by businesses. Here we met with five developers
from various backgrounds. They were able to freely discuss
the issues they felt they had as well as what they believed
was fundamental for their understanding. Their stories are
summarized below.

First Engineer Rob1 was an experienced assembly devel-
oper who was working with an extremely large module.
We saw how he worked with the code and he also told us
what the most important tools he wanted were. These in-
clude connections between modules, analyzing subroutines
(HLASM does not have functions, only coding conventions),
support for dummy sections (DSECTs) and control sections
(CSECTs), as well as register usage. DSECT refers to a
dummy control section, similar to a struct in C, and CSECT
refers to a control section or block of executable statements.

In order to find DSECTs, Rob was using text search.
There was no way to see where they were defined or used
at a high level, and no navigation to them.

Second Engineers The second interview we had was
with two engineers, David and Joe, that both worked on
a database written in assembly. When bugs occured in the
system, usually it was due to an instruction modifying a
DSECT. When this occured, they had to use a crossrefer-
ence tool that finds everything that modifies the DSECT,
and it has some shortcomings.

David and Joe wanted something similar to a debugging
tool, which would allow them to jump through modules to
follow data flow by using a log file. Navigation would allow
them to move back and forth with their selections and also
back and forth with how the program ran, with the addition
of breadcrumbs to show this. They also needed to know the
values in each register. Additionally, they wanted to have
architectural diagrams that developers could collaborate on.
Figure 3 shows a mockup of this tool.

1 The names used in this study are fictitious.

Figure 3. Mockup UI Design for Debugging Tool



Developer Issues
Assembly Connections between modules, identification of sub-

routines, DSECT and CSECT support, register sup-
port.

Database DSECT modification, debugging tools, data flow.
Eclipse
Plugin

Syntax highlighting/checking, integration with main-
frame, code completion, reference lists and graphs.

Assembly Separate listings into:
- source code
- modules using each label/variable name

Table 1. Summary of Developer Issues at CA PTC.

Third Engineer Alex had created an Eclipse plugin that
provided syntax highlighting for assembly, as well as being
able to upload/download files from the mainframe and exe-
cute them. It also included the ability to view the log file as
well as the outline of the assembly code (macros, DSECT,
CSECT).

Future work that Alex wanted for this tool included code
completion and syntax support in the editor, so the code
would not have to run on the mainframe first. Also being
able to search and graph references for where the symbols
are used (or defined).

Fourth Engineer Bill had been given the task of trying to
understand a huge assembly system called reportbroker,
which has 493 modules. He had written a tool that separates
data from the listing into two different files, one for the
source code and one for the usage of each label, varname
etc by module. This was because it was important for him to
know which modules to look at when he was dealing with a
specific label or variable name.

Summary There seemed to be three separate areas of con-
cern:

• Development Tools
• Debugging/Runtime Tools
• Visualization/Comprehension Tools

The development tools would include syntax highlight-
ing/checking, code completion and being able to search for
references, basically the common IDE support that Eclipse
[4] provides for Java developers. Debugging tools would al-
low viewing values of registers at runtime, or from a log file,
and stepping through the system. Finally, visualization and
comprehension tools would include tools such as those for
control flow, data flow tools and architectural diagrams.

Table 1 shows a summary of the results from the inter-
views with developers.

3. Related Work
This section will discuss some of the existing tools that we
have investigated during this work. This is only a subset
of those tools. Many others, including those for dynamic
visualizations, were reviewed in [5]. First we discuss at a

broad level, many of the tools we have investigated. We then
focus on two tools that appear to match the needs of the users
as identified in the previous section of the paper. The first is
the Sequence Explorer tool, and the second is the Visualiser.

3.1 A Subset of Tools
Some tools that are currently employed in industry for as-
sembly include IDAPro [6], a disassembler and debugger,
PaiMei [7], which is a reverse engineering framework, Re-
sponder [8], a runtime and memory analysis tool, and Visual
Studio’s debugger [9]. Other research efforts include GSPIM
[10], which is used for visualization of low-level MIPS as-
sembly programming and simulation, and BitBlaze [11], a
binary analysis platform to analyze, understand, and develop
defenses against malicious code.

Other tools, including those not related to assembly, may
hold promise in this domain. Some of these are types of vi-
sualizations such as distribution maps and terrain maps, as
well as graph-based tools such as [2, 12, 13]. There are other
reverse engineering frameworks and exploration tools that
could be useful [14, 15, 16, 17, 18]. Other tools that exist
for runtime analysis are the Visualization Execution Tool
or VET [19], which helps programmers manage the com-
plexity of execution traces, and other tools for debugging
[20, 21] and memory analysis [22]. Runtime tools are par-
ticularly important in helping developers identify memory
leaks, buffer overflow, causes of segmentation faults, as well
as understanding how registers and their values are used.

Concern mining might also be of interest in order to
locate feature implementations, or concerns, within the code.
Some of these tools include FINT [23], the Aspect Mining
Tool (AMT) [24] and others [13, 25, 26, 27].

We believe a combination of features from these tools are
needed to effectively assist developers in understanding and
maintaining low-level software. They can do so by providing
visual assistance as well as customized views of a system.
Our goal is to extract features or expand tools that could
pertain to assembly code. Software exploration tools are
abundant, but only a handful are geared towards assembly.
Interestingly enough, many debuggers exist for assembly,
yet developers are still asking for different features such
as register usage and propagation, as well as being able
to step back and forth through program execution. Finally,
concern mining has not been applied to low-level languages
and could be an interesting avenue of research. Figure 2
may benefit from separation of control flows into chunks
based on concerns, providing a better way for maintainers
to understand a system than trying to figure out intertwined
LOADs and GOTOs.

3.2 Sequence Explorer
One of the more difficult challenges in understanding assem-
bly code is following control and data flow. This is due to the
inherent, unstructured nature of the code, as discussed ear-
lier. Therefore, the first step in visualizing assembly was to



create a static call graph. This data was visualized by ex-
tending the Sequence Explorer [28] from the CHISEL Lab
at the University of Victoria. We selected this tool because it
is available as open source and thus open to extension, which
is the only one as far as we know.

3.2.1 Sequence Explorer Design
Much work in industry and in research has been spent im-
plementing multiple instantiations of very similar visualiza-
tions for program control flow. Therefore, a need was seen
for a reusable, interactive sequence diagram viewer in order
to eliminate duplicate work. The Sequence Explorer view
was built to this end.

The design of the view has two primary goals. The first is
model-independence, and the second is interactivity/naviga-
bility. Model-independence means that the viewer is not tied
to any particular model or data format in its back-end. The
viewer has been employed to visualize program control flow
from various sources. Such sources include control flow of
assembly language instructions (in this research), dynamic
traces from instrumented Java programs [5], and call struc-
tures of static Java source code. This has been accomplished
by using a framework compatible with the Eclipse JFace [29]
viewer framework. This means that implementors must write
some Java code in order to realize their application, but they
are also abstracted far away from the details about how to
draw the lines, boxes, and labels necessary for displaying
the view.

The second goal of interactivity and navigability was in-
spired by the fact that sequence diagrams can quickly be-
come very large and extremely complex. The viewer has
integrated features to help overcome this problem. Some
of the features are illustrated in section 4.1. A short list-
ing of the features includes: animated layout, highlighting
of selected elements and related sub-calls, grouping of re-
lated calls (such as loops), hiding/collapsing of call trees and
package or module structures, customizable colors and la-
bels for visual elements such as activation boxes and mes-
sages, keyboard navigation through components, and the
ability to reset (focus) the sequence diagram on different
parts of the call structure. These features were studied and
evaluated in [5, 30].

3.3 Visualiser
In order to visualize certain aspects of assembly code at a
high-level, we needed some sort of tree map. The visualiser
is not a tree map, but somewhat similar with its use of
colored stripes and blocks. It is also freely available and
easily extended, which is why it was selected as a first step
towards a scalable tool for this purpose.

3.3.1 Visualiser Background
The Visualiser [31] is an extensible Eclipse plugin, origi-
nally part of AJDT, that can be used to visualize anything
that lends itself to a ‘bars and stripes’ style representation. It

began as the Aspect Visualiser, which was used to visualize
how aspects were affecting classes in a project. It did so by
showing each class as a bar, with its length corresponding to
its length in lines of code. Each aspect was then color-coded
and their locations drawn within the bar based on their loca-
tion and number of affected lines of code (or lines of code in
the aspect itself). The Visualiser provides extension points
and there are a few publicly available providers, including
those for Google searches and CVS history. We have also
used it before in the context of tool support for systems in
[32].

4. Towards More Effective Assembly Tools
Our eventual goals of this work are to develop theories of
comprehension in low-level systems, establish associated
metrics capturing achievement in comprehension, incorpo-
rate these findings into an appropriate framework for tool
support, and finally to measure the impact on program com-
prehension tasks. Since this work is in its early stages, here
we simply focus on our two prototype tools for high-level vi-
sualizations within this domain: static control flow through
the extension of a sequence diagram viewer, and perspec-
tives for memory and construct mapping.

4.1 Control Flow for ASM
To create a control flow tool for assembly, we needed the
data for the control flow as well as the tool itself. The call
data was retrieved for X86 using an IDAPro plugin built
by DND. For the tooling, we built an extension of the Se-
quence Explorer discussed in the previous section. This tool
presents the user with all of the functions defined in a module
within a tree in Eclipse, once the user has selected a func-
tion, a control flow diagram such as Figure 4 will be seen.
This screenshot shows that the user has selected the func-
tion sub 4A7355, and can then expand the function calls
they are interested in to see what calls that function makes.
Functions that have an I icon next to them are imported
functions, meaning they are located in another module. At
the top of the figure, there is a diagram which shows which
module this function is defined in. Here we can see that many
of the imported functions come from the KERNEL32.dll
file. When an imported function is selected, the XML file
corresponding to it, if it exists, is parsed and the information
added to the diagram. We can also see the thumbnail view
in the outline pane on the right hand side. The viewer allows
users to set any of the calls as the new root of the diagram
and reset the root to the caller of that function. These are
available as right-click options on the subroutine’s lifeline.
Additionally, there are breadcrumbs at the top of the diagram
so the user can select any function along the path to navigate
through the calls. When the user is finished navigating, they
have the option to save the state of the diagram.

Future work for the assembly extension of this tool will
include being able to filter the control flow so that it only



Figure 4. Control Flow Viewer.

shows areas of interest and to be able to load control flow
information on demand from IDAPro, so that it is no longer
static. PaiMei [7] is able to filter control flow information
and the filtering ability has already been built into the Se-
quence Explorer framework. Therefore, we need to combine
this filtering with the output from the IDAPro [6] plugin. As
for dynamic control flow, IDAPro provides the API to eas-
ily build extensions, and DND has already built an example
plugin to provide interaction with Java programs.

4.2 Visualiser for ASM
We extended the Visualiser by creating another provider to
show a high-level view of certain constructs in assembly lan-
guage, as well as navigation to those constructs in the code.
For example, trying to see where DSECTs are defined and
used at a high level was quite difficult for a CA developer,
who was using text search to find all of its uses.

For this particular example, we are visualizing an open
source MVS program called CBT019 [33], otherwise known
as FOOD LION Utilities from John Hooper. We have se-
lected this program since it is comparable in size to many
of those at CA. This example represents a memory view
of the application using listing files created during system
compilation. The data gathered from the listing files is first
transformed into an XML file, which is then transformed to
the format the Visualiser understands. The visual output for
this XML file is shown in Figure 5. The menu, which shows
each of the CSECTs and DSECTs, is shown in the center
of the screenshot. Each bar (or column) represents a module
with its length equal to its size in memory. Each CSECT and
DSECT is also color-coded and its size and location corre-
spond to that in memory. This view allows developers to see

at a high-level, where all of the DSECTs and CSECTs are lo-
cated and also how much memory of the entire system, they
consume. Developers can also interact with the diagram by
double clicking on each colored segment to navigate to that
DSECT or CSECT. There are also additional options pro-
vided by the Visualiser itself, such as zooming in and out, fit
to view, limit view to affected bars, and group and member
views (when packages are present).

This example is not a source view, which would mean
that lengths and locations are based on lines of code. Since
neither a source code view, or memory address view is a
complete solution, either a combined view or two separate
views will be required. Additionally, since most assembly
programs are one large module, with the current tool, this
will appear as one long bar with many colored blocks. There-
fore, it will be important to provide some ease of exploration
by splitting the bars up first by module, then by subroutine,
then into the CSECTs, DSECTs etc. We envision building an
interactive treemap combined with bars and stripes to pro-
vide this interactivity to move from large to small granular-
ity.

5. Future Work
Tool support, as we know it today, was not available to de-
velopers who worked primarily with assembly and therefore
it is not surprising that it is still nearly non-existent. Fur-
thermore, it is unclear if high-level program comprehension
theories and tools map directly into this domain. This lends
an opportunity to explore the application of state-of-the-art
high-level theories to low-level practice. We intend to do
so by using these new tools we develop to elicit require-



Figure 5. Visualization of CBT019.

ments. Since the programmers may not ask for such tools,
having never used them before, we can continue to adapt
them based on the challenges we observe. Finally, we can
see if our tools address these challenges by performing case
studies with subject software systems followed by user stud-
ies with developers. Our initial investigations indicate that
our approach is feasible, and exposes many possible avenues
for future research. Such avenues include exploring further
tools and metrics, other languages and codebases, and ties
to higher-level theories. These theories will include refin-
ing program comprehension theories such as those found in
[34, 35, 36, 37].

We believe that assembly software comprehension tools
will aid developers in many areas. Increased comprehension
will enable shorter turnaround times for maintenance and
modifications of software. This coupled with navigational
and development tools can also support easier, faster, and
more reliable implementation of new features in legacy soft-
ware. Another important factor is avoiding issues when an
expert leaves the team. The fact is that new generations of
developers are accustomed to a certain level of tool support,
and by accepting and using it, they will reap the benefits we
believe exist.

Acknowledgments
We would like to thank David Ouellet and Martin Salois
from Defence Research and Development Canada (DRDC)
for their involvement in creating the Sequence Explorer ex-
tension; and Radek Marik at CA Labs, for providing data
and feedback necessary for the visualiser. This work was
funded by DRDC contract W7701-82702/001/QCA and by
CA Labs.

References
[1] R. Marik, “GREX Architecture - Package Comprehension

Report,” CA Labs, Tech. Rep., 2009.

[2] E. R. Gansner and S. C. North, “An open graph visualization
system and its applications to software engineering,” Softw.
Pract. Exper., vol. 30, no. 11, pp. 1203–1233, 2000.

[3] High Level Assembler and Toolkit Feature. http:
//www-01.ibm.com/software/awdtools/hlasm/

[4] Eclipse.org home. http://www.eclipse.org/

[5] C. Bennett, D. Myers, M.-A. Storey, D. German, D. Ouellet,
M. Salois, and P. Charland, “A survey and evaluation of tool
features for understanding reverse-engineered sequence dia-
grams,” Journal of Software Maintenance and Evolution: Re-
search and Practice, vol. 20, no. 4, 2008.

[6] IDA Pro Disassembler. http://www.hex-rays.com/idapro/

[7] P. Amini, “PaiMei - Reverse Engineering Framework,” in
RECON ’06: Reverse Engineering Conference, Montreal,
Canada, 2006.

[8] ResponderPRO. https://www.hbgary.com

[9] Visual Studio. http://msdn.microsoft.com/en-gb/vstudio/
default.aspx

[10] P. Borunda, C. Brewer, and C. Erten, “GSPIM: graphical vi-
sualization tool for MIPS assembly programming and simula-
tion,” in SIGCSE ’06: Proceedings of the 37th SIGCSE tech-
nical symposium on Computer science education. New York,
NY, USA: ACM, 2006, pp. 244–248.

[11] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.
Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena,
“Bitblaze: A new approach to computer security via binary
analysis,” in ICISS ’08: Proceedings of the 4th International
Conference on Information Systems Security. Berlin, Heidel-
berg: Springer-Verlag, 2008, pp. 1–25.



[12] N. Synytskyy, R. C. Holt, and I. Davis, “Browsing software
architectures with LSEdit,” in IWPC ’05: Proceedings of the
13th International Workshop on Program Comprehension.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
176–178.
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Abstract
Static analysis tools have achieved great success in recent
years in automating the process of detecting defects in soft-
ware. However, these sophisticated tools have yet to gain
widespread adoption, since many of these tools remain too
difficult to understand and use. In previous work, we dis-
covered that even with an effective code visualization tool,
users still found it hard to determine if warnings reported
by these tools were true errors or false warnings. The fun-
damental problem users face is to understand enough of the
underlying algorithm to determine if a warning is caused by
imprecision in the algorithm, a challenge that even experts
with PhDs may take a while to achieve. In our current work,
we propose to use triaging checklists to provide users with
systematic guidance to identify false warnings by taking into
account specific sources of imprecision in the particular tool.
Additionally, we plan to provide checklist assistants, which
is a library of simple analyses designed to aid users in an-
swering checklist questions.

1. Introduction
In recent years, the research and industrial communities have
made great strides in developing sophisticated software de-
fect detection tools based on static analysis. Such tools an-
alyze program source code with respect to some explicit
or implicit specification, and report potential errors in the
program. Static analysis tools show great promise in au-
tomating defect detection: new analysis techniques and tools
are now regularly reported in the research literature as hav-
ing found bugs in significant open-source software [Ayewah
et al. 2007; Engler and Ashcraft 2003; Engler et al. 2000;
Foster et al. 2002; Hovemeyer and Pugh 2004; Naik et al.
2006; Shankar et al. 2001]. Microsoft routinely uses tools to
find bugs in production software [CSE; Das 2006] and other
large software houses, such as Google [Ayewah et al. 2007;
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of the Workshop on Evaluation and Usability of Programming Languages and Tools
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Ruthruff et al. 2008] and EBay [Jaspan et al. 2007], are be-
ginning to follow suit.

Despite these successes, most static analysis tools remain
limited in formal adoption, particularly tools that use sophis-
ticated algorithms [Ayewah et al. 2008; Ayewah and Pugh
2008]. In our opinion, one of the key reasons is that many
tool designers today fail to appreciate that the human user
is an essential component of the defect detection process. A
tool can output a list of possible errors, but the user has to
determine if a reported warning is actually an error and, if
so, how to fix it. In fact, we consider a tool to be effective
only if it can successfully collaborate with the user to locate
actual errors and fix them. To do so, we believe that tools
must be able to convey their results to the user efficiently
and with sufficient information for the user to correctly and
quickly arrive at a conclusion.

In our previous work (Section 2), we developed a code
visualization tool that is designed to efficiently explain the
often long and complicated errors reported by static analy-
sis tools. While this reduces the users’ effort to understand
error reports, we discovered that users face a more funda-
mental difficulty in understanding how false warnings may
arise from specific sources of imprecision in static analysis
algorithms. Training is an impractical solution to this prob-
lem; even static analysis experts such as ourselves find that it
can often take some time to study a particular static analysis
tool to truly appreciate and internalize all the intricacies in
the underlying algorithm.

Instead, we believe that we can provide systematic guid-
ance to the user in the form of triaging checklists (Section 3).
Checklists are very practical devices to guide users in triag-
ing, since users simply follow the instructions on the check-
list to answer each question and to determine the conclu-
sions. Checklists can also be very specific, since they can
be designed by tool developers to point out known sources
of imprecision in their tools and instruct users how to look
for them. To be most effective, we want checklists to be
customized to individual warnings such that users will only
need to answer exactly the minimum number of questions to
triage each warning. In this paper, we describe our ongoing
efforts to explore how sources of imprecision may be traced
through various static analysis algorithms, and how to con-
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Figure 1: Path Projection (top) and a close-up which shows
(1) function call inlining, (2) code folding, and (3) multiple
keyword searches.

struct clear, easy-to-understand checklists with this informa-
tion.

2. Previous Work: Visualizing Program
Paths with Path Projection

In previous work, we developed Path Projection, a general
user interface toolkit for visualizing and navigating program
paths [Khoo et al. 2008a]. Program paths are lists of program
statements, and are used by many static analysis tools to re-
port potential errors. For example, CQual [Greenfieldboyce
and Foster 2004] and MrSpidey [Flanagan et al. 1996] re-
port paths corresponding to data flow; BLAST [Beyer et al.
2004] and SDV [Ball and Rajamani 2002] provide coun-
terexample traces; Code Sonar [GrammaTech, Inc. 2007]
provides a failing path with pre- and post-conditions; and
Fortify SCA [Fortify Software Inc. 2007] provides control
flow paths that could induce a failure.

However, manually tracing program paths to understand
a warning is a tedious task: the user has to jump between
different functions in different files and sift through many
lines of source code, while trying to work out how relevant
statements along the path may or may not lead to the error.

Most source code editors are inefficient for this task as they
are designed to view one section of a file at a time, whereas
a program path may span multiple functions across several
files. Many editors provide hyperlinks for users to quickly
navigate between different sections of the path, but even with
hyperlinks, there is still a significant cognitive burden on the
user to remember fragments of code for each path section, or
alternatively, to manually arrange multiple editor windows
to see all of the path at once.

With these issues in mind, we designed Path Projection to
visualize program paths in a way that helps users see the en-
tire path at once. Path Projection uses two main techniques—
function call inlining and code folding—to “project” the
source code onto the error path. An example is shown in
Figure 1. In the shown path, main calls resume get, and the
body of resume get is inlined directly below the call site
(1). Then resume get calls http get (via pthread create ),
so the latter’s body is inlined, and so on. Inlining ensures
the code is visually arranged in path order, which removes
the need to jump around the program to trace a path. Code
folding is used to hide away irrelevant code, indicated by dis-
continuous line numbers, so that the user is initially shown
as much of the path as will fit in one screen (2). We show
only lines that are implicated in the error report, and the
function names or conditional guards of enclosing lexical
blocks (including matching braces). The highlighted key-
words pthread create , pthread mutex lock, etc. would nor-
mally be folded, but are here revealed through multiple key-
word searches (3).

We evaluated Path Projection’s utility with a controlled
experiment in which users triaged reports produced by Lock-
smith [Pratikakis et al. 2006], a static data race detection
tool for C. Locksmith reports data races by listing the call
stacks that access the shared variable for each conflicting
thread, so, we use Path Projection to visualize the call stacks
side-by-side. We measured users’ completion time and ac-
curacy in triaging Locksmith reports, comparing Path Pro-
jection to a “standard” viewer that we designed to include
the textual error report along with commonly used IDE fea-
tures. We found that Path Projection improved the time it
takes to triage a bug by roughly one minute, an 18% im-
provement, and that accuracy remained the same. Moreover,
participants reported they preferred Path Projection over the
standard viewer. Users spent little time looking at the error
report in the Path Projection interface, which suggests that
Path Projection succeeds in making paths easy to see and
understand in the source code view.

3. Current Work: Checklists for Triaging
Static Analysis

We find from our experiments that, although a good visual-
ization such as Path Projection reduces the effort to triage
the result of static analysis tools, many users still find the
triaging task to be very difficult. To triage a reported error,



For threads leading to dereferences in Paths i and j:

Are they parent-child (or child-parent), or child-
child?

O Parent-child /O Child-child

Parent-child (or child-parent) threads. Y N
Does the parent’s dereference occur after the child
is spawned?

O O

Before its dereference, does the parent wait (via
pthread join) for the child?

O O

If no, there is likely a race. Are there reasons to
show otherwise?

O O

Explain:

Child-child threads. Y N
Are the children mutually exclusive (i.e., only one
can be spawned by their common parent/ancestor)?

O O

If no, there is likely a race. Are there reasons to
show otherwise?

O O

Explain:

Figure 2: Checklist for triaging Locksmith reports

the user has to know enough about the analysis performed—
in particular, its sources of imprecision—to determine if
the error is a false positive. For example, a static analysis
may be path insensitive, meaning it assumes that all condi-
tional branches could be taken both ways. Thus the tool may
falsely report errors on unrealizable paths. As another exam-
ple, a static analysis tool may be flow insensitive, meaning it
does not pay attention to statement ordering. Thus the tool
may decide that some source data might reach a target loca-
tion even if an intermediate assignment statement kills the
flow of data, making this impossible at run time.

In our experience, reasoning about imprecision to detect
false positives is out of reach for most users. We found
that even with extensive tutorials, participants had trouble
triaging the results from static analysis tools [Khoo et al.
2008b]. Their triaging procedures were usually ad hoc and
inconsistent, often neglecting some sources of imprecision
(and thus sometimes wrongly concluding a report to be a
true bug) or assuming non-existent sources of imprecision
(and therefore wasting time verifying conditions certain to
hold).

3.1 Triaging checklists
We believe we can greatly improve the effectiveness of static
analysis tools by providing users with checklists to guide
them through the triaging process. A triaging checklist enu-
merates a series of questions that the user has to answer in
order to triage a particular error. In our Path Projection study,
we developed a partial checklist to help users triage error re-
ports from Locksmith. One common source of false positives
from Locksmith is its path insensitivity, so this checklist fo-

cuses on verifying the realizability of paths implicated in a
data race.

A section of the checklist is shown in Figure 2. This sec-
tion is shown when Locksmith reports that two threads, i and
j, access a shared variable without holding a common lock,
which would lead to a data race. The user has to examine the
call stacks of the conflicting threads in the Locksmith report
to determine if the variables may be accessed simultaneously
from threads i and j.

The user first has to decide whether threads i and j are
in a parent-child or other (child-child) relationship. If the
user selects parent-child, the user then needs to determine if
the dereference in the parent occurs after the child thread is
created (otherwise there is no race) and if there are no block-
ing thread joins preventing the parent from dereferencing the
shared variable until the child has joined (Locksmith ignores
calls to pthread join ). The child-child case is analogous—
the user must check whether the two children are mutually
exclusive (e.g., spawned in disjoint branches of an if state-
ment), which would preclude a race. For both parent-child
and child-child races there is a catch-all checklist question
for other reasons that could preclude the race, e.g., due to
branching logic along the given path.

In our final Path Projection study (described in Section 2),
we provided our users with the same checklists for both user
interface conditions. Prior to that study, we ran a pilot study
without checklists, and found that users took much longer
to complete the given tasks. Although the two studies are
not strictly comparable, we observed that users triaged error
reports roughly 40% (or four minutes) faster with checklists
than without them, and their conclusions were more reliable.
A key reason for improved accuracy is that checklists make
clear exactly what users need to look for, so they can be sys-
tematic and not miss important indicators. The reason for
improved efficiency is that the checklist enumerates exactly
what must be done, and no more. For example, the Lock-
smith checklist has no mention of verifying whether a listed
lock is actually held—in this case Locksmith’s algorithm is
perfectly precise, so its conclusions are trustworthy. But in
our earlier pilot study, many users would get distracted ex-
amining if locks were or were not held.

We think there is much promise in checklists, so we plan
to study their use more clearly and systematically. First, we
are working to generalize the use of checklists to other tools
and other types of imprecision in static analysis. For ex-
ample, Locksmith is also imprecise because it uses a flow-
insensitive alias analysis, which means that while paths to
dereferences in different threads may be simultaneously re-
alizable, the dereferences may actually be to different mem-
ory locations (and thus not a race), contrary to what the alias
analysis thinks.

Second, we would like to build static analyses that effi-
ciently track sources of imprecision, and use this information
to construct checklists that are specific to each reported error.



For example, for the statement if (x) p = q, we know p
and q are aliases only if x is non-zero, but a path-insensitive
alias analysis would conservatively ignore the conditional
and simply assume, unconditionally, that p and q are aliases.
If this assumption is used to generate an error report, the re-
port will be a false positive if x is always zero. Thus, the
analysis should keep track of when it takes this imprecise
step. If the assumption leads to an error, a checklist item can
be constructed to ask the user to check whether x may in-
deed be non-zero. This basic idea is similar to client-driven
pointer analysis [Guyer and Lin 2003], which attempts to se-
lectively remedy the imprecision of its pointer analysis based
on feedback from subsequent client static analyses. While
useful, automated remedies are not always possible, nor can
they always be identified cheaply or reliably. Checklists take
advantage of the human’s expertise and computational abil-
ity to verify well-defined problems that may have no satis-
factory automated solution.

Finally, we plan to measure the efficacy of checklists and
checklist assistants through controlled user studies for bug
triage, of the flavor of the one used to evaluate Locksmith’s
existing checklist [Khoo et al. 2008b]. As we gain further in-
sight and experience in developing checklists, we will move
to automate the generation of tool-specific checklists as well,
drawing on the basic theory of abstract interpretation (which
expresses the ways in which an analysis domain is conserva-
tive) [Cousot and Cousot 1977]. We will also consider means
to allow users to construct their own checklists that can take
advantage of accumulated analysis information.

3.2 Checklist assistants
We are also investigating the use of checklist assistants,
which are simple analyses to help answer specific questions
in triaging checklists. Unlike the core analyses of tools, these
simple analyses need not be sound; they will simply point
the user in the right direction, ultimately relying on his/her
judgment. For example, our Path Projection interface con-
tains a rudimentary assistant in the form of a multi-keyword
search that highlights and reveals matching text even if they
had been hidden by code folding. Consider the Locksmith
checklist again: the user is asked in one case to check if a
parent joins a child thread before an access to a common
shared variable; if so, there is no race, since at that point the
child thread has exited. To assist in this task, the user may
enter “ pthread join ” into the multi-keyword search to high-
light all matching occurrences of that text in the displayed
path. The user can then visually scan for a matching occur-
rence of pthread join between the accesses in the parent
and child threads. If there is a such occurrence, the user can
quickly determine that there is no race. A more sophisticated
assistant may recursively search all functions called between
the parent and child threads for occurrences of pthread join ,
further simplifying the user’s effort to answer the checklist.

Rather than “baking in” these sorts of analyses into a
given tool, we are looking into providing a generic library of

checklist assistants that can be reused across different types
of static analysis. These may be developed in the style of
ASTLog (later, PREFast) [Crew 1997], for simple syntac-
tic queries, or a more general data flow analysis framework
parameterizable by the lattice, transfer functions, and so on
[Chambers et al. 1996; Duesterwald et al. 1997; Dwyer and
Clarke 1996; Hall et al. 1993]. Ideally, these checklist assis-
tants should have access to the internal results of the tools’
core analyses (e.g., the control flow graph, points-to graph,
etc.); however, we are also exploring the possibility of work-
ing with just the information available from the tools’ error
reports, to make checklist assistants applicable to any tool.
We also imagine allowing users to indicate that a heuristic
analysis be used automatically, once it becomes sufficiently
trusted.

4. Related Work
Checklists have attained widespread adoption in a variety
of fields [Hales and Pronovost 2006], including emergency
room triage [Berman et al. 1989], aviation [Degani and
Wiener 1990], and ergonomics [Brodie and Wells 1997].
In software engineering, checklists play an important role in
software inspection tasks. Anderson et al. [2003] demon-
strate how CodeSurfer can be used to answer questions
in NASA’s Code Inspection Checklist. Ayewah and Pugh
[2009] developed a checklist for Findbugs to help users rate
the severity of reported warnings. The successful adoption
of checklists in many fields gives us confidence that we can
greatly improve the usability of static analysis tools by giv-
ing users checklists.

Several tools exist to query code facts, such as Ciao [Chen
et al. 1995], JQuery [Janzen and Volder 2003], and Semmle-
Code [Semmle Limited]. Lencevicius et al. [2003] propose
using querying for interactive debugging, and Ko and My-
ers [2008] built a debugger called Whyline that allows pro-
grammers to ask “why” and “why not” questions about a
program trace. Partiqle lets users express relational queries
over program traces [Goldsmith et al. 2005]. In contrast to
these approaches, our checklist assistants are specifically in-
tended to tackle imprecision in static analysis tools. Mar-
tin et al. [2005] propose PQL (Program Query Language),
a simple language for writing static analyses that imple-
mented via compilation to datalog programs that work with
bddbddb [Whaley and Lam 2004]. We may be able to use
ideas from PQL in developing our checklist assistants, but
we hope to provide a more flexible system that employs a
range of static analysis techniques rather than one approach.

5. Conclusion
In this paper, we propose to use triaging checklists as one
key tool to make static analysis tools easier to use. While a
good visualization is useful to explain a warning efficiently,
a good triaging checklist provides users with clear and com-
plete instructions to decide if a warning is truly an error or



false warning. We are investigating how checklists can be
applied to a variety of static analyses, as well as how to trace
sources of imprecision in static analysis to construct check-
lists that are highly tool- and error-specific. Additionally, we
are also exploring checklist assistants, which are lightweight
analyses designed to help users answer checklist questions.
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Abstract
Evaluating  the  usability  of  a  programming  language  or 
tool  requires  a  number  of  pieces  to  fall  into  place.  We 
raise  issues  along  the  path  from  study  design  to 
implementation and analysis drawn from the experience of 
running  several  studies  concerned  with  a  new  parallel 
programming  language  –  X10.  We  summarize  several 
analyses that  can be drawn from different  aspects of the 
same data. 

Categories  and  Subject  Descriptors D.2.5  [Software 
Engineering]:  Testing  and  Debugging;  H.1.2 
[Information Systems]:  User/Machine  Systems—Human 
Factors 

General Terms  Measurement, Experimentation, Human 
Factors, Languages.

Keywords  parallel  programming;  programmer 
productivity;  study  design;  data  collection;  integrated 
methodology; analysis of programmer behavior.

1. Introduction
While programming massively parallel  computer systems 
has been going on for at least two decades, few details are 
known  about  its  practice.   The  information  that  is 
available  is  a  combination  of  anecdotal  evidence  and  a 
few studies of parallel  programming students.  Neither of 
these sources is bad, just limited. 

In  contrast,  scientific  computing  “in  the  wild”  using 
high performance computing systems covers a wide range 
of problems within a variety of organizational  structures: 
industry,  academic,  public  and  clandestine  government. 

While  scientific  software  has a  lot  of issues in  common 
with “traditional” software, it also has many unique issues 
due to its use of massively parallel machines and the fact 
that  the  primary  job  and  skill  set  of  many  of  the 
programmers  is  science  (or  other  work)  not  computer 
science. 

This  work  was motivated  by  our  participation  in  the 
DARPA High  Productivity  Computing  Systems  (HPCS) 
program [10]. The program is in the last of three phases of 
an  eight-year  effort  aimed  at  developing  peta-scale 
machines that significantly improve the productivity of its 
users,  i.e.  scientists,  programmers,  data  managers  and 
system administrators.  

As a member of the PERCS Productivity team at IBM 
[15] the first author is working to demonstrate an increase 
in programmer productivity with IBM’s new machine and 
tools  from  a  2002  baseline.  While  definitions  of 
productivity  are  contentious,  two  things  are  clear.  The 
ability of programmers to use the machine and its software 
stack  (including  programming  language  and  assorted 
tools)  – that  is,  the  usability  of  all  of  these  things  – is 
important. We also must compare usability between 2002 
and what will be available around 2010. 

We  need  to  understand  how parallel  programming  is 
occurring and how its practice is impacted by differences 
in machines, tools and languages. In this paper we outline 
the path from study design through study implementation 
and analysis  for  just  one  of  the  many cases  we need  to 
evaluate.  In  particular  we  focus  on  how  choices  made 
early in study design impact the kinds of analysis that can 
be done.

2. Related Work
There  is  literature  from  a  number  of  disciplines  that 
influenced our approach to study design.  Previous efforts 
to  understand  programmer  behavior  have  encompassed 
three  main  methodologies:  self-report  via  survey  or 
interview,  automated  measurement  of  machine-human 
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interaction  during programming,  and empirical  studies – 
whether  in  the  laboratory  or  in  the  field.  (For example. 
See  Perry  et  al.  [16,17]  using  field  based  approaches; 
Hofer and Tichy [9] for a review of empirical approaches 
in the last decade;  and Basili [2] for lab based empirical  
approaches.)

There have been studies in HPCS since the early 80’s. 
Some studies centered on specific machines, while others 
focused  on  programming  languages  or  parallel 
environments [3].  The manner of data collection and the 
available subject pool have largely constrained the method 
and  measurements.  As  most  studies  occurred  in 
universities,  the  subjects  were  students,  usually  in  their 
first  parallel  programming  class  [7].  The  programming 
task was generally a class assignment, such as Sharks and 
Fishes  [8].  Course  requirements  also  dictated  the 
programming  language.  Tools  and  machines  were 
determined  respectively  by  personal  preference  and 
availability.  As  in  earlier  studies  on  sequential 
programming,  data  collection  is  one  of  three  types: 
manual,  automated or  hybrid,  a combination of the two. 
Hochstein et al [8] present a hybrid method that combined 
automated  data  gathering  with manual  data  provided  by 
programmer self report.

We have used a different combination for a hybrid–the 
integrated  methodology  [4].  This  method  combines 
automatic  data  collection  (SUMS,  [13,14])  with 
concurrent  manual  observations.  These  observations  are 
taken by a trained independent observer,  eliminating two 
of  the  problems  noted  with  self-report  data,  namely  the 
self-interruption  requiring  context  switching  by  the 
programmer  and  the  potential  bias  expressed  in  the 
content of the programmer’s self reports.

Methodological  difference  aside,  one of the pervasive 
problems  in  empirical  studies  of  programmers  is  the 
ecological validity of the study. Ecological validity refers 
to how close the method, setting, and materials mimic the 
real  world  situation.  Controlled  experiments  by  nature 
limit  the  variance  in  what  is  being  studied.  The 
recognition  of  the  necessity  for  ecological  validity  in 
programmer studies is not new. Schneiderman and Carroll 
[18]  focused  on  the  need  for  studies  of  professional 
programmers in their native environments, and Perry et al 
picked up this call again in the mid 1990s [16,17]. In both 
cases  researchers  were  figuring  out  ways  to  study 
programmers in the wild, which resulted in qualitative and 
quantitative data.

3. Study Design: Building the Trail
Designing  the  study  is  laying  out  the  trail  to  be 

traversed.  The  point  is  to  consider  all  the  problems and 
issues in advance so that during the study the right type of 
high quality data can be collected. 

Our  overall  goals  were  to  provide  a  baseline  (circa 
2002) for single programmer behavior and show progress 
in  productivity  improvement  delivered  by  the  X10 
programming  language  [21]  and  the  X10  development 
toolkit (X10DT). We made the following choices in study 
design. 
SUBJECTS: Prior studies were mostly done with students 
who were taking their  first parallel  programming classes 
[7,8].  For  PERCS,  we  recruited  students  with 
programming experience and taught them one of 3 parallel 
languages  [4,5].  (See  also  [19]  re  designing  studies  for 
HPCS). However, feedback from the HPCS program noted 
that the results of these studies didn’t necessarily apply to 
actual experience levels. 

In  response,  we  chose  to  look  at  two  levels  of 
experience. Prior trouble recruiting HPC professionals led 
us to  define  experienced  subjects  as  those  having 10 or 
more years of experience in parallel programming without 
constraining where they worked currently. To avoid some 
student  issues  novices  were  considered  to  be  those  that 
have had at  least  one parallel  programming class and at 
least 3 years of experience programming. In this way we 
hoped  to  bracket  the  problem  space  and  avoid  effects 
caused  by  having  just  learned  parallel  programming. 
Subjects were also required to be familiar  with the most 
commonly used editors and tools.  For the baseline these 
tools  were  vim,  emacs,  and  gnu  debugging  and 
TotalView.  For the newer  condition the  tools  were  Java 
and Eclipse (as the X10DT is built into Eclipse as a plug 
in).
BASIC  DESIGN:  To  cover  both  goals  and  experience 
levels we ran 4 groups of 10 subjects in a standard 2 x 2 
design. This would give us a group of novices and experts 
for each language condition: MPI and X10. We hoped to 
target  the  majority  of  experienced  subjects  through  our 
association  with  National  Energy  Research  Scientific 
Computing  Center  (NERSC)  and  Lawrence  Berkeley 
Laboratories  (LBL)  while  picking  up our  novices  either 
through  postdocs  at  the  same  institutions  or  advanced 
graduate students associated with them.
PROBLEM: We needed to use a programming “problem” 
that  would be realistic  but  actually  solvable  in  the  time 
available.  In  our  previous  study  we  used  a  Synthetic 
Scalable  Compact  Application  (SSCA).  (Developed  for 
HPCS [1]).  SSCA1 presents a pattern matching problem, 
such  as  gene  sequencing.  Although it’s  a  problem  from 
genetics,  it  does  not  require  deep  domain  knowledge  to 
solve. 

From prior experience we knew that the problem was 
solvable by most within a 2-day time frame. We provide 
subjects  with  working  serial  code  and  ask  them  to 
parallelize a portion. Making it parallel can be done in two 
ways:  a  more  difficult  wave-front  algorithm  or  a 
straightforward embarrassingly parallel solution. Again, to 



reduce  time,  we  attempted  to  focus  the  subjects  on  the 
easier approach.
ENVIRONMENT:  There  are  multiple  issues  regarding 
hardware  and  software  setup.  We  must  duplicate  2002 
circumstances for the baseline while also accommodating 
the  newer  tools.  Finally  both  setups  must  allow  data 
collection. 

For the baseline,  our model was an existing machine: 
NERSC’s  IBM  SP  RS/6000  Power3—Seaborg.  It  was 
brought online in 2001 and still had the (updated) software 
and tools that fit our needs. Our pilot subject used Seaborg 
until it was decommissioned in January 2008. At that time 
we  switched  our  setup  to  Bassi—an  IBM p575  Power5 
system.  While  the  computational  capabilities  are 
somewhat  different,  we  were  able  to  provide  the  same 
software stack (operating system, editors, mpi library and 
compile commands) as we had on Seaborg to approximate 
2002 conditions. All study subjects all used Bassi.

Most  programmers  in  2002  programmed  directly  on 
the  interactive  portion  of  a  machine’s  nodes  via  secure 
shell  connection  from  a  desktop.  However,  others 
developed code on a local machine and then uploaded and 
ran the code. We wanted to accommodate both styles.  For 
our  purposes,  laptops  are  as  powerful  as  a  desktop  and 
more  portable.  We  set  up five  identical  ThinkPad T61p 
laptops for this study. The table below shows the machine 
configuration and data collection software used.

Laptop Bassi
OS Fedora Core 6 Linux IBM POE, AIX
Editors Vim, emacs Vim, emacs
Shell Bash Bash
Languages Fortran 77 & 90, C Fortran 77 & 90, C
Message 
Passing

MPI MPI

Web Browser Firefox  (NERSC and 
language sources)

none

Automated 
Data 
Collection

Hackystat
Slogger (web)
pFig (Eclipse)
Istanbul (screen cap)

Hackystat

DATA COLLECTION:  We  strove  for  unobtrusive  and 
automated  data  collection.  The  first  goal  is to  minimize 
any effect on programmer behavior while the second goal 
is to minimize experimenter effort. This means using the 
computer  to  automatically  collect  interaction  data. 
However programmers engage in activities besides typing 
on a  keyboard,  so we also  needed  to  collect  behavioral 
data. 

For this project  we used the Hackystat  v7 framework 
for  automated  data  collection.  Hackystat  [6]  is  an  open 
source framework for automated collection and analysis of 
software  engineering  process  and  production  metrics. 
Hackystat  users  attach  software  "sensors"  to  their 
development  tools,  which unobtrusively collect  and send 
raw data about development to a Hackystat web server for 

display  and analysis.  On both the  laptops  and  Bassi  we 
used sensors attached to the command line, the bash shell, 
and the vim and emacs editors. On the laptop we also used 
another piece of software – slogger [20] – to record web 
browser  activity.  (Note:  subjects  were  restricted  to 
references  for  language  and  machine  operation.  No 
googling was allowed.) 

The  addition  of  X10 and  the  X10DT  required  using 
Eclipse. The Hackystat Eclipse sensor, like its other editor 
sensors, captures whether or not a file is being edited and 
whether the file size is changing. With vim and emacs this 
information  allows  us  to  infer  that  the  programmer  has 
edited and saved the file. Then the user needs to go to the 
command  line  to  build  and  run  the  file.  However,  as 
Eclipse is configured to automatically save and build we 
cannot  necessarily  make  the  same  inference  of 
programmer  intent.  Instead  we  used  a  separate  data 
gathering  Eclipse  plug-in  written  in  Java,  called  PFIG 
(Programmer  Flow  Information  Gatherer  [12]).  PFIG 
instruments Eclipse to monitor  navigation activity  in the 
IDE. It collects data such as the location of the text cursor 
within files,  usage of the package explorer,  the locations 
and  contents  of  variables  and  methods  within  classes, 
program launches, and changes to source code. This was 
more data than we needed, but we did feel that seeing the 
patterns of use exposed within Eclipse would provide us 
valuable  information  about  the  use  of  X10  and  the 
X10DT. 

Finally, observations were used to fill in gaps where no 
automated  data  was  collected  and  to  infer  programmer 
intent  in  some  cases.  In  our  previous  study  [4,5]  of  27 
subjects,  3  observers  could  not  cover  the  subjects 
continuously.  In that  case,  we chose a  sampling method 
where  one  observer  was  assigned  to  a  cohort  of  9  (one 
language  condition).   Observations  were  taken  for  5 
minutes on one subject, after which the observer moved to 
the  next  subject  in  the  cohort.  Unfortunately  this  meant 
that each subject was only observed for a 5 minute period 
out  of  45  minutes,  which  was  not  always  sufficient  to 
cover gaps in the automated data collection. For this study 
we knew we would have similar limitations on observers. 
We  designed  the  study  so  that  at  any  one  time  each 
observer  only had 3-4 subjects  to  observe.  Each  subject 
was observed at  least once per minute insuring coverage 
with automated data.

We  knew  there  would  still  be  situations  where  we 
would  have  coverage  difficulties.  Video  data  would 
provide similar detail, but while easy to record, it requires 
fairly obtrusive equipment and faces a scaling problem – 
10 subjects require 10 cameras. Our solution was to move 
to  screen  capture.  While  it  requires  significant  time  to 
analyze,  this type of data does have the benefit  of being 
relatively  unobtrusive  and  automatically  collected.  We 
used an open source project called Istanbul [11] for screen 



capture.  Requiring some additional  user setup work it  is 
more  intrusive  than  Hackystat,  but  the  payoff  seemed 
worth it.

Overall  we had three kinds of data collected on three 
different  time scales.  The Hackystat  sensors poll  on a  5 
-15 second interval. The human observations are within a 
minute  resolution and for the X10 portion the PFIG log 
was time stamped at millisecond resolution. 

4. Running the Study: Climbing Up
Before  the  study  could  be  run,  two additional  things 

needed  to  happen.  One  was  to  get  human  subjects 
approval  from the  appropriate  institutional  review board 
(IRB), and the other  is to recruit  subjects.  IRB approval 
varies  with  institution  and  each  situation  has  its  own 
challenges so we do not deal with it here—other than the 
caveat to allow plenty of time to deal with this step.

The  other  issue  is  actually  recruiting,  qualifying  and 
scheduling  subjects  for  the  study.  We  changed  several 
aspects  of  the  study  to  facilitate  recruiting  We  had 
shortened the study from nearly a week to two days. We 
also paid subjects and got NERSC management  to allow 
people  to  participate  during  work  time.  We  still  had 
trouble getting experienced subjects. Only 4 qualified and 
participated. 

We  were  more  successful  with  the  students  at  Rice 
where we recruited subjects for the two novice language 
conditions. We qualified 9 subjects for the X10 condition 
and 7 for C+MPI. Due to 2 dropouts we ended up with 7 
in each condition.
PROTOCOL:  At both NERSC and Rice the set up was 
the  same.  The  study  procedure  was  close  with  a  few 
variations. The protocol consisted of:

• Physical setup of machines
• Welcome subjects and obtain consent
• (X10 condition – 1 day language tutorial)
• Cover  basics  of  machine  and  problem 

organization
• Introduction to problem
• Coding
• Daily breaks for lunch and snack
• Complete problem 
• Take post survey

All  subjects  worked  in  the  same  room,  facilitating  the 
process for the experimenters. 

Subjects were provided with electronic and hard copies 
of the problem statement  and associated  materials  about 
the details of the machine set up. They also had pen and 
paper  for  note-taking.  Subjects  were  cautioned  not  to 
confer  about  the  problem,  but  were  able  to  share 
information  about  working  on  the  laptop  or  Bassi’s 
environment.

One distinction  between  NERSC and Rice  is  that  at 
Rice the problem was verbally presented in addition to the 
written  presentation.  At  Rice  we  added  a  series  of  test 
cases that explored edge conditions to ensure the problem 
was solved. Passing all test cases and having the parallel 
code running on 8 processors faster than the serial version 
defined task completion. Some finished the task within a 
day and moved onto variations while  others  needed  two 
days. Some subjects never completed the task. At the end 
of  each  day  data  was  collected  and  backed  up  on  a 
separate hard drive. 

5. Analysis: The Boulder at the Top
All  of  the  work  thus  far  only  pays  off  if  you  can 

analyze  the  data  for  the  results  you  intended.  Analysis 
happens  for  many  reasons  and  on  many  levels.  For 
illustration we summarize two analysis types: quantitative 
and qualitative. 

Before  beginning  analysis  we  first  unified  and  time 
aligned the sensor traces. For the Rice data we merged the 
Hackystat traces from the command line, shell and editors, 
along  with  web  activity,  Eclipse  activity,  and  the  per-
minute  human  observation  logs.  The  millisecond 
resolution,  time  ordered  traces,  were  output  to  comma 
separated (csv) files for subsequent analysis. 

Pre  and  post  study  survey  data  provided  the 
information  about  the  subject  demographics  and 
preparation as well as their perception of the study and the 
X10  language.  These  responses  were  summarized  and 
used to provide context for the other analyses.
COMPLETION:  Interleaving  the  time  ordered  data 
makes  some  analyses  quite  easy.  Unambiguous 
completion criteria using the test scripts at Rice meant we 
were able to determine the time at which the problem was 
first solved successfully on each subject’s laptop and on 
the 8-processor run on Bassi.  This time, minus the sum of 
subject  time  away  from  the  laptop,  defined  time  to  
completion and  served  as  the  quantitative  basis  for 
comparing  productivity  between  the  two  language 
conditions. 
PATTERNS:  Understanding  programmer  practice  is 
important  for  understanding  programmer  use  and 
perception  of  programming  languages  and  tools.  This 
requires a more qualitative approach. We began analyzing 
the event traces to determine the proportion of time spent 
in  particular  aspects  of  development  (analysis,  coding, 
debugging, etc.). 

For  the  NERSC  data  we  had  only  Hackystat  and 
observation  data.  Analysis  was  done  by  hand  by 
progressively  segmenting  the  record  into  appropriate 
categories,  based  on  what  was  in  the  data  and  our 
knowledge  of  programmer  behavior  and  software 
engineering.  For example  a series  of commands such as 



edit, make, edit iterated several times suggest cleaning up 
code (such as compiler errors). The sequence  edit, make,  
run,  edit suggests  debugging.  These  sorts  of  manually 
derived categories formed the basis for our analysis of the 
Rice data.
VISUALIZATION:  An important goal of examining the 
log of developer activities was to infer whether developers 
were following any type of consistent workflow. There are 
two reasons why such an investigation is interesting. First, 
many of the developers who write code for HPC machines 
are not trained software engineers or computer scientists, 
as was the case with some of our subject sample. Second, 
there  are  some  additional  activities  required  in  the 
development  of  HPC  code  that  are  not  present  in  the 
development  of  more  traditional  types  of  code,  e.g. 
parallelization  of  code,  debugging  code  running  on 
multiple  processors,  and  tuning  the  code/algorithm  to 
increase performance on the parallel machine.  Therefore, 
we  expected  to  see  some  development  patterns  emerge 
from the visual analysis of the data.

In  order  to  identify  the  workflow  that  a  particular 
developer  followed,  we  first  needed  to  isolate  the 
programming events. Then we could analyze the order and 
frequency  of  these  events.  The  programming  events  we 
were  interested  in  were:  Writing New Code,  Debugging  
Serial Code,  Debugging Parallel Code, and Tuning Code  
Performance.

To conduct  this analysis we used an IBM proprietary 
tool, Zinsight, to view the various types of data described 
earlier  in  one  screen.  To  identify  which  programming 
event occurred, we examined the commands typed at the 
command line or executed through the Eclipse interface. 
Specifically,  we were  interested  in  identifying  when the 
subjects  edited  code,  compiled  code  and executed  code. 
When  the  subjects  executed  code,  we were  also  able  to 
capture the number of processors used (ranging from one 
to eight). While we could do this by reading the csv file in 
Excel, Zinsight made patterns easier to discern.

This analysis was conducted under the assumption that 
the  sequence  of  commands  would  suggest  the 
programming event that occurred. We began our analysis 
with the following hypothesized relationships:

• Edit  Make = Writing New Code
• Run (1  processor)   Edit   Make   Run (1 

processor) = Debugging Serial Code
• Run (n processors)   Edit   Make   Run (n 

processors) = Debugging Parallel Code
• Run  (n  processors)   Make   Run  (m 

processors) = Tuning Code Performance
As many  qualitative  hypotheses  go,  these  hypotheses 

did not  survive contact  with the  actual  data  fully  intact. 
For this paper, we analyzed the development log of three 
subjects in detail. These three subjects exhibited different 

workflows, some of which coincided with our hypotheses 
and some did not.

Subject 1
We observed two patterns with subject one. First, most 

of his runs were  done on two processors.  It  is not  clear 
whether  the  lack  of  runs  on one  processor  indicate  that 
serial  coding  was  not  done  in  isolation,  i.e.  he  went 
straight to parallel coding, or something else. The pattern 
we  observed  was  that  after  a  series  of  runs  on  two 
processors,  he began  systematically  working up to  more 
processors  (i.e.  three,  four,  five,  etc…).  Each  time  he 
added processors, he also edited the code. We assume the 
edits were to correct  issues that  became evident as more 
processors  were  added.  At  some  point,  this  subject 
returned  to  two processors  and  started  the  process  over 
again. We infer that the pattern this subject was following 
was:  1)  Add  new  functionality;  2)  Debug  on  two 
processors;  3)  Add  processors  and  debug;  4)  Return  to 
Step 1 on two processors.

The  second  pattern  we  observed  in  subject  one  was 
regarding his edits of source code. We were interested in 
the  longer  periods  of  editing,  rather  than  quick  fixes. 
These longer periods of editing fell into two groups: 1) the 
subject  was running on more than two processors before 
and after  the  edit  (the  same number  both times);  2)  the 
subject  was running on more than two processors before 
the  edit,  but  only two after  the  edit.  In  addition,  during 
many  of  the  long  editing  sequences  there  are  multiple 
‘make’  commands  executed  before  a  ‘run’  command  is 
executed.

Subject 2
The patterns we observed for Subject  one were not as 

evident for Subject 2. We did not observe the same pattern 
of  systematically  running  on  more  processors. 
Furthermore,  for  Subject  2,  when he  did  a  long  editing 
session,  it  was not  always followed by a run command. 
Sometimes it was followed by a make command and then 
more editing.

Subject 3
This  subject  again  evidenced  another  pattern  that  did 

not exactly match those of Subjects one and two. Subject 
three performed most of his runs on two processors. There 
are only a few runs that used four processors and they are 
all at the end of the development cycle. It appears that this 
subject was not systematic about adding new functionality 
and then debugging that functional on multiple processors 
before moving on to new functionality.  We also did not 
observe the same editing patterns for Subject three that we 
observed for Subject one.

This  analysis  is  very  preliminary  and  based  only  on 
three  of  the  subjects  who participated  in  the  study.  The 
next step of this work is to go further with this analysis to 
see whether these patterns are common across subjects or 
whether each subjects used their own style. The result of 



this analysis will  allow us to  identify  HPC development 
patterns.

6. Discussion & Conclusion
The  analyses  we  present  here  are  only  a  few  of  those 
done;  many more are possible.  At Rice,  only one of the 
MPI subjects  finished  the  task,  while  five  X10 subjects 
completed.  Median  time to  completion  for  X10 subjects 
was  a  little  more  than  half  the  time  it  took  the  MPI 
subject.  In  contrast,  at  NERSC all  of  the  subjects  using 
MPI finished,  most  of  them in a  day.  Given those facts 
what do we really know from this study?

In part our knowledge is incomplete because the study 
itself is incomplete. We still need to run more experienced 
subjects using both languages. With each study we run we 
learn more about what it takes for a successful study. We 
cut  the  length  of  the  study  in  order  to  appeal  to  more 
experienced (and time crunched) subjects. However, even 
with  that  and  the  backing  of  NERSC  management  we 
were still unable to recruit the number we needed. 

Based  on  our  earlier  experience  we  added  specific 
ending criteria  and test  cases in order  to  ensure  that  we 
knew when the problem had been successfully completed. 
We also changed how we observed programmer behavior 
to  ensure  coverage  when  programmers  were  not 
interacting with the computer. Both of these changes were 
successful, providing us with more accurate data that we 
can  now  use  confidently  for  more  in  depth  analyses 
exploring programmer behavior on the way to completion.

There  are  things we still  need to know. Students  had 
trouble  with  MPI,  even  though  they  had  parallel 
programming  experience.  This  fits  what  we  know from 
scientific computing where a programmer’s first job is not 
computer  science.  While  some  of  our  subjects  were 
engineers, some were also computer scientists, suggesting 
that other issues are involved. We need to figure out what 
those issues are.

In  short,  doing  studies  like  this  are  difficult  but 
rewarding.  The  more  we do them,  the  closer  we get  to 
understanding  what  elements  are  important  to  help 
evaluate new programming languages and tools. Our hope 
is  that  the  more  we  understand  about  the  individual 
variability  of  programmers,  as  well  as  the  similarities 
between approaches to parallel programming, then we will 
be able to evaluate and design tools to accommodate those 
issues.
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Abstract
The Ruby programming language is designed for easy use.
The usability is an important feature since the productivity
of programmers depends on it. This paper describes that the
design method obtained through the experiences of devel-
oping Ruby. The design method can be used to make other
languages and libraries easy to use.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Object-oriented languages

General Terms Programming Language, Library, Usabil-
ity

Keywords Syntax, Library, API, Usability, Simplicity,

1. Introduction
There is no formal way to establish easy-to-use program-
ming languages and library APIs. But the easiness is an im-
portant factor for programmers’ productivity.

Ruby is the object oriented programming language cre-
ated by Yukihiro Matsumoto. It is intended to be easy to use.
I, Akira Tanaka, feels it has good usability. However it is not
simple. It has complex behavior. It is difficult to explain why
it is easy.

Basically, the design of Ruby puts importance on good
properties of programming languages: succinctness, good
naming convention, etc[2]. However, some of Ruby’s behav-
iors violate such good properties to improve the usability.
The concrete design method for such behaviors is not well
explained.

For example, these two expressions has the different
meaning.

Copyright is held by the author/owner(s). This paper was published in the proceedings
of the Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU) at the ACM Onward! Conference. October, 2009. Orlando, Florida, USA.

• obj.meth + var

• obj.meth +var

The difference of this example is a space between +

and var. The former has a space, the latter not. In the
former, meth is a method call without an argument and + is
a binary operator: obj.meth() + var. In the later, meth is
a method call with an argument and + is a unary operator:
obj.meth(+var). The space resolves such an ambiguity
caused by the fact that the parentheses of a method call is
not mandatory.

Here, the semantics depends on white spaces. Such a
design is curious form a view point of computer scientists.
It is not simple but complex, against tradition, and hard to
understand.

But such a curious behavior does realize the usability. By
understanding the reason why Ruby adopts it, we can get an
insight into the usability of programming languages.

This paper constructed as follows to explain a design
method for programming languages and library APIs to be
good usability. It is obtained from experiences of Ruby de-
veloper (committer).

• Although Ruby is designed to be easy to use, the design
method is not explained concretely (Section 2). The ex-
planation will have following benefits.

We can make libraries and other languages easy to use
as Ruby.

We can avoid usability regression when modifying
Ruby.

• The design of Ruby focus usability (Section 3). We don’t
mind complexity of the design if it realize usability. In
general, simplicity is good property but it is not the pri-
mary goal of Ruby.

• We design Ruby incrementally to improve usability (Sec-
tion 4). We find flaws of Ruby and fix them. Several is-
sues should be considered for usability:

How many frequency of the flaw occur?

What the appropriate design according to the fre-
quency?



Does the fix prevents other fixes in future?

If the fix has an incompatibility, how it should be dealt
with?

• We describes future work ((Section 5). We will explain
various techniques for usability used in Ruby as design
patterns (pattern language). Since the techniques are em-
pirical and sometimes conflict, design patterns should be
good format for the explanation. They will accelerate
Ruby design process. We also describes possible tech-
nology to support incremental design.

2. Usability of Ruby
Ruby is designed to be easy to use programming language.
The design policy, such as succinctness, is described briefly
in [2, 3] for language itself and [4] for libraries. But the
description is not enough to put it into practice. Especially
the practice is difficult when usual good properties conflicts
usability.

The difficulty causes several problems:

• When we want to realize the usability similar to Ruby in
other languages and libraries, it is difficult to determine
what behavior should be imitate. We want to ignore the
behavior which doesn’t contribute to the usability. But it
is clear to determine.

• When we want to modify Ruby, it is difficult to consider
the modification will degrade the usability or not.

These problems can be solved by understanding how the
usability of Ruby is implemented.

The examples follows are explained in following sec-
tions.

• optional parenthesis for succinctness and DSL
• blocks for common usages of higher order functions
• shorter names for frequently used methods for succinct-

ness

3. Unusual Design
In this section, we describe the design of Ruby which intend
to be easy to use and violates usual language design.

In usual language design, there are several good prop-
erty: consistency, simplicity, orthogonality, flexibility, suc-
cinctness, intuitiveness, DRY (Don’t Repeat Yourself), good
name, generalness, naturalness, meets programmers’ com-
mon sense, etc. In the design policy of Ruby, they are also
good properties.

However, sometimes Ruby overrides the properties by us-
ability. I.e. the design of Ruby prefer usability over the prop-
erties when they conflict. Ruby don’t need consistency in-
cluding rare usage. Ruby don’t need succinctness including
rare usage. Ruby don’t need orthogonality including rare us-
age. Ruby don’t need simplicity including rare usage.

For example, continuation (call/cc) on dynamic typed
languages endorse consistency between arguments and re-
turn value because it pass former to later. This mismatch,
multiple values of arguments v.s. single value of return
value, can be solved by that function call can have multi-
ple return values as Scheme. However continuation is rarely
used in Ruby, the consistency is not important.

The design of Ruby is not intended to simplify the be-
havior. Actually the whole behavior including rare usage is
complex. Some of the complexity is intentional for usability.

In general, simplicity is a good property. It derives many
things from few principles. So programmers don’t need to
memorize many things except the principles. Another benefit
is that simplicity ease programming language research. But
Ruby prefer direct usability over such benefits.

In this section, we describe several examples of Ruby’s
complex design for usability.

3.1 Succinctness over Simplicity
In this section, we explain the example shown in the section
1. The example shows us Ruby depends on a space in a
method call. If we want to choose a simple behavior, the
following can be considered.

• make the parenthesis of method call mandatory.
• even if the parenthesis is optional, define the behavior

regardless of the space.

If the parenthesis is mandatory, the ambiguity of + opera-
tor doesn’t occur. The + of obj.meth()+var is a binary op-
erator. The + of obj.meth(+var) is a unary operator. Also,
the syntax rules can be reduced because we don’t need rules
for the parenthesis omitted.

Even if the parenthesis is optional, the behavior regard-
less of the space simplify the information notification be-
tween the tokenizer and the parser.

We didn’t choose the simple behavior for Ruby. The
reason behind it is succinctness.

There are many situations which don’t cause ambiguities
even without the parenthesis. The method call is not ambigu-
ous if no arguments are given, only one argument is given
and it is a variable, etc. If we require the parenthesis, Ruby
loses succinctness for such situations.

3.2 Intuitiveness over Simplicity
The example in the section 1 also show Ruby’s design pol-
icy which prefer intuitiveness over simplicity. The intuitive-
ness is for average programmers. Although programmers
vary, they have many shared knowledge. For example, there
are common textbooks and the programmers can understand
pseudo code in the textbooks. Programmers who know ap-
plication domain can understand the notation used by the do-
main. So programmers have common intuition in a degree.
The detailed reason are follows.



• DSL

DSL, Domain Specific Language, is a language which
correspond to a target domain. It can represent logic in
the domain intuitively. DSLs are classified as external
DSLs and internal DSLs. An external DSL is an indepen-
dent programming language. An internal DSL is a library
in some programming language. The library provides vo-
cabulary for the domain.
The parenthesis of method call have an impression of
function call. The impression hides the impression of the
domain. So the syntax with optional parenthesis appro-
priate for DSL. It expose the impression of the domain.
So programmers easily sense the logic in the domain.
For example, Ruby has a DSL to manipulate Ruby run-
time. The DSL is constructed by methods to load a li-
brary, define/remove a constant, define/remove a method,
etc. require method loads the library foo as follows:

require ’foo’

require method is used without parenthesis in gen-
eral. This reduces the impression of function call and
programmers consider this as a declaration. Since the
parenthesis is noise in the domain, it increase the cost
to read/write/understand the code. Therefore the syntax
with optional parenthesis avoid the cost.

• Proximity

The syntax with optional parenthesis has benefits as
above. However it causes the ambiguity. Ruby uses the
Gestalt law of proximity to resolve the ambiguity. The
law means that near objects are perceived as grouped
together. obj.meth +var is grouped as obj.meth and
+var. Ruby parses the expression as the perception. So
the semantics of the expression is similar to the percep-
tion. This reduces the cost to read/write/understand the
expression.

• Utility Methods
The class library of Ruby also prefer usability over sim-
plicity. For example, Array class has push and pop

method. push inserts an element at the end of the ar-
ray. pop deletes an element at the end of the array. Since
the array size is changed dynamically, programmers can
use the array as a stack intuitively.
Such utility methods tends to be increased because
method addition is a major way to introduce a new fea-
ture. So the class tends to have more feature and be more
complex.

These design decision means that we choose usability
over simplicity in Ruby.

3.3 Usage Frequency
The frequency of usage can also be a reason to override
simplicity.

For example, a method name should match the following
regular expression:

[A-Za-z_][0-9A-Za-z_]*[!?]?

I.e. it start with an letter or an underscore, followed by zero
or more digits, letters and underscores, optionally followed
by ! or ?.

This syntax is not simple because the last ! or ?. If we
choose simple syntax, we can consider a syntax without the
last character like C or a syntax with various character in any
position like Scheme.

This complex syntax is chosen to use the naming practice
of Scheme in Ruby. Scheme uses function names which ends
with ? for predicates and ! for destructive functions. It is just
a convention in Scheme because the syntax is not special for
the usage. On the other hand, Ruby’s syntax is specialized
for the usage. This complexity realize the usage in non-S-
expression language and prevent too cryptic method names.

! is mainly used for destructive methods as Scheme.
However Ruby uses ! only for some of destructive methods.
It is not consistent. This is also because usage frequency.
Since most Ruby programs are imperative style, there are
too many destructive method calls to pay attention. So Ruby
uses ! only for methods valuable to pay attention, such as
there are both destructive and non-destructive method and
programmers carefully choose them.

The big feature of Ruby, block, is also uses usage fre-
quency. Ruby’s block is similar to higher order function in
functional languages. For example, map can be used as fol-
lows in Ruby, Scheme and Haskell.

Ruby: [1, 2, 3].map {|x| x * 2 }

Scheme: (map (lambda (x) (* x 2)) ’(1 2 3))

Haskell: map (\x -> x * 2) [1, 2, 3]

Ruby’s map is a method of Array class which takes a
block. In above example, {|x| x * 2 } is a block.

Ruby’s block is not an expression. The syntax of block
is defined with the syntax of method call. So, a block can
be described only with a method call. The block is passed
to the method as a hidden argument which is separated
from usual arguments. This differs from lambda expression
in functional languages. Scheme and Haskell can describe
lambda expression as an individual expression. It is passed
to map function as a usual argument.

This causes following pros and cons.

pro succinct description because it don’t need keywords
such as lambda.

pro one can terminate the method by break statement in the
block.

con a method can take only one block.



Ruby’s blocks are limited from higher order functions
because only one block can be given for a method. But this is
not a big problem because usage frequency. Since it is rare
that we need to specify two or more functions, the block’s
benefits surpass its problem by the limitation.

The library design also utilize the usage frequency. For
example, Ruby defines p method which is usable anywhere.
It prints arguments for debugging purpose which is easy to
understand for programmers. The method name, p, is incon-
sistent with other methods because it is too short in the sense
of Ruby naming convention. It is intentional because debug
printings are very common. In general, too short names are
incomprehensible and tends to conflict. But p has no such
problem because almost all Ruby programmers knows it.

This kind of naming convention, assigning short names
for features frequently used, are called Huffman coding
which term is borrowed from data compression.[1]

Huffman coding is applied for writing and reading pro-
grams. For writing, shorter and too short names reduces
number of types. However too short names, such as p, is can
be problematic for reading. So too short names should be
used only if it is sure that most programmers have no prob-
lem with reading. p is an example of such name as explained
above. In most case, names can be shorter until single word
which can be understand the meaning by programmers.

Ruby uses the frequency of usage for usability. This
means Ruby focus major usage and don’t focus rare us-
age. This “focus” is implemented in various levels of Ruby:
syntax, semantics and library API.

4. Incremental Design
Ruby is designed to realize the usability using various tech-
niques usability described in section 3. However, we cannot
define the complex behavior at once.

Therefore we need incremental design for usability. The
design should be refined by feedback. Since we cannot find
the best design at beginning, this process is unavoidable. We
must find flaws and fix them.

The ”flaw” means a bad usability. The process to improve
the usability is follows.

• Find flaw of usability
• Design the fix the flaw
• Deal with the incompatibilities

4.1 Find flaw of usability
At first, we must find flaw to refine the design. There are
several starting point to find it.

• No feature
• Not enough feature
• Feature is available but not easy to use
• Feature is available but difficult to find it

But we don’t provide all features requested in the pro-
gramming language and the standard library. If the flaw
causes a trouble frequently, it is an important problem. If
the flaw is difficult to avoid in an application but easy to fix
in the programming language and the standard library, it is
appropriate to fix by them.

We can estimate the frequency by investigating the sim-
ilar requests in the past. Also, existing programs can be in-
vestigated for a code to avoid the flaw. For example, when
we guess a code snippet is an idiom, single method which
replace the idiom will improve the usability.

Since Ruby is developed in the bazaar model, any Ruby
programmer can find flaws of Ruby. Such flaws are dis-
cussed in the mailing lists. Sometimes flaws are found in
discussion, so open discussion is useful.

The archive of the mailing lists is useful to investigate the
requests in the past. The source code search engines, such as
Google Code, is useful to investigate existing programs. We
can search idioms and other candidates to improve usability
in many programs.

4.2 Design the fix the flaw
In general, there are two or more ways to fix flaw. So we need
to design the fix for better usability. Since incompatibilities
should be avoided, method addition is a good fix in general.
Section 4.3 details about dealing with incompatibilities.

When we add a method, we must define its name and
behavior.

The good method name is a name which is easy to un-
derstand the behavior. However Huffman coding is applied
for methods which is frequently used. So we estimate the
frequently of the method.

If the method is frequently used, it should have a short
name or define as an operator. Since most programmers
knows operators in the language already, operators are eas-
ier to adopt. This happens even if programmers doesn’t sure
precious behavior of the method. They have some expec-
tation on operators and common method names such as
A << B appends A to B, A[B] extract something by B in
A, etc.

However the frequency is just an estimate. It can be fail-
ure. For example, we tends to assign operators to primitives
but primitiveness doesn’t mean it is used frequently. If we
used a too short name or an operator for a feature, we may
have trouble in future. When we find another feature which
should be used more frequently, it is difficult to find a name
shorter than that. If an operator is used, it is very difficult to
find a name easier than the operator. We will need incompat-
ible renaming to preserve Huffman coding.

Therefore short names and operators should be used only
if we are certain that the feature is used frequently. If we
are not certain, a longer name should be used. It doesn’t
causes problems in future. We can alias it with a shorter
name when we are certain. It doesn’t cause incompatibility
because longer names are still usable.



The method should be implemented experimentally to
examine the behavior.

This examination is easy in Ruby because Ruby’s classes
are open. It means we can define new methods in the existing
classes. For example, we can define to proc method in the
builtin class Symbol as follows:.

class Symbol

def to_proc

lambda {|obj, *args|

obj.send(self, *args)

}

end

end

The to proc method is an example which is already
taken by Ruby. The method is experimented by a third party
at first. It is re-implemented in Ruby later. Recent Ruby has
the method by default.

The classes can be bigger because we prefer method
addition. The big classes are useful to try various methods.
If we add a class for new feature, we must create the instance
of the class to try the feature.

The method may have two or more names because shorter
names are defined later. Although this violates minimalism,
Ruby doesn’t intend to be minimum. Perl has a slogan TM-
TOWTDI (There’s More Than One Way To Do It). Ruby
also has similar nature.

4.3 Deal with the incompatibilities
Improving usability may break compatibility. So, we should
consider language and library design without incompatibil-
ity in future improvement.

If we change a programming language and a library,
it can cause incompatibilities. The incompatibilities break
application programs. So they should be avoided if possible.

Various changes can be classified as follows.

• compatible changes

new syntax

new class

new method

relax method arguments

define undefined behavior
• incompatible changes

remove class

remove method

restrict method arguments

change return values

change side effects

Strictly speaking, the new methods can also conflicts
because applications can add the method by open class.

However they are not big problem in practice because we
don’t use open class extensively. We assume new methods
doesn’t cause incompatibility here.

Since incompatibility should be avoided, we should
choose compatible changes such as method addition.

However several techniques to avoid future incompatibil-
ities in method addition.

• Arguments should be checked strictly. We can add new
features by relax the arguments in future.

• Short names and operators should be used only if we
are certain to they are used frequently. This reduces a
possibility that we cannot find a shorter method name for
methods more frequently used in future.

• Describe undefined behavior explicitly in the manual.
We can add new features by changing and defining the
behavior.

If we really cannot avoid incompatibilities, we can use
following practices to reduce pain for application program-
mers.

• Incompatibilities should be introduced when the major
version number is incremented. The programmers can
update the application at a time for each major version.

• Warnings should be generated before incompatibilities
introduced. The warnings notify that the application
doesn’t work well in the next major version.

The incompatible change and its warning can be imple-
mented at a time in Ruby. Ruby has two develop branch:
stable and development. The warning is implemented to the
stable branch. The incompatible change is applied to the de-
velopment branch. The inconsistency between the warning
and the change can be avoided in this style of development.
Also, application programmers can try the development ver-
sion to study the incompatibility.

In Ruby, application can use open class to implement a
new method in an older Ruby which don’t have the method.
For example, to_proc method in Symbol class can be im-
plemented for the older Ruby by the compatibility defini-
tion as follows. Note that :foo.respond_to? :to_proc

returns true if the symbol, :foo, has to_proc method.

if !(:foo.respond_to? :to_proc)

class Symbol

def to_proc

lambda {|obj, *args|

obj.send(self, *args)

}

end

end

end

So application can use new methods even in the older
Ruby by defining the methods.



The compatibility definitions can be removed when the
older Ruby is fade out and the application discontinue sup-
port for it. No other code need to be modified at the time.

5. Summary and Future Work
This paper explains Ruby language and library is designed
for usability utilize the usage frequency. The incremental
design process for the usability is also explained.

However the design principle is not popular even in Ruby
community. So, sometimes third party libraries are not easy
to use as Ruby.

The incremental design process is not supported well
by the implementation. There are ideas for mechanism to
support the process.

5.1 Usability of Ruby in Future
It is important to explain the design principle of Ruby to
preserve the usability of Ruby.

There are change requests for Ruby which the main rea-
son is simplicity and doesn’t focus usability. It is possible to
spoil the usability if the request is accepted.

So, it is important to popularize the usability principle.
If the principle is popular, the requests which degrade the
usability will be decreased.

Currently we work on “language patterns” which are de-
sign patterns for designing easy to use languages and li-
braries. It describes DSL, structure by white spaces, etc.

The format of design patterns is appropriate for this kind
of knowledge. It’s because the techniques are rules of thumb.
Sometimes the techniques conflicts each other. For example,
the p method is bad name but the name is supported by
Huffman coding rule. This knowledge is not possible to
formulate as axioms and theorems.

The explanation by the design patterns provides vocabu-
lary to discuss usability of programming languages and li-
braries.

5.2 Incremental Design in Future
If we can reduce problems by incompatibilities, we can
accelerate improvement of the usability of Ruby.

There are several possible mechanisms to reduce the
problems.

Since Ruby is dynamic language, most warnings are gen-
erated at runtime. Some of the warnings inform the appli-
cation will be broken with future Ruby. They are only use-
ful when the application is updated, useless otherwise. Since
many useless warnings hides real warnings, we can’t pro-
duce many warnings for incompatibilities. So, it is useful
that a mechanism which selects warnings to generate. If the
warnings for incompatibilities are not generated in useless
cases, we can add many warnings.

The module mechanism can also be improved for treat-
ing incompatibilities. Since Ruby has open class, method
addition can cause incompatibilities. The incompatibili-
ties can be reduced by name spaces for method names.

We are considering the module systems for method names
such as selector namespace, difference-based modules[5],
classboxes[6], etc. They eases library usability improvement
because an old method and new method can coexist even if
they have same method name.
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Abstract
In this paper, we present an empirical pilot study of four
skilled programmers as they develop programs in Ruby, a
popular, dynamically typed, object-oriented scripting lan-
guage. Our study compares programmer behavior under the
standard Ruby interpreter versus using Diamondback Ruby
(DRuby), which adds static type inference to Ruby. The aim
of our study is to understand whether DRuby’s static typing
is beneficial to programmers. We found that DRuby’s warn-
ings rarely provided information about potential errors not
already evident from Ruby’s own error messages or from
presumed prior knowledge. We hypothesize that program-
mers have ways of reasoning about types that compensate
for the lack of static type information, possibly limiting
DRuby’s usefulness when used on small programs.

1. Introduction
In recent years, there has been considerable interest in
lightweight, general-purpose scripting languages. The exact
definition of a scripting language is debatable, but one com-
mon feature is dynamic typing, in which types are strongly
enforced but are not checked until the last possible moment
during execution. While dynamic typing is flexible and ad-
mits a range of interesting and useful coding patterns, it also
risks runtime type errors that could be found proactively by
a static type system.

In this paper, we describe an in-lab pilot study of pro-
grammer use of types in Ruby, an object-oriented, dynami-
cally typed scripting language. We collected data from four
skilled programmers as they completed two small program-
ming tasks in Ruby, one using the standard Ruby interpreter,
with dynamic typing, and one using Diamondback Ruby
(DRuby), which adds static type inference to Ruby [Furr
et al. 2009b,a]. DRuby includes type system features like in-
tersection and union types, parametric polymorphism, struc-
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tural object types, and optional and variable type lists for
method signatures. Prior experience shows that DRuby finds
errors in a range of existing Ruby programs, when used by
DRuby’s authors [Furr et al. 2009b,a]. In our study, we aim
to understand whether DRuby’s static type system actually
helps typical Ruby programmers find and fix errors—if not,
why not, and if so, how could we improve DRuby’s type
system to better serve programmers’ needs?

Based on qualitative analysis of participant experiences,
we made three tentative findings. First, using an open coding
technique [Strauss 1987] to classify DRuby error messages
produced during participant trials, we found that under 20%
of DRuby’s error messages were informative. Second, in in-
terviews, participants reported that they did use types as part
of their reasoning process during development. These two
findings seem to be at odds—DRuby’s type error messages
are not helpful, but types themselves are important. We be-
lieve the disparity can be explained by the small scale of the
programming task studied: In small, single-author programs,
developers can rely on their own memory and naming con-
ventions to track type information.

Finally, we found that all four participants used IRB, the
interactive Ruby shell, to explore ideas during development.
IRB even served as a documentation source for method
names and return types. This suggests that DRuby should
also offer an interactive interface, possibly by integrating
DRuby with IRB.

2. Background
The Ruby Programming Language Ruby is a strongly
typed, object oriented programming language whose concise
syntax and flexible, dynamic type system is intended to
provide programmers with the latitude to write programs
in whatever way they wish. The language’s creator asserts
that, “I want to make Ruby users free. I want to give them
the freedom to choose... if there is a better way among
many alternatives, I want to encourage that way by making
it comfortable” [Venners 2003]. The success of Ruby is
reflected both by the considerable community of users and
enthusiasts who contribute to its evolution, and by its use as a
host language for the popular Ruby on Rails web framework.

In our experience, Ruby’s plasticity is a double-edged
sword: because the language’s interpreter performs few



static checks, extensive testing may be required to find pro-
gramming errors. As a result, practices such as “test-driven
development” [Beck 1999], wherein tests are written even
before code is written, are popular in the Ruby community.
However, as is well-known, testing is necessarily incom-
plete, which raises the question, could static analysis benefit
Ruby programmers?

Diamondback Ruby: Static Type Inference for Ruby Di-
amondback Ruby (DRuby) is a static type inference system
for the Ruby programming language. DRuby has been used
to identify type errors in a number of small, existing Ruby
programs, with most programs requiring little modification
to be compatible with DRuby’s analysis [Furr et al. 2009b].
Subsequent work showed how to scale up DRuby to highly
dynamic language constructs and larger programs [Furr et al.
2009a]. While these results are promising, it is difficult to
predict how and to what end such a type inference system
would be used by programmers. We would like to know,
does static type inference present information to program-
mers that helps them correct errors?

3. Method
Our pilot study of programmer behavior consists of an in-
ductive, two-treatment, repeated measures experiment in
which participants solve short Ruby programming exercises.
The experimental conditions differ in either applying DRuby
or not to the participant’s source code each time the partici-
pant executes the Ruby interpreter.

Tasks We gave the participants two programming exer-
cises: writing a simplified sudoku solver and writing a maze
solver. The former problem is a simplification of problem
found on the Ruby Quiz website [Gray 2008], and the latter
was inspired by the “Gang of Four” design patterns book
[Gamma et al. 1995]. The exercises are of approximately
equal difficulty and have little overlap, to discourage direct
code reuse. We also aimed for exercises that are complex
enough to warrant using DRuby while remaining solvable
within the experimental protocol’s time limits.

Protocol Each exercise consists of three components: a
textual problem description, starter code, and set of test cases
that target the top-level API participants are expected to im-
plement. The problem description defines the programming
task, describes any data input and output formats, and pro-
vides pseudo-code for algorithms that the participant can
use to solve the problem. The starter code consists of any
boilerplate we expected not to vary among solutions. For
the sudoku solver, we supplied a method to iterate over the
cells of a serialized sudoku puzzle and a method to calcu-
late the grid region of a given cell. For the maze solver, we
supplied methods to parse textual maze definitions. Finally,
the test cases give participants a way to run their solution,
and we deem solutions that pass all test cases to be correct.
The programming task packages as presented to participants

are available online at http://www.cs.umd.edu/~mdaly/
druby_pilot_problems.tar.gz.

Experimental Setup We recruited four participants from
a local Ruby users group. We targeted participants in this
way because the behavior of novices may not reflect that of
more practiced participants [Mayer 1981], and we expected
users group members to be comfortable with Ruby. All par-
ticipants indicated that they are quite familiar with the Ruby
programming language. Participants may or may not have
used DRuby prior to this study—previous experience (or
lack thereof) was not a prerequisite for participation.

The pilot was conducted in a laboratory setting. Partici-
pants selected their first exercise, and were allowed as much
time as they wished to digest the textual problem descrip-
tion. After participants indicated they were done reading the
problem description, we allowed them one hour of program-
ming time. (Participants were not shown the time, but some
chose to monitor it themselves.)

Participants used a single development platform, with a
standard keyboard, mouse, and monitor. We configured the
platform with Emacs, Vi, and TextMate, which are popular
with Ruby on Rails programmers [Bray 2007]. We also
gave participants access to the Ruby core documentation
and, except for the first participant, the Internet. (The first
participant was not given Internet access to prevent the use
of existing code in this study, but we quickly realized this
was a mistake. Participants who followed were simply asked
not to copy existing solutions.)

The use of DRuby was randomly selected for one of each
participant’s problems. DRuby was enabled automatically
for executions of the selected problem, requiring no addi-
tional action by participants. DRuby is a drop-in replace-
ment for the Ruby interpreter that first performs static type
inference and then runs the standard interpreter.

We recorded screenshots and audio as participants worked.
Whenever a participant ran the Ruby interpreter or DRuby,
we made a snapshot of the source code and the output of the
interpreter or DRuby. (The first participant’s output had to
be recreated after the study due to issues with our software.)

At the end of the first problem, participants could take a
break at their discretion before beginning the other problem.
After the two programming periods had finished, we asked
participants to complete a short questionnaire, and we also
interviewed the participants informally to assess their reac-
tion to DRuby and to the study as a whole.

4. Participant Experiences
Next we discuss the experiences of our four participants,
ordered chronologically.

Participant A Participant A indicated that he is equally
comfortable with Java and Ruby, and is somewhat familiar
with the C programming language.

Participant A only finished about a quarter of each exer-
cise. The reason is that he was given no starter source code,



which is what our protocol originally stipulated. As a result,
participant A barely got to write the portions of his solution
that might have lead to type errors, rendering use of DRuby
mostly moot. We added starter code for subsequent partic-
ipants to address this issue, and the other participants were
able to nearly complete all their exercises.

Although participant A made very little use of DRuby, he
did take preemptive action to avoid a type error in which data
read from a file must be explicitly coerced into an integer.
He identified this particular error without the assistance of
the Ruby interpreter, DRuby, or any other automated means.
Screen recordings show him adding an integer constant to
certain variables that store data from a file, and then writing
explicit coercions for these variables at an earlier point in the
program. While the arithmetic operation may have lead him
to find this potential error, we do not know for sure.

In our interview, participant A discussed the role of types
in Ruby programming. He indicated that he maintains im-
precise mental knowledge of types: “I know that types are
there. When I read in a file, I know that I’ve got a string;
[when] I split on newline, then I know I’ve got an array, so
in my head... I have usually an idea that I’ve got an enumer-
able. I’m not sure if it’s an array or something else...”

Participant B Participant B said that he is quite familiar
with Ruby, but is most familiar with Java. He indicated that
he is as familiar with C# and Groovy (a Java-like dynamic
language) as he is with Ruby, and somewhat so with Python.

Participant B encountered some bugs in our data collec-
tion tools during the course of writing his solutions. This
interfered with some executions of his program and caused
him to make some unnecessary edits to his code. Using his
feedback, most of these issues were corrected.

In his first programming problem, participant B encoun-
tered a significant type error: where participant A caught the
necessary string-to-integer coercion step early on, partici-
pant B did not discover this until the Ruby interpreter raised
a “TypeError” exception. After encountering this error, par-
ticipant B spent several minutes making extensive edits to
his program to solve the problem. This occurred during the
trial that did not use DRuby.

During his interview, participant B described how he con-
tinuously keeps type information in mind to supplement the
lack of type annotations in Ruby source code. Discussing
his experience with Ruby, he stated, “...with a dynamic lan-
guage, I’m just kind of subconsciously always thinking about
types.” In contrast, he explained that, “...when I’m coding
Java, I’m not even thinking about [types], because it’s al-
ready done for me. So if I make a mistake, the compiler is
doing that for me. So, I’m almost consciously just not car-
ing, and so I don’t really worry about keeping that stuff in
mind...”

Participant C Participant C stated that he is equally famil-
iar with Java and Ruby. Additionally, he indicated some fa-
miliarity with C++ and Scheme.

Participant C encountered a type error in which he used
a single-element array where a value was expected as the
contents of an array cell. This error resulted in a failure of
the supplied test case, which rather confusingly reported that
“4 != 4.” The strange error message occurred because of the
default printing method for Ruby arrays: a single-element
array is printed as just the element itself, without brackets
(unlike multi-element arrays). This error happened during
the trial that did not use DRuby, and required several minutes
of the participant’s time to diagnose and correct.

In his interview, participant C said that he might not ben-
efit from the sort of error messages he saw reported by
DRuby. He explained, “I do find myself...regularly check-
ing the types of objects to make decisions, usually when
I’m making rendering decisions, ‘how do I want to render
this,’ where knowing ‘does this object respond to a certain
method’ [i.e., what DRuby could report] isn’t really what
I need to know.” This position is understandable given that
many of the DRuby error messages he saw concerned calls
to methods that had not been implemented. Moreover, when
asked to consider shortcomings of Ruby’s standard dynamic
type system, he stated that he has not been disappointed:
“...my expectations were lowered and then adjusted, so it
was more, ‘don’t rely on types.’”

Participant D Unlike the previous participants, participant
D said he is equally familiar with Perl, C, and Ruby. He also
said that he is quite familiar with C++ and moderately so
with Haskell.

Interestingly, participant D made few, if any, type errors
during his development. With the exception of some (Ruby
interpreter) errors due to uninitialized hash table cells, none
of the error messages produced by participant D’s test exe-
cutions indicated a type mismatch.

In his interview, participant D said that the relatively
small scope of the solutions he was asked to write made
DRuby’s error messages rather ineffectual. He said, “it
would usually be faster to run the test suite without running
the static checks, because [the programming challenges]
were such small programs,” and that, “[DRuby] usually told
me things that I already knew, like...I hadn’t implemented a
particular method yet—I knew I hadn’t implemented a par-
ticular method yet, but wanted to see the initialization go
through.”

5. Results
Because of the limited number of participants in our study,
it is difficult to come to definitive conclusions. Nevertheless,
we were able to inductively formulate several tentative hy-
potheses using the data we gathered; we expect to investigate
these more fully in future studies.

DRuby’s Error Messages: Correct but Not Informative
To analyze the DRuby error messages that our participants
received, we assigned each error message to one or more cat-



egories using open coding. Open coding is a method of in-
ducing hypotheses from qualitative data by comparing frag-
ments of data with each other, assigning attributes (called
codes) to each fragment, and grouping fragments together
into categories based on those codes [Strauss 1987].

To categorize the DRuby error messages, we considered
each message with respect to other simultaneously reported
messages, any warnings produced by the Ruby interpreter in
the same execution of the participant’s program, any code
changes made by the participant since the last execution of
the program, and all DRuby messages that preceded it.

We ended up with seven primary codes for DRuby er-
ror messages: a) Duplicate: multiple messages represent-
ing the same error for different sites in a single execution;
b) Intentional: the result of an intentional edit with obvious
consequences; c) Expected: seen in an earlier execution or
expected from starting conditions; d) Identical: same as a
warning message reported by Ruby; e) Additional: not re-
ported by Ruby for that execution; f) New: previously unre-
ported error; g) Recurrence: previously seen message from a
reintroduced bug. In the example output:

[ERROR] instance Sudoku does not support \

methods print_puzzle

in method call s.print_puzzle

at ./sudoku.rb:33

in typing ::Sudoku.new

at ./sudoku.rb:32

[ERROR] wrong arity to function, got exactly \

1 arguments, expected no arguments

in solving method: initialize

in typing ::Sudoku.new

at ./sudoku.rb:32

[ERROR] wrong arity to function, got exactly \

1 arguments, expected no arguments

in solving method: initialize

in typing ::Sudoku.new

at ./sudoku.rb:34

sudoku.rb:32:in ‘initialize’: wrong number of \

arguments (1 for 0) (ArgumentError)

from sudoku.rb:32:in ‘new’

from sudoku.rb:32

the first DRuby message (prefixed with [ERROR]) is coded
as Additional. The second and third would be coded as Iden-
tical since the same warning is reported by Ruby (the final
message), and the third as Duplicate because it is the same as
the second. If these errors occurred in a previous execution
or if this was one of the first executions of the program (when
the programmer has not had a chance to write any methods
yet), these would also be marked Expected; otherwise the
first error would be coded as Recurrence or New depend-
ing on whether or not it had occurred and been fixed before.

The Duplicate, Expected, and Identical codes were applied
to messages very frequently. The Additional and New codes
were applied less frequently, and the Intentional and Recur-
rence codes were applied to very few messages.

These codes were grouped into categories representing
whether a message did or did not provide information to
the programmer in excess of what they could be expected
to already know or could have obtained through using Ruby
alone. Messages were assigned to one primary category,
either Informative or Not Informative, based on the codes
they had received: a message was assigned to Informative
if it had been given at least one of Additional, New, or
Recurrence exclusively; otherwise, it was assigned to Not
Informative.

The primary theme that emerged from our analysis is that
DRuby did not reliably contribute much useful information.
While a limited number of error messages were classified as
Informative by our open coding scheme, the majority were
not: excluding data from participants A and B, who experi-
enced problems with the protocol and data capture software
that were already discussed, 13.4% of error messages were
classified as Informative, and only 20% executions where
DRuby reported at least one error contained any Informative
error messages. These percentages are lower if participants
A and B’s data is included.

That said, none of the messages produced by DRuby were
incorrect, and it may be that DRuby is useful for larger
projects but not for the small programs in our study. One
of DRuby’s key advantages over standard testing is that it
analyzes all code paths, including obscure ones—of which
there may be few in small programs with straightforward
control flow. Further investigation will be required, however,
before we can make this claim with confidence.

Programmer Conventions as Type Annotations The cod-
ing technique applied to DRuby’s error messages shows that
DRuby did not report much useful information. However,
our interviews indicated that types are part of participants’
reasoning processes. This disparity is troubling, as we would
expect programmers to find type errors more easily with the
aid of DRuby. There may be, however, other mechanisms at
work that prevent type errors in the first place.

While it is always wise to give methods and arguments
names that indicate what they mean or do, they can also
be used to encode type information. In this example (from
participant code, as are all those that follow), the parameter
names indicate their types directly:

def validate_digits(array, str)

This is not the only way that participants encoded type
data into their method definitions. The type signature of the
method:

def set_value_at(x,y,value)

is also partly obvious in the context of a program that uses
a two-dimensional grid. It is a reasonable guess that x and y



are integer coordinates; value could have any type, but the
programmer would probably be able to easily remember its
specific type. Other method definitions in the same program
include:

def get_value_at(x,y)

def row_values(x)

def col_values(y)

def grid_values(cx,cy)

Again, arguments that include x and y in their names are
probably integers. Each method’s name contains value or
values, and so will probably return the same type of objects
that set value at takes as an argument. These are not
precise type signatures, but programmers do not necessarily
need precision when dealing with small programs.

Another convention also appeared in participants’ code:

def open?(sym)

The use of a question mark at the end of methods does not
change a method’s behavior, but is a general Ruby conven-
tion: “Methods that act as queries are often named with a
trailing ?, such as instance of?” [Thomas et al. 2004]. In
this case, we are asking if an object is open or not for some
symbol, and so expect open? to return a boolean.

All of our participants wrote method definitions that ap-
pear to specify some amount of argument or return type data.
Ad-hoc conventions may have helped to limit type errors, but
further study would be required to know for certain.

Sources of Type Information: Ruby as its Own Reference
Several participants indicated that they rely on their own
memory to compensate for the lack of explicit type infor-
mation in Ruby. Moreover, in reviewing interview tapes and
screen recordings, we found that participants used several re-
sources when their memory was insufficient: They gathered
information from the Ruby Core documentation, the Internet
at large, the ri utility (a command-line tool for accessing
Ruby documentation), and IRB, the interactive Ruby shell.
Based on our recordings, IRB is by far the preferred method
for exploring features of Ruby; participant A even said in his
interview that he uses reflection in Ruby to look up method
names. (The “methods” method can be invoked on a class
to get a list of its methods.) IRB was the only information
resource employed by all four participants; one participant
used IRB for everything from experimenting with certain
Ruby constructs, to manually loading and executing portions
of his program, to looking up a particular method’s return
type.

If programmers prefer IRB over other forms of Ruby ref-
erence material, then tools like DRuby may be more effec-
tive if they provide interactive documentation as well. In its
current form, DRuby provides type documentation through
rich type annotations written in comments. A more effec-
tive form of documentation may integrate annotations into
the output produced by IRB (as is done, for example, by
OCaml’s interactive shell).

6. Threats to Validity
One key threat to the validity of our study is the scale of
the programs written by the participants. In our experience,
many Ruby programs are created by writing larger, reusable
libraries and then writing small main programs; our study
captures only the latter. Additionally, one very common use
of Ruby is to write programs in Ruby on Rails, which is not
included in our study—Rails code is not statically analyz-
able by DRuby by itself [An et al. 2009].

Another uncontrolled variable is the effect of DRuby it-
self on participants’ workflow. During this study, DRuby
typically took about 80 times longer to analyze and run par-
ticipants’ code than when run just under Ruby. This delay
in execution was clearly noticeable, and may have motivated
participants to test their programs less frequently when using
DRuby—this change in debugging practices may have af-
fected their development processes, though we cannot know
for certain.

7. Related Work
While a great deal of research has been conducted regard-
ing human factors in software development, little work has
focused specifically on the effect of type systems on pro-
grammer behavior. Gannon [1977] studied the error rates
in solutions to programming problems written in untyped
vs. statically typed variants of a programming language.
However, in Gannon’s study, participants were graduate
and advanced undergraduate students, while our participants
were recruited from a users group for the language being
studied. Additionally, type systems in particular and pro-
gramming languages in general have evolved a great deal
since Gannon’s work.

Ng Cheong Vee et al. [2005] explored the effect of var-
ious kinds of compiler error messages on both novice and
“mature” students using Eiffel, categorizing errors based on
log data collected during the study. Yang et al. [2000] in-
vestigated manual type checking practices in Standard ML,
but used existing code containing errors rather than having
participants write their own programs. Recently, Hanenberg
[2009] completed preliminary research on the effect of typed
vs. untyped variants of a novel language, finding that pro-
grammers worked faster in the untyped version.

While DRuby was selected for this research, other static
type inference and checking systems for dynamically typed
languages exist. Morrison [2006] developed a type inference
approach that is used by the RadRails IDE for Ruby on Rails.
Because this inference system is built into a specific IDE,
however, it was not well suited to our study. Several type in-
ference systems for Python have been developed by Aycock
[2000], Cannon [2005], and Salib [2004]; additionally, An-
cona et al. [2007] have created a statically typed subset of
Python that can be compiled to CLI or JVM bytecode. Simi-
lar systems, such as CMUCL [MacLachlan 1992] and SBCL
[SBCL 2008], have been developed for Lisp.



8. Future Work
Our pilot study allowed us to gain insight into the practices
of Ruby programmers and to refine our experimental proto-
col. There are several interesting directions for future work.

An alternate approach to our study would be to conduct
surveys. Ayewah and Pugh [2008] surveyed users of Find-
Bugs, a static analysis tool for Java, to gain an understanding
of how it is used in practice. They also have investigated the
use of FindBugs in industrial settings [Ayewah et al. 2007].
However, similar studies with DRuby (or other static type
systems for dynamic languages) would first require a sizable
user-base, which we do not believe currently exists.

Another direction would be to scale up our study to larger
programs. We could ask participants to identify errors in
existing software projects of varying size and complexity,
and observe whether DRuby helps them find and fix bugs.

A study of programmers working as a team might also
be interesting. Code changes by multiple developers may
cause inconsistencies in their respective understandings of a
program’s types, creating opportunities for type errors. This
might also allow us to investigate the use of conventions as
annotations, as the type information encoded by one pro-
grammer may not be obvious to another.
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Abstract
The dominant paradigm of concurrent programming has
well-publicized usability problems, but the alternatives have
not been well analyzed from a usability perspective. I at-
tempted an empirical comparison of programmer productiv-
ity using the Actor model, transactional memory, and tradi-
tional lock-based concurrency paradigms. The results were
inconclusive. I discuss my experiment, present its results,
and discuss possible reasons why such experiments are a
blunt tool with which to investigate programming language
usability.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel programming; D.2.2 [Design Tools
and Techniques]

General Terms Human Factors, Experimentation

1. Introduction
With the widespread arrival of multi-core processors, it is be-
coming necessary to write parallel programs to fully exploit
nearly any modern computer.

However, parallel programming has proven extremely
difficult. In particular, the dominant paradigm – that of mul-
tiple threads sharing writable memory, and controlling ac-
cess to it with mutual-exclusion locks – has come in for
much criticism for its usability failings ([Lee 2006], among
many others).

The design of concurrency mechanisms for programming
languages is a serious and painfully unresolved problem in
HCI. The adoption of multi-core processors is leading us
to put ever more weight on an interface widely regarded as
inadequate. Arguably, then, this one of the most important
problems in the usability of programming systems.

Copyright is held by the author/owner(s). This paper was published in the proceedings
of the Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU) at the ACM Onward! Conference. October, 2009. Orlando, Florida, USA.

1.1 Contributions
I describe an experiment to directly measure and compare
programmer performance using different parallel paradigms
to solve a problem. I lay out some background in Section 2,
then describe and justify my methods in Section 3.

I present the results of this experiment in Section 4, and
show them to be inconclusive.

I discuss possible causes of this inconclusive result, and
the difficulty of using controlled empirical experiments to
evaluate programmer productivity, in Section 5.

2. Background
2.1 Alternative paradigms
Language designers have proposed many alternatives to the
dominant paradigm of lock-based concurrency [Skillicorn
and Talia 1996]. I set out to investigate two paradigms that
have gained some popularity, and claim superior usability to
the current de facto standard.

2.1.1 Message Passing
Message-passing systems provide a private memory for each
thread of control. All communication is by discrete messages
passed to other threads, which process them one at a time.
Examples include Hoare’s Communicating Sequential Pro-
cesses [Hoare 1978], or the more dynamic Actor model [He-
witt et al. 1973] most popularly associated with the Erlang
programming language.

2.1.2 Transactional Memory
Transactional memory systems have threads of control shar-
ing a single memory space. Their memory accesses are
grouped into transactions, and a run-time system detects and
rolls back conflicts to ensure that each transaction occurs
atomically or not at all. [Peyton-Jones 2007]

Transactional memory is quite similar to classic thread-
ing and locking. The difference between manual locking and
transactional memory can be compared to the difference be-
tween manual and garbage-collected memory management
[Grossman 2007].



2.2 Evaluation
Like most programming language features, concurrency
paradigms have historically been built on a hunch, and eval-
uated by anecdote and holy war. Even when parallel pro-
gramming systems are evaluated for usability, researchers
compare whole languages and runtime systems rather than
the principles they embody (see Related Work in Section 6).
This makes their results less informative for the design of
new programming systems.

I chose to evaluate these paradigms empirically with a
controlled experiment. In this experiment, subjects solved
the same problem, in the same language, varying only the
concurrency paradigm.

3. Materials and Methods
3.1 Experiment structure
The goal of this experiment was to compare programmer
performance using different parallel paradigms, keeping the
programming language and environment constant.

I tested three parallel paradigms: the Actor model, trans-
actional memory, and standard shared-memory threading
with locks (henceforth “SMTL”). I also tested subjects writ-
ing sequential code, as a positive control: it is generally
agreed that sequential programming is substantially easier
than SMTL, and any acceptably powerful study should show
this effect clearly.

I provided all four programming models for the Java
programming language. Java is a widely adopted language,
taught in the Cambridge undergraduate curriculum, and pro-
vides an uncontroversial baseline for this experiment.

Each subject solved the same problem twice: once with
the standard (SMTL) Java threading model, and once with
Actors, transactional memory, or no parallelism at all (the
sequential condition). The whole session took approximately
4 hours per subject. Scheduling was balanced, with half of
the subjects solving the SMTL condition first, and the other
half solving it second.

Each subject filled out a questionnaire before the experi-
ment, to assess their level of experience and self-perception
of skill. After each task, the subject filled out a questionnaire
indicating the level of subjective difficulty and opinions of
the concurrency model used.

During the experiment, subjects’ screens were recorded,
and a webcam recorded the subject to monitor off-computer
events. A snapshot of the project directory was taken at 1-
minute intervals, and instrumented tools logged each invo-
cation of the compiler or run of the resulting program.

3.2 Subjects
Seventeen subjects were recruited from the undergradu-
ate (10) and graduate (7) student population of the Cam-
bridge Computer Laboratory. Of these, eleven successfully
completed both tasks.

3.3 Task
I chose to minimize variability, at the expense of significant
learning effects, by using a single problem. This was an
“unstructured grid” problem, in the classification of the View
from Berkeley [Asanovic et al. 2006].

I presented a toy physics problem, modelling heat flow
between identical blobs, connected by rods of varying con-
ductivity. If the temperature of blob i at time t is represented
as T i

t , the temperature change due to a rod of conductivity k
connecting blobs a and b is:

T a
n+1 = T a

n + k(T b
n − T a

n )

A graphical example is shown below:
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To reduce the time subjects spent writing irrelevant I/O
code, I provided them with code to load a sample data
set into memory and pass it as arguments to a function
call. I provided the inputs in a deliberately un-useful data
structure, and the written instructions instructed each subject
to translate the data into their own choice of structure. I
instructed the subjects to translate the solution back to the
original un-useful format and call a function to check its
correctness.

3.4 Implementing Different Paradigms
I aimed to replicate the user experience of programming in
each paradigm, while keeping the underlying language as
close as possible to idiomatic Java.

This involved trade-offs which made performance or scal-
ability comparisons between different conditions impracti-
cal. This is a disadvantage, as scalability is the ultimate
goal of all such parallel programming, but other studies have
examined the scalability characteristics of different concur-
rency mechanisms, and I considered usability the more im-
portant target for the present study.

3.4.1 SMTL and sequential
Java’s native concurrency model is based upon threads and
mutual-exclusion locks, so standard Java was used for the
SMTL and sequential conditions.



3.4.2 Transactional Memory
For the transactional memory condition, I used an existing
transactional memory system for Java, Deuce [Korland et al.
2009]. Deuce modifies Java bytecode during loading, trans-
forming methods annotated with @Atomic into transactions.
For example:

class TransactionalCounter {

private int x;

public @Atomic increment () {

x = x + 2;

}

}

However, at the time of this study, Deuce did not instru-
ment classes in the Java standard library, so it could not be
used with idiomatic Java. Instead, I enabled Deuce’s “single
global lock” mode, which makes all atomic methods mutu-
ally exclusive. This preserves the semantics of transactional
memory, but prevents us from evaluating scalability.

3.4.3 Actor Model
Implementing the actor model for Java presented a chal-
lenge. Java assumes mutable shared memory throughout its
design, whereas actors require disjoint memories and mes-
sages which the sender cannot change after they are sent.

One of the touted advantages of the actor model is that
the system enforces actor isolation, preventing the user from
making a class of mistakes. Enforced isolation is therefore
necessary to realistically model the desired user experience.

I considered Kilim [Srinivasan and Mycroft 2008], an im-
plementation of the Actor model in Java with an annotation-
based type system to enforce actor isolation. Kilim enforces
a complete transfer of ownership of mutable objects sent in
messages, so that only one actor can refer to a mutable object
at any one time. However, this is a substantial departure from
idiomatic Java. In addition, no version of Kilim including
this type system is publicly available, and the author warned
that his pre-release version was unreliable. I therefore con-
cluded that Kilim was not suitable for this experiment.

I also considered using a run- or compile-time system to
ensure that only immutable objects – objects whose fields
are all final, and members are similarly immutable – could
be passed in messages. However, Java’s standard library
is built with mutable objects. I wished to evaluate “Java
with Actors”, not “Java with Actors and all standard data
structures removed”, and so this option was also rejected.

Instead, I implemented a reflection-based runtime sys-
tem, using deep copies for isolation. In my implementation,
each actor is represented by an object, to which no reference
is held by any other actor. Other actors interact only with a
wrapper class, Actor, through which they can send messages
to this hidden object. Messages are named with strings, and
handled by methods of the same name, so an "add" message
is handled by the add() method.

All arguments to messages and constructors are deep-
copied, using the Java serialization mechanism. This en-
forces isolation, by preventing multiple actors from obtain-
ing pointers to the same mutable object. (Isolation can still
be violated, by use of static fields, but I decided that this
could be verbally forbidden without seriously affecting cod-
ing style.)

An example use of this framework follows:

// In AddingActor .java:

public class AddingActor {

private int x = 0;

public void incrementBy(int y) {

x += y;

System.out.println("x = " + x);

}

}

// In Main.java:

public class Main {

public static void main(String [] args) {

Actor a = new Actor("AddingActor");

a.send("incrementBy", 2);

a.send("incrementBy", 5);

}

}

Of course, this isolation comes at a significant perfor-
mance cost, making scalability analysis impractical. I do not
claim that this grafting of isolation onto a shared-memory
language is an elegant one – merely that it models the user
experience I wished to emulate.

4. Results
The results of this experiment were inconclusive, showing
no significant difference in any objective measurement be-
tween the four test conditions. The subjective measurements,
however, did show a statistically significant preference for
the transactional memory (TM) model over shared-memory
threading with locks (SMTL), and suggest a (not statistically
significant) preference for the Actor model over SMTL.

I also document an unexpected phenomenon in the com-
pletion data, suggesting a bimodal distribution: Subjects ei-
ther completed the first task within two hours, or could not
within the whole four-hour session.

4.1 Objective Measures of Programmer Effort
Programmer effort is difficult to measure objectively, and
sophisticated proxy measurements are contentious. I there-
fore chose two simple metrics: the time taken for subjects to
complete the task, and the number of (non-comment) lines
of code in the final program.

We begin with the aggregate data, showing completion
times for every trial on the same graph. In all the graphs in
this section, lower numbers indicate better performance.



The aggregate data shows no significant difference be-
tween the four conditions. This is unsurprising, given the
high inter-subject variability shown above.

We now consider within-subject differences in perfor-
mance between conditions. Each point on the following
graphs represents the difference between a subject’s per-
formance in the test condition and the SMTL control. Lower
numbers indicate better performance than on the SMTL trial;
higher numbers indicate worse performance.

Overall, these measurements showed no significant dif-
ference between the conditions under test.

In the “time taken” metric, the difference between first
and second trials dominates all other variation. The sequen-
tial condition (our positive control) shows a suggestive de-
crease in time taken, but the other two conditions appear
dominated by this learning effect.

The learning effect is significant: a paired t test finds
a significant difference between subjects’ first and second
trials (p = 0.04).

In the “lines of code” metric, we do not see such a differ-
ence between first and second trials. The sequential condi-
tion again suggests a decrease, but there is nothing particu-
larly convincing here.

In both metrics, the Actor model shows remarkably high
variation in performance.

4.2 Subjective impressions
After each task, subjects were given a questionnaire request-
ing their subjective impression of the task. As well as over-
all task difficulty, they were asked how the framework com-
pared to writing sequential code and SMTL, and asked di-
rectly how easy they found using the framework.

This graph presents the average of all these subjective
ratings (sign-normalized such that higher ratings are good,
and presented as a difference from ratings in the SMTL
condition). The sequential condition is omitted, as most of
the survey questions were inapplicable to it.

A within-subjects ANOVA finds that subjects tested on
transactional memory significantly preferred it to SMTL
(p = 0.04).

The preference of subjects tested on the Actor model did
not reach the 5% significance level (p = 0.07).

4.3 Metric correlation
These three metrics (time taken, lines of code, and subjective
rating) appear to differ widely. I observed a weak correlation
between time taken and lines of code (r = 0.25), and
between time taken and subjective rating (r = −0.18),
but none at all between lines of code and subjective rating
(r = 0.05).



This small correlation suggests that they measure some-
thing, but their disagreement implies that these metrics
should not be wholly trusted.

4.4 Completion times: Does the camel have two
humps?

An unexpected phenomenon is visible in the subjects’ com-
pletion times: Subjects either finished the first run within two
hours, or could not finish it at all within the four-hour ses-
sion. (There was only one exception, who completed the first
task in three hours. He did not attempt the second.)

The distribution of completion times for all tasks is dis-
played below. The solid bar represents subjects who did not
complete a task at all. The yawning gap between these five
subjects and the rest of their cohort suggests that the distri-
bution is not continuous:

A bimodal distribution of programmer ability has been
posited before [Dehnadi and Bornat 2006], but this contro-
versial suggestion distinguished between those who entirely
“cannot learn” to program and those who can.

By contrast, these unsuccessful subjects wrote valid code,
with control and data structures no less complicated than
their successful peers’. They did not give up, or stop de-
bugging their programs, until stopped at the four-hour mark.
Post-session interviews indicate that they correctly under-
stood the problem. In short, the circumstantial evidence does
not support the idea that these subjects were simply incom-
petent, gave up, or failed to understand the problem.

This result, then, remains an intriguing mystery.

5. Discussion
This inconclusive result is disappointing, but also instruc-
tive.

Broadly, it illustrates the difficulties of empirical research
into such a complicated phenomenon as programmer pro-
ductivity. It also illustrates the power of many hard-to-avoid
confounding factors, which I will discuss in a moment.

This study also has something to say about the relative
merits of subjective and objective research. It is telling that
the subjective survey results actually succeeded in reaching
statistical significance, whereas the empirically-observed
proxies for effort barely suggested anything.

This is not to say that subjective studies are inherently
superior – their substantial biases are the reason we have
empirical studies in the first place. However, human intro-
spection can sometimes tell us more readily about difficult-
to-measure phenomena such as “effort” than objective (but
weak) proxies.

5.1 Possible explanations
I will now consider some confounding factors which might
have caused this inconclusive result, even in the presence of
large usability differences in the frameworks tested.

5.1.1 Weak metrics
Their dismal internal consistency suggests that the available
metrics for programmer effort are not powerful or reliable
tools. More accurate instruments would be required to mea-
sure any but the largest effects.

5.1.2 Learning effects and subject variability
The learning effect between the two trials for each user
greatly interfered with the results. However, designing a
study such as this one inevitably puts the experimenter be-
tween a rock and a hard place.

If I had designed an experiment where each subject at-
tempts only one task, under one condition, the results would
have been swamped by inter-subject variation. It would take
an impractical number of subjects to see any effect at all.

The design I actually chose controls for some subject
variability – but far from all – at the expense of a short-term
learning effect that ends up swamping the results.

5.1.3 Familiarity
Most programmers have experience with the standard thread-
ing model, and so come to this study with a substantial famil-
iarity bias in favor of the SMTL condition. By contrast, few
subjects had previous experience with transactional mem-
ory, and none with the Actor model. This study therefore
captured the effort required to learn these models for the
first time, as well as the effort of solving the problem.

This might be mitigated with a practice session before the
study, in which users gained some experience with the unfa-
miliar model before attempting the task. However, no length
of practice session can eliminate the learning curve entirely,
and familiarity is an ever-present confounding factor.

5.1.4 Toy Problem Syndrome
The task in this experiment was, necessarily, a small problem
which could be solved in two hours and 200 lines of Java.
Most solutions included a single, symmetrical concurrent
kernel. By contrast, the usability problems of concurrency
are often related to complexity, and the inability to hold the
behavior of all threads in the programmer’s head at once.

The proverbial “concurrency problem from hell” is an in-
termittent deadlock whose participants are distributed across



80,000 lines of code written by ten different people. Such
situations are difficult to model experimentally.

It is a perennial problem that empirical studies of pro-
gramming can only ever test toy problems, and it is difficult
to imagine any experimental design which could sidestep it.
Lengthening the task might have helped slightly, but recruit-
ing volunteers for a four-hour study was difficult enough as
it was. There is a reason that much of the work in this field
is done by educators, at institutions where course credit may
be awarded for participating in such experiments.

5.2 Additional threats to validity
Lest we think that these big problems are the only ones,
a number of issues would have qualified even a significant
positive result from this experiment:

• The choice of problem greatly affects the suitability of
different paradigms. There is unlikely to be One True
Model which outperforms all others, all the time. Choice
of a problem which can be more easily modelled with
shared state, or message passing, could therefore have a
significant effect on the results.
Controlling for this issue would require a large-scale
study including representatives of, say, all the Berkeley
Dwarfs [Asanovic et al. 2006], in an attempt to cover all
common parallel computations.

• Software spends almost all of its life being maintained,
but this experiment observed only the initial creation of
a program. Safe and easy modification – low viscosity, in
the terms of the Cognitive Dimensions framework [Green
and Petre 1996] – might even be more important than the
ease with which a program is first written.

• The frameworks used in this experiment lack features
available in industrial implementations. For example, the
Actor model implementation lacked multicast or scatter-
gather support, which is available in implementations
such as MPI [Snir and Otto 1998]. The SMTL condition
explicitly prohibited the use of utilities such as synchro-
nization barriers from the package java.util.concurrent.*.
Subjects repeatedly re-implemented both barriers and
scatter-gather patterns during the experiment.

• Actor messages, unlike normal method calls, are only
checked at run time, not at compile time. This may have
spuriously reduced performance in that condition.

• The unrealistic performance of the experimental frame-
works might have cause subjects to mis-optimize their
programs. (This was not borne out by observations or dis-
cussions after experimental sessions; no subject so much
as profiled their code for bottlenecks.)

• The students participating in this study may not be rep-
resentative of professional programmers. This could go
either way: they might be more flexible and open to new
techniques, or less practiced at quickly getting the hang
of unfamiliar tools.

• The awkward data structures used to provide inputs ap-
pear to have had an anchoring effect on the subjects. Sev-
eral subjects largely copied the provided data structures
instead of devising their own, despite emphatic instruc-
tions to the contrary.

6. Related Work
The study closest to the present one was conducted by IBM
[Ebcioglu et al. 2006]. They compared performance using
three languages for supercomputing clusters: MPI (message
passing in C) [Snir and Otto 1998], Unified Parallel C [El-
Ghazawi et al. 2005], and IBM’s x10 language [Charles
et al. 2005]. x10 was convincingly superior, but I believe
that this is probably due more to its garbage collection,
memory safety and similarity to Java than to its approach to
concurrency. No significant difference was found between
MPI and UPC.

This group also described the methods used to observe
subjects during that experiment [Danis and Halverson 2006].
Although the software they used is not publicly available,
this significantly inspired my methods.

Hochstein et al. [2008] taught a class of students either
MPI or a shared-memory C variant for a research computer
architecture. They found MPI to involve significantly more
effort, but as VanderWiel et al. [1997] note, most of the extra
effort is likely to do with manually packing and unpacking
message buffers rather than message-passing per se.

That study is part of a larger collaboration between sev-
eral universities to investigate HPC usability, using students
from scientific computing classes [Hochstein et al. 2005].

A number of other studies have evaluated the usability
of parallel systems by implementing larger projects (often
benchmarks), and discussing the experience. These are not
controlled experiments, but they avoid the Toy Problem Syn-
drome, and can control for the differences in structure be-
tween problems. Cantonnet et al. [2004] evaluated UPC on
the NAS benchmark suite, Chamberlain et al. [2000] com-
pared Fortran variants, Single-Assignment C and ZPL on a
single NAS benchmark, and VanderWiel et al. [1997] com-
pared several C-based languages and HPF over a variety of
benchmarks.

Most of this work either predates the multi-core era, or
concentrates on distributed-memory supercomputing sys-
tems. It is therefore not enormously useful for evaluating the
pressing problems facing general-purpose computing today,
or the proposed solutions, which make heavy use of lan-
guage features not available in Fortran or C. However, their
methods, and quality of results, are still instructive.
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Abstract
In the last 10 years, the social nature of the web has created
a shift in the way people use the computer. In particular, ad-
vanced programming activities are no longer reserved for
those who are professionally trained programmers. More-
over, the increased socialization of the web has encouraged
users to create more readily available content for everyones
use. However in some cases what a user wants is not nec-
essarily easy to accomplish and in many cases still require
programming skills.

In this paper, I describe some past studies of web mash-
ups, an integrated web application that combines data from
multiple sources into a single interface. Mashups provide us
with a unique opportunity to study how both professional
programmers and non-programmers approach an inherently
programmatic technology. In some cases the issues encoun-
tered by the end user coincide with those of the programmer.
Using lessons learned from a survey study, interviews and a
think-aloud study, I propose directions for future research.

Categories and Subject Descriptors D.m [Software]: Mis-
cellaneous – Software Psychology

General Terms Human Factors

Keywords End-user programming, mashups, APIs, and
tools

1. Introduction
The Web, without a doubt, has a major influence on our
every day lives. We use it as a tool to gather information and
as an avenue of communication. We use it for work and for
entertainment. It is everywhere we go, and over the past few
years it has become a ubiquitous source of information. This
abundance of information on the web is in part due to the
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evolution of the Internet as a communication medium, but
also due to the huge number of online authoring tools and
services that has encouraged the average web user to share
their own creation on the web. For example, in January 2009,
the video sharing web site YouTube announced that there is
an average of 15 hours of video uploaded every minute [1].
Essentially, the web is designed for the active participation
of its users; the more users, the more content that is created,
and the more useful the web becomes.

However not all of these new technologies are easy to
understand and use. Many of the novel systems introduced
require skills that not every end user may have. For exam-
ple, web Application Programming Interfaces (APIs) – one
of the core technologies used by almost every major web
system, including Google, Yahoo, Microsoft and Amazon –
requires advanced programming skills to employ. One ap-
proach to solving this skill barrier is to introduce easier to
use or simpler tools. However, what happens when this easy
to use tool does not meet the requirements of the user? The
user then needs to find and adopt another tool for a specific
task. What if the user cannot find a tool that fits his or her
needs? Moreover, with each additional tool needed, the user
must commit cognitive resources to learning and remember
its use. As with any technology or tool, there may be a sub-
stantial learning curve before one can reap the benefits.

Generally, software developers cannot come close to sup-
porting every need of every user in the tools they create.
Tasks are generalized and simplified, and tools are created
for the common needs. Instead of introducing a new tool for
every need, developers employ numerous methods to help
users help themselves. For example, in spreadsheet software
macro writing functionality is introduced to allow users to
create their own solutions to repetitive tasks. However, again
this solution requires some technical skills. In most cases,
users still need to maintain a level of programming or com-
putational expertise to leverage these features.

The remainder of this paper examines our work in the
area of end-user programming. While this work focuses on
more novice programmers or non-programmers, we found
that in some cases both programmers and these end users



Figure 1. Number of US Programmers and End Users by
2012

encountered similar problems when dealing with program-
ming tasks on web.

2. End-User Programming
The term end user can have many different meanings based
on the context in which it is used. In particular, our work has
focused on a subset of end users primarily identified as end-
user programmers. This group is typically defined as people
who participate in programming tasks but whose primary
job function is not programming. One early definition of this
population explains end users are not:

“ ’casual,’ ’novice,’ or ’naı̈ve’ users they are people
such as chemists, librarians, teachers, architects, and
accountants, who have computational needs and want
to make serious use of computers, but who are not in-
terested in becoming professional programmers. [2]”

However, this description has evolved over the years. As
reflected by the research in the early 1990s, the majority of
computer users and programming was done either around
workplace or in schools [2]. Thus many of the end users
described during that period were either professionals who
need to get work done or students who are being taught using
a computer. If we think about these topics in todays world,
the end user population is far more diverse.

Using data from a survey conducted by the US Bureau
of Labor Statistics, researchers have estimated that by 2012
there will be over 90 million Americans using a computer
at work, with 13 million self-reported programmers, but less
than 3 million professional programmers [3]. With this in-
creasing user population, programmers cannot hope to create
systems that fulfill the nuanced needs of every user. Instead,
designers and developers must find a way to allow users to
help solve their own problems. This is the underlying goal
of end-user programming (EUP) research.

3. Mashups
Recently there has been an upsurge of research interest in
mashups - a web application that combines multiple data
sources and presentations into one interface. From an EUP
perspective, mashups provide users with the opportunity to
integrate and assimilate many different web resources intoa
personalized view. However, because of the relatively com-
plex programming methods needed to create a mashup, more
non-programmers and novice users are left out. Specifically,
programmers usually leverage APIs or screen scraping to re-
trieve online data for a mashup. As a result, numerous tools
have been created and studied that attempt to help these
naı̈ve end users to create these advanced web applications
[4, 5].

Mashups are interesting to us because they provide an
opportunity to study end users working with cutting edge
technology. Moreover, the goals of a novice user creating a
mashup could easily match with the motivations of a more
experienced programmer. I would suspect that the majority
of the 4361 mashups listed on ProgrammableWeb – a web-
site that tracks mashups – could be used end users to ac-
complish a variety of goals and complete various tasks on
the web [9]. However, the web applications listed there were
created by programmers; novice end users do not have the
skills necessary to create such mashups. Again, the end users
must turn to and rely on developers.

4. Survey of Mashup Creators
We began our inquiry into mashup development by first sur-
veying the developer population [10]. Because mashups tend
to be context-specific, we assumed that mashup development
would be a solution used by developers, but not a primary job
function. So we advertised our survey on numerous web de-
velopment and API related forums. This effort resulted in a
total of 63 responses, with 31 who had created mashups be-
fore. When we compared all the developers to the 31 with
mashup experience, we found that the 31 developers had
more expertise with programming and web technologies.

As a part of this study, we wanted to understand how these
developers learned to create mashups. As to be expected for
a novel technology, our surveyed developers all taught them-
selves using the documentation for different APIs. Probing
more deeply, we found that these developers found that the
documentation is very inadequate and do not provide the
correct level of abstraction. Documentation was cited as be-
ing very sparse and not regularly updated. One participant
specifically pointed out that the Google Maps API would be
updated but the documentation did not reflect the changes
until much later. Moreover, many developers pointed out a
lack of examples and tutorials. Our participants expressed
that they realize that they are taking advantage of free and
public services, but stress that when approaching a new web
service and API, they immediately look for examples and
use those to explore. Further, they depend on online doc-



umentation that when they are building mashups, as there
was no formalized training in mashup development during
the length of the survey. They suggested that having grad-
uated information from beginners to experts by level and a
variety of examples that showcased the API’s functionality
would have helped them when learning to create mashups.

Another insight from this work was that the mashups
created by developers are quite limited in variety. There are
a limited number of APIs being used for the majority of
mashups, and many mashups have only slight differences
to each other. The Google Maps API and mapping related
mashups were the most common. While it is unclear why
this was the case, it is possible that the visual nature of
maps combined with the Google Maps API being one of
the first major public APIs made this type of mashup more
attractive to developers. It may be that while there is an
abundance of data on the Web that is interesting, there are
fewer useful visualization techniques that are accessibleto
non-programmers. From a tool developer’s prospective, one
possible way to further support end users could be to provide
these users with simple ways of integrating their data with
appealing visualizations.

Overall, we concluded that developers currently use
mashups as a solution to data integration problems. The nu-
merous public APIs available serve as a toolset for develop-
ers to create interesting applications. The problems encoun-
tered by the developers seem to arise from interacting with
the APIs and not necessarily with any specific programming
language used to create a mashup.

5. Survey of End Users
To more carefully study a novice user population more
aligned with EUP research, we distributed a survey to the
student population at Penn State University [11]. We spec-
ulated that these students would be the types of users that
could benefit from being able to create mashups. They grew
up with the Internet being prevalent in their lives, and they
rely on the web as a tool to solve problems and gather infor-
mation.

From this study, we identified some key variables that in-
fluence how end users approach and think about novel web
technologies: Technology Initiative – how active do they
pursue new web experiences, and disseminate these to their
friends; Usefulness – a self-rating of perceived usefulness
of a technology; Sharing hobbies online – the frequency of
sharing their own hobby related activities and creations on-
line. Of these three, Technology Initiative and Usefulness
seem to play an important role in judgments our partici-
pants make about pursuing mashups. We also asked them
to rate the difficulty of creating a mashup, assuming that this
would be a variable related to their motivations for pursu-
ing mashups. However, this was not the case, as difficulty
did not appear to have a major effect on their decisions to
pursue mashups in the future.

This study resulted in numerous insights, but most impor-
tant was the concept of web-active end users. These users
are extremely active online and pursue all aspects of online
life. While this is a common quality among many college
students, the web-active user is motivated to take the addi-
tional step by finding better tools to support and enhance
their common activities. Moreover, not every web-active end
user is the same. When we compared those who had high
Technology Initiative to those with lower Technology Initia-
tive, we found that their interests diverged. Users with lower
initiative tended to describe social- and people-motivated
mashups. For example, one participant wanted a way to
bring together all of the different social networking services
she used into one interface. Another participant combined
pictures of his friends with famous quotes. High initiative
users focused on more complex, data-intensive mashups. For
example, using news articles as a reference point and in-
tegrating additional reference materials, such as Wikipedia
articles, other news sites, and video from YouTube. An-
other participant suggested incorporating product reviews,
and missing specs of products when browsing online retail-
ers. This reinforces and clarifies some of the details from the
prior study [10]. The types of mashups end users can easily
create are important for their initial perceptions of a technol-
ogy or tool. Being able to support all mashups equally may
not be as important as being able to support a specific set of
mashups. Focusing support on mashups that are clearly use-
ful to the end user will most likely encourage them to adopt
a tool.

A problem area for end user mashups was how end users
think about data. We asked them to naı̈vely describe the steps
needed to create a mashup. While most of the respondents
could generally describe how to gather data and what to dis-
play at the end, the integration of data was not well defined.
We decided to study this in more detail since it is the most
vital part of the mashup building process.

6. Yahoo! Pipes: Mashups for EUP
The process of building a mashup can be decomposed into
three stages: data gathering, data manipulation, and data pre-
sentation. End users can easily understand both gathering
and presentation; one assumes that to they would know what
data they want to mashup and the resulting visualization be-
fore approaching a mashup task. To examine data manipu-
lation in more detail, I interviewed 12 students who fit the
web-active end user program and also had them create the
mashup pictured in Figure 2 using Yahoo! Pipes. I chose
Pipes partially due to its focus on data integration, but also
because it is essentially a visual programming language. A
more detailed report of this work and the results have been
reported in [12]. I will briefly review it here.

I began by asking the participants to describe some of
the web sites they frequently visited. To assist them I pro-
vided five categories of information: News, sports scores,



Figure 2. Mashup of New York Times and Flickr using
Yahoo! Pipes

weather, shopping, and pictures. They were asked to come
up with places online they could find each and then if there
were any categories or websites that did not fit. For the most
part, users were able to come up with a wide variety of data
sources for each category. There were a total of 64 unique in-
formation sources. As we would expect, for each of the cate-
gories the most popular websites were also the ones men-
tioned the most by our group. For example, when think-
ing about shopping information the participants looked to
Amazon, and for sports they used the ESPN website. How-
ever there were many more obscure webpages mentioned. A
common theme in the responses were close connections to
local, real world locations. For instance one participant re-
cently moved and no longer had access to a physical copy of
her previous town newspaper, but she now she would visit
the newspaper’s website as a substitute. Websites for local
clothing and electronics stores were referred to as common
sources of shopping information. I purposely left out social
networking to see if the participants would mention the cate-
gory. All but one referenced social networking and Facebook
as one of the sites they spend most of their time on. The par-
ticipants cited portal services, like MSN, iGoogle, Yahoo,
and even Facebook as a common location for much of their
general information needs.

When thinking about combinations of data the partic-
ipants brought up a variety of examples. For example, one
participant suggested combining course listings and schedul-
ing with reviews from Rate My Professor. Interestingly,
there were few mentions of ideas involving maps and other
geographic data; only one participant mentioned location
based customizations. This is unexpected because of the
large number of mashups created thus far that have been
map-based. This points to certain discrepancies with the

tools being built. While expert programmers may concen-
trate on mapping-related mashups, the more naı̈ve and non-
programming users focus on other areas. For example, Shop-
ping and Picture based combinations were mentioned the
most during the interviews.

Finally, to gauge their understanding of the common un-
derlying data structures on the web, I tested each partici-
pant on their comprehension of XML. The reason for this
is to better gauge their understanding of the data they were
working with in a raw form. Would it be possible for users
with similar expertise to understand and then possibly work
with XML without much support. I found that in almost ev-
ery case the participants were able to identify the attributes
and content in the code. From their explanations, it seemed
that they used tags as a guide to understanding the content,
but then made qualify judgments by comparing the two. For
example, if a tag was marked “title” and then the content
was a garbled string, they would second guess themselves
and say “I think it’s a title [...]” but not be completely sure,
even though they correctly identified the title tag previously.
Also, the participants had a hard time understanding HTML
embedded into the XML. For example, “description” tags,
commonly used as a message body for RSS feeds, many
times contain links and images. The HTML representations
were often dismissed as being “some code”. Generally, the
participants were able to pick apart the XML and build an
understanding of the underlying data. This is promising be-
cause many of the currently available mashup tools, includ-
ing Yahoo! Pipes, hide the underlying data, claiming that it
is added complexity. But these results tell us otherwise. With
the proper scaffolding, a novice end user could use the un-
derlying data structures to make better connections between
different data sources.

Once they began thinking about different types of data
and combining data, I asked them to create a mashup using
the Pipes tool. They were given a short tutorial of the in-
terface and then 15 minutes to familiarize themselves with
the tool. I used a think-aloud protocol to get at the par-
ticipant’s thought processes while they worked with Pipes.
Their actions revealed a mismatch between the Pipes tool to
their mental models. Specifically, the names of each model
proved to be a major factor in how the end user approached
the mashup task. For instance, many users used the Fil-
ter module to take the functionality of the Loop module
in the mashup in Figure 2. Because theyre deci-sions were
solely based on their interpretation of the module name, Fil-
ter seemed like a way to “find something that is related to
whatever is on the [article] page”. Of course, computation-
ally filter actually removes unwanted items in the input feed.
This result is similar to prior studies of language use in pro-
gramming systems [6]. Given enough time, a user may be
able to master each module, but currently, they may not even
get that far.



7. Discussion
Our work thus far has focused on these Internet users and
their perceptions and use of information on the Web, specif-
ically focusing on mashups. From our surveys we realized
that mashups are not only for non-programmers, but also
those who are experienced developers. Dealing with the
myriad of APIs on the web is a test of patience. The lack
of adequate documentation, along with the dependency on
services beyond the developers control makes mashup de-
velopment quite difficult. Both non-programmers and de-
velopers must have a place to start, and as a relatively new
platform the Web poses added difficulty for those who want
to program for it. When we looked at end users specifically,
the characteristics of a population we call web-active users
play an important role. We believe that they are a popula-
tion of users that are motivated to take on more activities,
including even learning to build mashups, if they judge it to
be worth while.

A limitation of this work has always been the introduction
of the idea of mashups to our participants. It is extremely dif-
ficult to describe concepts to a person without giving exam-
ples and context. These examples in both our end user survey
and in the interview study are biased by this. It most likely
would be true that if we introduced a mapping example that
participants would think about location based mashup ideas.
However, given this possible source of bias, we were still
able to illicit many ideas that are unrelated to our initial in-
troduction. We believe that many of our results still provide
valuable ideas for developers.

From a tool developer’s prospective, it would make sense
build a better understanding of this user population and de-
sign tools that target their specific motivations. This could
include providing simple ways to visualize the data they
work with, or packaging information in such a way that is
engaging to them. There are currently a small number of
tools that really support end user programming on the web,
and even few for creating mashups. Tools like Yahoo! Pipes
and Microsoft Popfly use visual programming languages to
alleviate some of the initial learning curve of code. Using di-
rect manipulation seems to be an accepted method, but does
adding these extra layers of abstraction truly help the end
user. In particular, as our work has found, many times hid-
ing the underlying “code” may cause even more confusion.
From our work we can easily conclude that Pipes is not a
tool for non-programmers. The way in which the tool is or-
ganized and the modules named suggests that it was mostly
built simplify data aggregation for developers. For a less pro-
gramming savvy user to take advantage of Pipes he/she must
be able to specify actions in a programmatic way. This may
not be possible for this group of end users; there is a un-
derlying difference in the way in which programmers solve
problems.

From our work with mashups, we realize that the basic
concepts of this technology are not necessarily a new idea,

but the way in which developers integrate APIs and create
visualization is quite novel. As a result, even seasoned pro-
grammers must learn new techniques. To a greater extent,
end users must learn as well. The key difference here is that
programmers have already developed a baseline of what is
commonly called computational thinking [7]. It is this mind-
set that allows programmers to solve problems using pro-
gramming languages. Relating to our work, programmers
can decompose problems in a way that acceptable by com-
puter systems. While most EUP research focuses on low-
ering the skill boundary for end users by developing easier
to use tools or creating programming languages that better
match the mental models of the developer, it may be more
important to find ways to raise the basic level of computa-
tional thinking for end users.

Generally computational thinking is a term reserved for
educational domains, but I believe it would be useful when
thinking about end-user programming. End users must learn
additional skills when approaching new tools, regardless of
the activity. If this is the case, why not provide additional
support that teaches skills they can use in other situations?
However, a significant problem is that users must be mo-
tivated by their task enough to learn something new. Our
work has pointed to possible ways of engaging these users
by leveraging their interests and taking into consideration
existing activities. By continuing to build extremely simple
tools we perpetuate the expectation that everything must be
“easy”. In the long run, it may be more beneficial to encour-
age users to increase their computational skills.

8. Conclusion and Future Work
This work has highlighted some key areas that EUP research
is taking when working towards addressing end users prob-
lems. Great strides have been made to better understand end
user programming activities, and many tools have been cre-
ated to support the specific tasks of the end user that lever-
ages advanced and novel technologies. However, much of
the recent work in this area focuses on the building new
tools, but not realizing the needs of the end user. Rather than
concentrate on the tools and technologies surround the web,
we should seek better ways of engaging the user. It does not
matter how novel a tool may be, if there are no users then
there is no clear impact.

While usability is a concern, this work has also found that
there is very little emphasis on educating users as they con-
tinue to explore the web. The EUP tools that have been built
still require a programming or computational mindset. The
way in which the driving technologies operate will continue
to be based upon programming concepts. By supporting and
even encouraging users to take an additional step and pursue
a better understanding of these technologies would surely
help alleviate some of the skill barriers to programming.

Our next step is to broaden our prospective to look at the
process that users go through to gather information, integrate



it into a meaningful form. A survey study is currently being
conducted to investigate how web-active users mentally de-
compose their activities online. This is akin to creating step-
by-step instructions. This survey should allow us to better
understand how users think about the information they are
working with and how they naturally think about their in-
formation processes on the web. We hope to follow up the
survey with a paper prototyping task where the participants
will work with snippets of information and perform analy-
sis on them in order to accomplish a task. This method may
allow us to actually investigate their information integration
processes without the complexity of computer interfaces.
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