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Abstract—The tension between software architecture and
agility is not well understood by agile practitioners or re-
searchers. If an agile software team spends too little time
designing architecture up-front then the team faces increased
risk and higher chance of failure; if the team spends too much
time the delivery of value to the customer is delayed, and
responding to change can become extremely difficult. This paper
presents a grounded theory of agile architecture that describes
how agile software teams answer the question of how much up-
front architecture design effort is enough. This theory, based on
grounded theory research involving 44 participants, presents six
forces that affect the team’s context and five strategies that teams
use to help them determine how much effort they should put into
up-front design.

I. INTRODUCTION

Software architecture is the high-level structure and or-
ganisation of a software system [1]. Because architecture
defines system-level properties, it is difficult to change after
development has started [2], causing a conflict with agile
development’s central goal of better delivering value through
responding to change [3], [4].

To maximise agility, agile developers often avoid or min-
imise architectural planning [5], because architecture plan-
ning is often seen as delivering little immediate value to
the customer [6]. Too little planning however may lead to
an accidental architecture [7] that has not been carefully
thought through, and may lead to the team spending a lot
of time fixing architecture problems and not enough time
delivering functionality (value). An accidental architecture
can potentially lead to gradual failure of the project. On
the other hand too much architecture planning will at best
delay the start of development, and at worst lead to expensive
architectural rework if the requirements change significantly.
Up-front architecture design effort is therefore a trade-off
between the need for architectural support [8] and agility. This
conflict does not yet have a satisfactory solution [9].

Many agile methodologies recommend some architecture
planning [10], but there is little guidance as to which archi-
tecture decisions should be made up-front [6], and what factors
influence those decisions.

Many agile developers deal with this absence in guidance by
designing ‘just enough’ architecture up-front to enable them

to start development, with the rest being completed during
development as required [6]. How much is just enough de-
pends on context, which includes technical and environmental
factors such as the organisation and the domain [6], as well
as social factors [11] such as the background and experience
of the architects. A particular system may have more than one
architectural solution [12], [13], and two architects are likely
to produce different architectures for the same problem with
the same boundaries [11]. It is therefore difficult to determine
in advance how much ‘just enough’ is.

There has been little research on the relationship between
software architecture and agile development to date [14]. This
lack of research does not mean that it is not an important issue:
at the XP2010 conference, how much architectural effort to
expend was rated as the second-equal most burning question
facing agile practitioners [15].

This paper addresses this problem by presenting “a
grounded theory of agile architecture,” a high-level descriptive
theory that explains how teams determine how much archi-
tecture to design up-front. A team’s up-front effort depends
on five agile architecture strategies that a team may choose;
which strategies a team chooses depend on the context of the
team and the system being built. Context is characterised by

Fig. 1. The forces and strategies that comprise the theory of agile architecture



six forces that a team must consider when designing an agile
architecture. The forces and strategies are listed in figure 1.

This theory was derived using grounded theory, a systematic
and rigorous methodology [16] that allows researchers to
develop a substantive theory (based on data) that is a “formal,
testable explanation of some events that includes explanations
of how things relate to each other” [17]. The theory is more
than a description of experiences or perspectives [18] based
on a compilation of anecdotes, expert opinions and experience
reports: it is a well-codified and systematically-generated set
of propositions [19], [20].

This paper is based on research published in Waterman’s
PhD thesis [21].

The rest of this paper is as follows: section II defines
some of the terminology used in the paper, and section III
presents the research methodology. Section IV describes the
agile architecture forces, and section V describes the agile
architecture strategies. Section VI discusses the relationships
between the forces and the strategies, and the theory in context
of related work. Section VII discusses the limitations of the
theory. Finally, section VIII concludes the paper.

II. DEFINITIONS

We define software architecture as “the set of significant
decisions about the high level structure and the behaviour of
a system” [22], where ‘significant’ is measured by the cost of
change [2]. In other words, architecture comprises the planning
and design decisions that are made up-front because they are
difficult to change once development has started. Architecting
is the process of making architectural decisions [23], and
may include research, analysis, modelling, verification and
the creation of architectural artefacts. Architects make the
architectural decisions; in agile software development, this is
often the whole team through collaboration.

We define agility from a conceptual perspective, based on
an abridged version of Conboy’s definition [24]: “[Agility is] a
software development team’s ability to create change, respond
to change and learn from change so that it can better deliver
value.” Adolph used a similar definition [25]. This definition
avoids specifying particular methodologies and practices, and
refers simply to the team’s ability to deliver value more quickly
by responding to change and by improving its processes.

We define an agile architecture as an architecture that
satisfies the definition of agility by being able to be easily
modified in response to changing requirements, is tolerant of
change, and is incrementally and iteratively designed – the
product of an agile development process.

III. RESEARCH METHODOLOGY

This research used the grounded theory methodology [26].
Qualitative research methodologies such as grounded theory
are used to investigate people, interactions and processes,
and architecture is very dependent on the architects and
the development teams themselves. Qualitative research is
generally inductive – it develops theory from the research,
unlike deductive research which aims to prove (or disprove) a

hypothesis or hypotheses. Because of the scarcity of literature
on the relationship between architecture and agile methods
[14], an inductive strategy that develops a new hypothesis was
more suitable for this research. We selected grounded theory
because it allowed us to develop a high-level theory based on
a broad range of participants.

A. Data Collection

We collected data primarily through face-to-face semi-
structured interviews with agile practitioners who design or use
architecture, or who are otherwise architecture stakeholders.
The average interview length was 70 minutes.

We asked participants to select a project that they had been
involved with to discuss during the interview. Types of projects
varied hugely, from green field to system redevelopment,
from standalone systems to multi-team enterprise systems,
and from start-up service providers and ongoing mass market
product development to bespoke business systems. Systems
varied from highly mission-critical systems such as flight
control and health record management, to business critical
systems such as banking and retail, through to largely non-
critical administration and entertainment broadcast systems.
We also obtained documentation, such as software architecture
documents, which were able to confirm the decisions made and
why they were made, and copies of architecture models, which
provided overviews of the architectures. Additional data in the
form of discussions by email and telephone clarified earlier
interviews and documentation where necessary.

B. Research Participants

We interviewed 44 participants in 37 interviews. Participants
were gathered through industry contacts, agile interest groups
and through direct contact with relevant organisations. Almost
all participants were very experienced architects, senior devel-
opers, team leaders and development managers with at least
six years’ experience (twenty years was not uncommon), and
most were also very experienced in agile development. Organ-
isation types included independent software vendors (ISVs),
government departments, mass-market product developers and
sole contractors. Different types of agile development were
included, with most participants using Scrum; other methods
included XP, Lean and bespoke methods. Most participants
adapted their processes to some extent to suit their team
or customer’s requirements. The inclusion of this range of
participants and systems enabled the research to include the
effects of different factors on architecture decision making.

To maintain confidentiality, we refer to the participants
using labels P1 to P37, reflecting the interview numbers.
Where there are several participants in a single interview, we
give the labels alphabetic suffixes, such as P23a, P23b and
P23c. A summary of participants and their projects is listed
in Table I on the following page.

C. Data Analysis

The first step of grounded theory data analysis is open
coding, which can begin as soon as the first data are obtained.



TABLE I
SUMMARY OF PARTICIPANT DETAILS

Role Experience in role Organisation type Domain Agile methods Team size or no. of teams System description

P1 Developer > 15 years Government agency Health Single developer 1 team member Web-based, .NET
P2 Developer/ architect 20 years ISV E-commerce Scrum 3 team members .NET, cloud-based
P3 Devopment manager 6 years (agile) ISV Personnel Scrum 3 teams Web-based, .NET,
P4 Director of architecture > 20 years ISV Digital archiving Scrum 5 developers Java, rich client, suite of standalone tools
P5 Coach/dev. manager 20 years Start-up Entertainment Scrum/ kanban Various Various
P6 Man. Dir./ lead dev. 20 years Service provider Telecoms Iterative 1–3 developers Suite of standalone applications
P7 Business analyst 5–6 years ISV Telecoms Scrum 12 team members Suite of web-based services
P8 Lead developer 6 years ISV Digital archiving Scrum 4–14 team members Ruby on Rails, Java back-end
P9 Developer 40 years Financial services Telecoms Bespoke 2–24 team members Web-based system
P10 Coach 25 years Hardware and services Transport Scrum/XP 500–800 developers Large distributed web-based system
P11a Development manager 10 years Government Government services Scrum 8 team members Web-based, .NET
P11b Architect 15+ years
P12 Senior developer 10 years Financial services Financial services Scrum 6–7 developers Web-based, .NET
P13 Architect 16 years ISV Medical Scrum 12 team members Monolithic .NET app
P14 Architect 10 years ISV Animal health Scrum 6–8 team members .NET, large GIS component
P15 Customer 4 years Start-up service provider Retail (electricity) Scrum 7 developers Ruby On Rails
P16a CEO/chief engineer > 10 years ISV Retail (health) XP 5 team members Ruby On RailsP16b Head of engineering 10 years
P17 Manager/coach > 10 years Government Statistics Scrum 6 dev + admin Web-based, PHP using DAO pattern
P18 Dev. manager 10 years Multinat. hardware vendor Health Scrum 15 team members Web-based, Java platform
P19 Dev. manager 6–7 years Start-up service provider Retail (travel) Lean 4 developers PHP/Symfony, Javascript/Backbone
P20 Coach and trainer 20 years Independent consultant N/A Scrum N/A N/A
P21a–
P21d

Manager/coach, architect,
team leader, team leader

20 years, N/A, N/A, N/A ISV Retail (publishing) Scrum 3 teams; 40 total .NET, Websphere Commerce, SAP,
others.

P22 Senior manager 14 years ISV Contact
management/marketing

Scrum/XP More than 40 total .NET

P23a-
P23c

Engineering manager,
product lead, team lead

N/A, 6 years, N/A Service provider Pharmaceutical Bespoke 3 teams Various web based, client/server

P24 Customer > 10 years Start-up service provider Retail (electricity) Scrum 7 developers Ruby On Rails web applications
P25 Team lead 10 years ISV Banking Scrum 1 team .NET, single tier web
P26 Team lead 8 years ISV Water management Scrum 8 team members .NET, web based, 7 tier
P27 CEO/coach 16 years Start-up service provider Retail (electricity) Scrum 7 developers Ruby On Rails
P28 Technical lead 13 years Service provider Broadcasting Scrum 42 team members Python with Django, CMSs for multiple

websites
P29 Development manager 20 years Banking Banking Kanban 20 team members Web based, interface to mainframe
P30 Consulting architect 25 years Service provider Telecoms Scrum 7 team members Python with Django and Twisted, NoSQL
P31 Enterprise architect 25 years Government Transport Bespoke 7 team members Web services, SOA using .NET/WCF
P32 Software dev. director > 15 years ISV Government FDD/kanban N/A N/A
P33 Product architecture team

leader
15 years Medical service providers Medical Kanban/Scrum One team per product

stream
Multiple product streams; SOA

P34 Development unit manager 15 years
P35 Design Engineer N/A
P36 Development unit manager 12 years
P37 Consultant/ freelance

software developer/architect
13 years Service provider Broadcasting Bespoke/XP 15–16 team members Java/embedded

In open coding, phenomena in the data are methodically identi-
fied and labelled using a code that summarises the meaning of
the data [27]. As open coding progresses, emerging codes are
compared with earlier codes; codes with related themes are
aggregated into higher levels of abstraction called concepts.
This process, called constant comparison [28], continues at
the concept level, with similar concepts being aggregated into
a third level of abstraction called categories. Categories are
the highest conceptual elements of grounded theory analysis;
a grounded theory research project may have hundreds of
different codes but will typically have no more than four or
five categories [20]. The relationships between the categories
are analysed and focused using selective coding; a dominant
category emerges as the core category, which is central to the
emerging theory. This theory is a “formal, testable explanation
of some events that includes explanations of how things relate
to one another” [17]. Throughout the analysis process, memos
– free form notes ranging anywhere in size from a sentence
to several pages – are written to record thoughts and ideas
about developing relationships between codes, concepts and
categories, and to aid the development of the theory [29].

Grounded theory uses iteration to ensure a wide coverage of
the factors that may affect the emerging theory [27]: later data
collection is dependent on the results of earlier analysis. Data
collection and analysis continue until saturation is reached,
which occurs when no new insights are learned, and all

Fig. 2. An example of a concept emerging from its codes

variations and negative cases can be explained [30].
We can illustrate the grounded theory process with an

example from this research. One participant commented that
they had regular tax law changes that meant regular changes
to their requirements:

“You’ve got your taxation changes coming in on specific
dates throughout the year, so those are generally around
our release dates, because we have to stay compliant with
that.” (P3, development manager)

We coded this as ‘having regulatory changes.’
Similarly another participant commented on the pharmaceu-



tical regulations that affected his company’s product:
“The regulations keep changing every six months.” (P23,
senior manager)

We also coded this as ‘having regulatory changes.’ Codes that
had similar themes to this example included ‘having changes
in usage patterns or system load,’ ‘requirements evolving’
and ‘understanding of requirements changing.’ We combined
these similar codes into a concept called ‘having unstable
requirements,’ as shown in figure 2.

A full discussion of the methodology is presented in Wa-
terman’s PhD thesis [21].

IV. AGILE ARCHITECTURE FORCES

This research has found six forces that make up the team’s
and the system’s context, the set of conditions that can affect
how the team designs the agile architecture. The six forces are
F1 (REQUIREMENTS INSTABILITY), F2 (TECHNICAL RISK),
F3 (EARLY VALUE), F4 (TEAM CULTURE), F5 (CUSTOMER
AGILITY) and F6 (EXPERIENCE).

F1: Requirements Instability

F1 (REQUIREMENTS INSTABILITY) refers to the effect that
unstable requirements have on up-front planning. Being able
to respond to changing requirements is one of the underlying
values of the Agile Manifesto [31] and is central to our
conceptual definition of agility (see section II). All participants
in this research reported unstable requirements to some extent,
whether they were part of team working on a relatively stable
redevelopment project or whether they were part of a start-up
in a highly dynamic environment:

“Even within a week there’s a lot of fluidity about [the
customer].” (P27, CEO/founder/agile coach)
Unstable requirements are caused by incomplete require-

ments and by changing requirements. Incomplete requirements
are caused by the customer not initially knowing what they
want, or coming up with new ideas about what they want
during development. In some instances requirements are fairly
stable, but it is not possible for the team to develop a
complete understanding of those requirements up-front; a
full understanding comes later during development. As an
example, P13’s team was replacing an old system with a
new system that was functionally very similar. They were not
able to understand the intricacies of the system before starting
development:

“I don’t know if the actual requirements ever changed but
our understanding of them changed enormously.” (P13,
architect)
Requirements may also change frequently during develop-

ment, due to the customer changing their mind about what
they have already requested or by changing usage patterns.
Often it is impossible for a team or their customer to know
how their system will be used once it goes live; if the system
is commercially successful, usage is likely to be higher than
anticipated, leading to the performance suffering unless the

system is redesigned to ensure it can maintain the required
performance levels:

“[Planning up-front] assumes you know to begin with
the usage patterns that your system is going to be put
through... and you don’t. You have to play it out in real
life.” (P10, coach)
In a business environment, any delays caused by detailed

requirements gathering and planning increase the chance that
requirements will change:

“[If you put too much detail into your requirements]
there’s a fat chance that by the time you get around
to starting the work your world has changed.” (P3,
development manager)
Teams therefore only define the high-level requirements

up-front. Detailed requirements are gathered as needed; any
requirements not immediately being implemented are left
undefined, because any additional time spent on requirements
gathering is wasted when requirements change. By avoiding
detailed requirements gathering, analysis and architecture de-
sign, software engineers can start development and demon-
strating the product to the customer early in development, and
therefore can get feedback from the customer early.

F2: Technical Risk

F2 (TECHNICAL RISK) describes the effect that exposure to
potentially negative outcome has on a team’s up-front effort.
Risk is caused by complex architecture, as described by the
participants:

“Complexity in terms of how complicated the code and
the solution underneath it are going to be does influence
how much planning we’re going to do.” (P33, product
architecture team leader)
Participants described architecture complexity as being

caused by one or more of three things: challenging or de-
manding architecturally significant requirements (ASRs), by
having many integration points with other systems, and by
involving legacy systems. ASRs are the requirements that
drive and constrain a system’s architecture [32], and consist
primarily of the qualities, or non-functional requirements, such
as performance, security and reliability. Challenging ASRs
are difficult to design for, and may lead to many trade-offs.
Participants described how challenging requirements lead to a
complex architecture:

“Highly demanding non-functional requirements are in
my mind a direct driver of complexity and will require
more effort to address, particularly as there are trade-
offs between them – for example, performance versus
security.” (P31, enterprise architect)
Legacy systems are those that are no longer being ‘en-

gineered’ but rather are simply patched or hacked as re-
quirements change [33], [34]. Legacy systems have increased
complexity:

“Systems become more complex with age. Just the burden
of code – entropy over time and all that.” (P32, software
development director)



Good engineering practices such as simplicity, modularity and
high cohesion are eroded, and continuing to develop – or
even interfacing with – these entropic legacy systems are a
source of complexity that requires more up-front exploration
or experimentation to ensure that integration succeeds.

Participants also identified integration points, or interfaces
to external systems, as a major source of complexity in the
systems being developed, particularly when the other systems
are legacy or are built from different technologies. Integration
with other systems require data and communications to be
mapped between the systems, adding to the up-front effort to
ensure integration is possible with the technologies being used.
For example:

“Today’s systems tend to be more interconnected – they
have a lot more interfaces to external systems than older
systems which are typically standalone. They have a lot
higher level of complexity for the same sized system.”
(P14, solutions architect)
Teams must reduce the risk to a suitable level. The amount

of risk reduction, and hence architecture effort, depends on
the team’s and the customer’s appetite for risk.

While complexity is a direct cause of risk, size is not if it
does not also increase complexity:

“If we have size that just extends the time, it’s of
little concern to us [architecturally]. It’s just a slightly
larger backlog, management overhead.” (P32, software
development director)
A team mitigates risk through using the strategy S2

(ADDRESS RISK), described in section V.

F3: Early Value

F3 (EARLY VALUE) refers to a customer’s need to gain
value from a system or product being built (rather than
simply provide feedback) before all functionality has been
implemented, perhaps in the form of a minimum viable product
[35]. Early value is frequently required by businesses operating
in a dynamic commercial environment who cannot wait for the
full product to be developed:

“Today they’ve got an opportunity for a business idea
that might make them some money – if they don’t pounce
on it it’s gone regardless of how clever they think they
are.” (P26, team lead)
Teams that deliver early value must reduce the time to the

first release by spending less time on up-front architecture
design. They achieve this by reducing the planning horizon –
how far ahead the team considers (high level) requirements for
the purpose of architecture planning. In its extreme, teams do
no planning ahead, using S3 (EMERGENT ARCHITECTURE),
described in section V, to start delivering value as soon as
possible.

No up-front design increases the overall effort because the
architecture must be evolved with each iteration, and hence
cost of development increases. With each iteration, the team
has to consider if the existing architecture is suitable for the
current set of requirements being implemented; if it is not, then

the architecture must be redesigned. Overall, there is likely to
be more redesign than if a longer planning horizon is used with
more initial design. For example, as the product grows and the
user base grows, the architecture that was designed for day one
will no longer be suitable and will need to be redesigned –
a redesign that may not have occurred with a larger planning
horizon. While “cost is always a concern” (P10), participants
accepted this increase in cost, because it occurs later when
the customer has cash flow from early adopters to pay for that
cost:

“Maybe it’ll cost a lot more to replace it [the architec-
ture] a year later, but you already have some business...”
(P22, senior manager)

and
“If we needed to go to a million [end users] [...] we’d
have to rewrite swathes of the software – you absolutely
would have to. But it’s a problem you can have once
you’ve got a million users and you’ve got a million users
worth of revenue.” (P27, CEO/agile coach)

– particularly important for start-ups with limited cash.

F4: Team Culture

F4 (TEAM CULTURE) describes the effect that a team’s
culture has on its agility and the effort it puts into up-front
planning. A culture that is people-focused and collaborative
is a very important factor in a team’s ability to communicate.
For example:

“There was a very good culture; [...] we could be full
and frank in our discussions and planning and nobody
would get too offended.” (P12, senior developer)
Many participants also commented on the importance of

trust in an agile culture:
“And the most important thing when it comes to agile is
trust.” (P15, customer)
A team without a trusting people-focused and collaborative

culture has to rely on documentation for communication and
formal plans, and hence requires more up-front effort to guide
development.

The size of the team affects its ability to communicate; small
teams are able to collaborate better, while large teams require
more structure and more up-front planning, and hence are less
agile:

“And the team has been going, ‘[we’re] too big, can’t
communicate, hate the meetings.’ [...] It definitely takes
more effort and negotiation in iteration zero. I don’t think
it changed the complexity of the architecture or the way
we attack the architecture – it’s just comms time.” (P29,
development manager)
The agile experience of team members also affects up-front

planning, because a people-focused and collaborative culture
does not come into being instantaneously – it comes with
experience and practice as the team members become more
experienced working together:

“It [agile] is a continuous journey, people have to get
accustomed to the culture.” (P20, coach and trainer)



A team new to agile – particularly if it consists of devel-
opers from a traditional plan-driven background – is likely
to struggle to be successful without a predefined architectural
plan, but as the team becomes more experienced and develops
an agile mind-set, it will become more comfortable working
without the guidance of up-front plans:

[Inexperienced developers] will find it very difficult to
start without having a concrete design in place. The
culture will be different. They always want to follow what
is already laid out. [...] An experienced set of developers
or members in the team will make it easier to actually
[form and evolve] the design.” (P22, senior manager)

F5: Customer Agility
F5 (CUSTOMER AGILITY) describes the culture of the

customer’s organisation and the huge impact that it has on
the amount of up-front architecture design a team does. A
customer must have an agile culture that is similar to the
team’s culture, whether the team is in-house or an ISV
(independent software vendor), for the team to be truly agile.
A highly-agile team will not fit in well with a heavyweight
process-oriented organisation that prefers planning and formal
communication.

Like trust within a team, trust between the company and
the team is important to help the company become part of the
team and break down formal processes, improving agility:

“We’ve become the same team. That removes a lot of the
tension, streamlines the process massively. [...] What we
started finding is that our customers then start breaking
down their own processes, and start making processes
[agile] for us.” (P27, CEO/coach)

Highly agile customers do not require their development teams
to produce excessive documentation or plans, and do not need
fixed budget approval for fixed scope delivery.

Conversely, it is difficult for an agile team to operate in
a non-agile process-driven environment: a customer that does
not buy in to the agile mind set greatly reduces the team’s
ability to be agile. This can happen in many ways. For
example, a non-agile customer that prefers a ‘command and
control’ management style will impose their own processes
upon the team.

P32 commented that some of their planning was simply
because their customer expected it and preferred to see the
developers perform traditional planning:

“We have learned that a lot of the planning we’ve done
up-front has been more a planning art or a planning play
or some sort of production because there’s some air of
respectability around it. It’s necessary – people demand
it.” (P32, software development director)
Another way in which a non-agile customer can negatively

affect a team’s agility is by taking on a ‘benediction’ role,
in which it ‘blesses’ or approves the team’s architectural
decisions prior to development. A customer may want to
ensure the decisions are compatible with a larger system, with
company policy, or they may simply want comfort in the
quality of the design decisions.

Many non-agile customers prefer the accountability of a
fixed price contract with a fixed scope and fixed delivery dates
– perhaps with penalties if milestones are not met:

“They’ve mandated quite a draconian liquidated dam-
ages kind of risk contract, about [what happens] if you
miss a milestone.” (P32, software development director)

For a team, these contracts mean investing significant amounts
of time up-front to map out in detail how much work is
required to deliver the customer’s list of requirements.

Other reasons for a customer not buying into the agile mind
set include needing advance budget approval from their CFO
or Board, for which they need a fixed scope, and simply being
unable to commit to ongoing time with the development team.
Agile developers solve this latter problem by spending more
time planning to compensate for the lack of feedback, and
hence are less agile.

F6: Experience

F6 (EXPERIENCE) describes the impact that an experienced
architect’s tacit knowledge and implicit decision-making abil-
ity has on the time that an agile team spends on up-front
design. Experienced architects have breadth of knowledge;
they are more likely to be aware of suitable options for
implementing a solution and better understand what will work
and what will not. Hence they can make better decisions:

“Figuring out whether there’s something out there ap-
propriate that already does it – that sort of thing – that’s
where experience and knowledge really come into play.”
(P36, development unit manager)

While generally important for all software development
methods, experience is more important in agile development
because the tacit knowledge and implicit decision-making that
come with experience supports agile development’s reduced
process and documentation, and reduces the up-front effort:

“You implement certain patterns without thinking [...]
you’ve done this kind of pattern for solving this kind of
a problem, without even thinking that this is the way that
you are going.” (P16b, head of engineering)

while inexperienced architects rely more on explicit decisions
that are written down and which need more effort in the form
of proofs of concept, experiments (spikes) and research.

It is also important for developers to know the technology
being used. Knowledge or experience in the technology helps
the team to speed up design and avoid the technology’s
weaknesses:

“The architect we had working on this worked on another
project or two using this framework, plus also other
portal ones, and has definite opinions on pitfalls to
avoid.” (P7, business analyst)

If a team does not have the required experience, they may
have to gain that knowledge through research, or they may
bring in someone with suitable experience to join the team.



V. AGILE ARCHITECTURE STRATEGIES

The theory of agile architecture consists of six strategies that
teams may choose from in response to the forces described
above, and which help the teams determine how much archi-
tecture to design up-front. The strategies are S1 (RESPOND
TO CHANGE), S2 (ADDRESS RISK), S3 (EMERGENT ARCHI-
TECTURE), S4 (BIG DESIGN UP-FRONT) and S5 (USE FRAME-
WORKS AND TEMPLATE ARCHITECTURES).

S1: Respond to Change

A team’s ability to use S1 (RESPOND TO CHANGE) is
directly related to how agile it is. S1 increases the architec-
ture’s agility by increasing its modifiability and its tolerance
of change, and allows the team to ensure the architecture
continuously represents the best solution to the problem as
it evolves:

“The key thing is [the architecture] is not going to be
frozen. It’s not going to be documented and put it in a
glass case and hung on the wall and [we] say, ‘that’s the
architecture, let’s look at it and keep developing’ – no,
that’s not it.” (P22, senior manager)

Teams proactively review their architecture to ensure it stays
up to date:

“...so it’s very much evolving and living with the system
in response to, what have we learned, what are the things
we need to do now?” (P10, coach)

Agile teams use S1 because of F1 (REQUIREMENTS INSTA-
BILITY). There are five tactics that teams can use to implement
the strategy and design an agile architecture: keep designs
simple, prove the architecture with code iteratively, use good
design practices, delay decision-making, and plan for options.

Keeping designs simple means only designing for what is
immediately required: no gold plating and no designing for
what might be required or for what can be deferred. Proving
the architecture with code iteratively means testing a design
by building it and testing it in real life rather than through
up-front analysis, and refining the design if it proves to be
unsuitable. This tactic can be used once development has
started. Using good design practices, such as separation of
concerns, is important in all development whether agile or
not, but is particularly important in agile development because
it makes it easier to modify the architecture as requirements
evolve. Delaying decision-making means not making architec-
ture decisions too early; waiting until sufficient information on
the requirements is known so that there is less likelihood of the
decisions needing to be changed. Planning for options means
building in generality and avoiding making decisions that are
unnecessarily constrained and which may close off possible
future requirements without significant refactoring.

Three of these tactics, keeping the design simple, proving
the architecture with code iteratively and following good
design practices, increase the modifiability of the architecture
so that when requirements change or become known the
architecture can be easily updated. The other two tactics,

delaying decisions and planning for options, increase the ar-
chitecture’s tolerance of uncertainty (its resilience to change),
so that any changes to the requirements have less impact
on the architecture. Keeping the design simple, proving the
architecture with code and delaying decisions all reduce up-
front effort. Following good design practices and planning for
options may slightly increase the up-front architecture effort,
but will most likely decrease overall effort. The tactics are
summarised in Table II.

TABLE II
A COMPARISON OF THE ‘RESPOND TO CHANGE’ TACTICS

Tactic
Impact on
responsiveness
to change

Reduces
up-
front
effort?

Keep designs simple Increases modifiability Yes

Prove the architecture
with code iteratively

Increases modifiability Yes

Use good design practices Increases modifiability No

Delay decision making Increases tolerance of change Yes

Plan for options Increases tolerance of change No

S2: Address Risk
S2 (ADDRESS RISK) reduces the impact of risk before it

causes problems, and is usually done up-front, particularly for
risk relating to system-wide decisions (for example, risk in
selecting the technology stack or top-level styles). Using S2,
a team designs the architecture in sufficient detail that it is
comfortable that it is actually possible to build the system
with the required ASRs with a satisfactory level of risk:

“That’s essentially what you’re doing in the technical
design/planning phase, you’re trying to reduce the risk
of the whole thing going off the rails [...] It’s very much
a risk-based process.” (P36, development unit manager)
More TECHNICAL RISK (F2) means more up-front architec-

ture design is required, meaning the team is less able to use S1;
to reduce risk, a team must sacrifice some of the team’s ability
to respond to change. The team can find a balance between
S1 and S2 by doing sufficient up-front design to reduce risk to
a satisfactory level, and delaying decisions where the impact
of risk is low. The higher the impact of the risk, the more
important it is to mitigate that risk early. For example, P33–
P36’s medical system had clinical and security risks that meant
the design had to undergo additional architectural scrutiny:

“Anything that is deemed to relate to either a clinical
risk or a security risk is actually assessed by a separate
independent team, who will tell you how bad it [the risk]
is.” (P16a, CEO/chief engineer)

while P2’s customer was willing to risk a small financial loss
in certain circumstances to get a cheaper system with less
planning:

“The customer has said to us he is quite willing to
trade the risk of accidentally redeeming the same voucher



twice, once in a blue moon [...] so if two different people
in different geographies within a tenth of a second of each
other try to redeem the same voucher there’s lowish odds
that they’ll redeem it twice.” (P2, developer/architect)
Teams can reduce risk through the use of research, mod-

elling and analysis, performing experiments (spikes) or by
building a ‘walking skeleton’ [36] of the system.

S3: Emergent Architecture

S3 (EMERGENT ARCHITECTURE) produces an architecture
in which the team makes only the minimum architecture
decisions up-front, such as selecting the technology stack and
the highest level architectural styles and patterns. In some
instances these minimum decisions will be implicit or will
have already been made (and can therefore be considered as
constraints), in which case the architecture is totally emergent.

When using S3, the team only considers the requirements
that are immediately needed for its design, ignoring even high-
level requirements that are to be implemented in the longer
term. S3 helps ensure the design is the simplest it can be, and
the product being built can be released to market as quickly
as possible, hence satisfying a need for EARLY VALUE (F3).
For example, P29 looked no further than a few weeks ahead:

“We’re doing bugger all [practically no up-front design]
actually. Most of the time we’re working a couple of
iterations ahead, we’re looking at the design, things that
might have to go through to committee, so we tend not
to plan a year or two out – we’re planning a few weeks
out.” (P29, development manager)
S3 is likely to be used when developing a minimum viable

product, or MVP (see F3). If the system has demanding
architecturally significant requirements (ASRs) or unique re-
quirements, it may need a more complex solution that requires
bespoke components or multiple frameworks, and more up-
front design to address risk (S2). Hence F2 precludes an
emergent design.

S4: Big Design Up-Front

S4 (BIG DESIGN UP-FRONT) requires that the team acquires
a full set of requirements and completes a full architecture
design before development starts. There are no emergent
design decisions, although the architecture may evolve during
development. S4 is undesirable in agile development because
it reduces the architecture’s ability to use S1 (RESPOND TO
CHANGE) by increasing the time to the first opportunity for
feedback, increasing the chance that decisions will need to be
changed later, and increasing the chance of over-engineering.

While S4 may be considered the case of addressing risk
(S2) taken to the extreme, in reality the use of S4 is driven
primarily by an absence of CUSTOMER AGILITY (F5) rather
than the presence of TECHNICAL RISK (F2):

“There’s a definite need to estimate [the total cost] and
there’s a definite need to give confidence on the func-
tional scope at a big level.” (P32, software development
director)

The up-front design in S4 is sufficient to satisfy the non-
agile customer: either sufficient to prove that the team knows
how to solve the problem before starting, sufficient that the
team can estimate the cost of the system for the given
requirements for a competitive tender, or sufficient that they
are able to complete the design without ongoing interaction
with their customer:

“There’s a definite need to estimate and there’s a definite
need to give confidence on the functional scope at a big
level.” (P32, software development director)
While the team using S4 cannot fully implement S1 – for

example, they cannot use the ‘delay decisions’ tactic – they
may be able to use other S1 tactics, such as good design
practices and planning for options so that they can still evolve
their architecture as requirements change. Not being able to
delay decisions, however, will compromise their ability to be
agile:

“So if we’re going to have to do a heavy architecture
which plans for a year or two or five years into the future
on every one of those experiments, we’re screwed. We
cannot be agile.” (P29, development manager)
Larger independent software vendors (ISVs) often use S4

because their customers are more likely to be larger process-
driven organisations who require more financial accountability.
Larger ISVs therefore often struggle to become as agile as
smaller organisations.

S5: Using Frameworks and Template Architectures

S5 (USE FRAMEWORKS AND TEMPLATE ARCHITECTURES)
is the use of software frameworks, and template and reference
architectures sourced from particular framework vendors for
use with those frameworks. Frameworks such as .NET, Hiber-
nate and Ruby on Rails include default architectural patterns
which constrain the systems to these patterns.

S4 provides the benefit of standard solutions to standard
problems, which means that software engineers do not need to
make as many architectural decisions, and can greatly reduce
the effort required to design a system and get it up and running:

“So we don’t have architectural discussions – we don’t
need to – the problem’s been solved [in the framework].
Don’t try to solve it again. So we have very, very little
discussion.” (P27, CEO/coach)
Frameworks – particularly those that follow the ‘convention

over configuration’ paradigm – also greatly reduce the com-
plexity of the architecture because many of the architectural
decisions are embedded in the framework, and hence architec-
tural changes can be made with a lot less effort. What used
to be considered architecture decisions in the past can now
sometimes be considered design (non-architecture) decisions:

“What used to be architectural decisions ten years ago
can now almost be considered design decisions because
the tools allow you to change these things more easily.”
(P4, director of architecture)

which means that fewer decisions have to be set in stone:



Fig. 3. The relationships between the forces and strategies. The rectangular boxes represent forces, and the round-cornered boxes strategies. Arrows represent
dependencies or causal relationships: a change in the independent force or strategy causes either a positive change (solid line) or a negative change (dashed
line) in the dependent force or strategy. A dotted line represents a trigger dependence: the presence of the force is a trigger for the corresponding strategy.
The symbol ⊕ represents mutual exclusion.

“Those [structural] decisions can be very emergent
nowadays; I don’t think they’re nearly as intractable.”
(P29, development manager)
While frameworks and templates are hugely beneficial to

all development methods, the ability to change architecture
decisions more easily is most useful to agile methods.

Despite their immense importance and ubiquity, teams must
be aware that frameworks cannot always provide a complete
solution. If the problem is not standard, if the requirements are
critical and the required architecture is sufficiently complex
or unique, there may be no suitable frameworks or existing
libraries that a team can use to implement a design, either
as a whole or in part. In these situations a team needs to
design and build bespoke components or libraries and, for
those components, miss out on the benefits that frameworks
can provide. Having to design bespoke components increases
the complexity of the architecture decisions that need to be
made and increases the technical risk – and hence increases
the use of S2 (ADDRESS RISK). S5 can be used at the same
time as any of the other strategies, S1–S4.

VI. DISCUSSION

A. Relationships Between Forces and Strategies

Figure 3 shows the relationships between the forces and the
strategies. A team’s use of S1 (RESPOND TO CHANGE) is trig-
gered by the presence of F1 (REQUIREMENTS INSTABILITY).
A team’s agility, and thus its ability to use the tactics of S1, is
increased by F4 (TEAM CULTURE), F5 (CUSTOMER AGILITY)

and F6 (EXPERIENCE). Agility is not directly affected by F1;
rather, less stability may motivate the team to improve its
agility through improving F4, F5 and F6 so that it is better
able to respond to change.

S1 is in tension with S2 (ADDRESS RISK), which must be
used to address F2 (TECHNICAL RISK), and hence S1 and
S2 must be in balance. An extremely agile team that does not
need to use S2 can, when triggered by F3 (the need for EARLY
VALUE), reduce its up-front effort to the point where it is using
S3 (EMERGENT ARCHITECTURE). On the other hand, a team
with low levels of F4, F5 and F6 may have to use S4 (BIG
DESIGN UP-FRONT), which will reduce its ability to use S1.

S5 (USE FRAMEWORKS AND TEMPLATE ARCHITECTURES)
can be used to significantly reduce development and design
effort; in particular it significantly reduces risk and up-front
effort for standard problems. A team successfully using S3
would typically be using S5 to build a low risk system.

B. Relationships With Related Work

Abrahamsson, Ali Babar and Kruchten listed eight factors
that affect up-front architecture design [6]; one of these is
rate of change (of requirements), which corresponds to F1
(REQUIREMENTS INSTABILITY). This research, however, has
found that F1 does not affect the team’s up-front design effort;
rather, the reverse is true: the team’s agility, and thus its
ability to use S1 (RESPOND TO CHANGE), impacts its ability
to reduce up-front effort and its ability to respond to unstable
requirements.



F2 (TECHNICAL RISK) is caused by complexity, and causes
a team to use S2 (ADDRESS RISK), increasing up-front effort.
Abrahamsson et al. identified size as a factor that affects up-
front design [6]. This research has found that size is not a
direct factor in up-front effort; rather, complexity is, although
size is an attribute of complexity [37]. Size is possibly
considered a proxy for complexity. Abrahamsson et al. listed
three other factors that can affect F2 and hence S2: stable
architecture, which is how well defined the architecture can be
at the start of development, age of system, which is reflected in
the legacy component of F2, and criticality, which affects the
customer and team’s tolerance of risk [6]. Fairbanks proposed
a non-agile-specific method using only risk to determine which
architecture decisions should be made up-front [13]. Boehm
and Turner also discussed up-front architecture design being
used to reduce risk [38]. In an interview the lead for the NASA
software architecture review board described spending more
effort on areas where there are more challenging ASRs and
hence more risk [39]. We explored complexity and risk and
its impact on up-front effort in an earlier paper [40].

F3 (EARLY VALUE) is a trigger for S3 (EMERGENT ARCHI-
TECTURE). Another factor suggested by Abrahamsson et al.
as affecting up-front design effort was the business model [6],
of which the customer’s need for F3 is a part. We described
the effects of early value in an earlier paper [40].

F4 (TEAM CULTURE) lies at the heart of agile methodolo-
gies. A team culture that is people-focused and collaborative
greatly reduces the time required to relay information [41] and
hence reduces the feedback cycle. A team with a highly agile
culture has team members who are physically close together,
are trusting and amicable, and use face-to-face communication
instead of written documentation [41]. Abrahamsson et al.’s
team distribution factor affects the team’s ability to commu-
nicate [6]. The importance of team culture on agility is well
recognised in the literature [41], [38], [42], as is trust [41],
[43], [44].

F5 (CUSTOMER AGILITY) has similar effects to Abrahams-
son et al.’s business model and governance factors [6], which
both impact the customer. Small organisations are often more
able to provide an agile environment, while large organisations
often prefer heavy-weight processes and are non-learning [45],
[46], preferring extensive planning and formal communication
[41]. Hence large organisations are often not very agile.

F6 (EXPERIENCE) is important in agile methodologies [38],
as it is in other methodologies [47]. Dreyfus and Dreyfus
explained that as a learner moves from being a novice to
becoming a master, decision-making changes from requiring
analysis to being intuitive [48] which speeds up the decision-
making process and hence increases agility.

Kruchten, Obbink and Stafford called frameworks pre-
cooked architectures [1] because much the architecture is
defined within the framework. Mirakhorli and Cleland-Huang
also noted the benefits of reference architectures [39]. The use
of frameworks and reference architectures, corresponding to
S5 (USE FRAMEWORKS AND TEMPLATE ARCHITECTURES),
make agile development more effective because they simplify

the design and reduce the architectural (and development)
effort required [40], [49]. This simplified design and reduced
effort increases the team’s ability to use S1 (RESPOND TO
CHANGE), reduces F2 (TECHNICAL RISK), and hence reduces
the need to use S2 (ADDRESS RISK). Cervantes, Velasco-
Elizondo and Kazman also noted that the framework func-
tionality may need to be extended if it does not provide the
required functionality out of the box [50]. This need increases
risk and effort, requiring increased use of S2.

VII. LIMITATIONS

Like any grounded theory study, the result is only applicable
to the domain and context being studied [30], and therefore
cannot be assumed to be applicable to other contexts, or
in general. The result is, to some extent, dependent on the
research participants selected for the research and how they
described their experiences.

We took a number of steps to prevent threats to the
validity of the results. The first step was to minimise bias
being introduced by similar participants (architecture experts)
all taking a common perspective by including a number of
non-architecting participants, such as customers and business
analysts. Participants from different roles in the same team or
organisation were also included to help negate any personal
bias. The second step was to collect data in the form of doc-
umentation to back up data obtained from interviews, which
helped prevent bias being introduced through only collecting
data in one form. Thirdly, feedback on the emerging results
was obtained directly from participants and from conference
audiences to help validate the results.

We have evaluated the full theory [21] using qualitative
research criteria proposed by Lincoln and Guba [51], Miles
and Huberman [52] and Creswell [53]. Criteria included
trustworthiness, originality, resonance and usefulness.

VIII. CONCLUSION

The aim of agile software development is to increase the
delivery of value through the ability to respond to changing
requirements. To increase agility, up-front effort is reduced,
so that the customer can start providing feedback earlier.
Reducing the up-front design too much, however, could lead
to an accidental architecture that does not support the team’s
ability to develop functionality and fails to meet requirements.
To maximise agility, a team must find an appropriate trade-
off between a full up-front architecture design and a totally
emergent design. This paper presented a grounded theory of
agile architecture that describes how teams determine how
much architecture they design up-front. The theory includes
five strategies that teams use to determine how much architec-
ture to design up-front. The strategies are chosen according to
the context of the team and the system it is building, which
is described by six forces.
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