
Roles for Owners

– Work in Progress –

Dave Clarke
Katholieke Universiteit Leuven

Belgium
dave.clarke@cs.kuleuven.be

Sophia Drossopoulou
Imperial College London

United Kingdom
s.drossopoulou@imperial.ac.uk

James Noble
Victoria Univ. of Wellington

New Zealand
kjx@ecs.vuw.ac.nz

ABSTRACT
Ownership types were proposed to characterize the topology
of objects on the heap. They notionally organize objects
into boxes, and each box belongs to an object – its owner.
In most ownership-based systems, the box protects the object
from its environment in some way. Thus, the owner may play
the owners-as-dominators role, whereby the owner restricts
access to the objects in a box, (i.e. the “outside” may not
access the “inside”), or, the owner may play the owners-as-
modifiers role, whereby the owner restricts modification of
the objects in a box (i.e. the “outside” may not modify the
“inside”).

We propose the dual protection, whereby the box pro-
tects the environment from the object. We suggest two fur-
ther roles: in owners-as-restrictors, the owner restricts ac-
cess from the object (i.e. the “inside” may not access the
“outside”), and in owners-as-filters, the owner restricts the
range of modifications from an object (i.e. the “inside” may
not modify the “outside”).

We explore the design space for possible exact meanings
for the four roles. We define the meanings of these roles
in terms of the guarantees they make about the heap and
about executions.

We sketch parts of a language which supports all four
roles, and which allows any of the owner parameters to play
any of these four roles. These roles may be enforced stati-
cally, dynamically, or via a combination of both.

1. INTRODUCTION
Ownership types were first suggested in 1998 to charac-

terize aliases, and thus control the topology of objects on
the heap [15]. Several brands and variations have been pro-
posed since, and the model has been put to different uses,
e.g. memory management [19, 16], encapsulation [5], effect
systems [7, 6], avoidance of race conditions and deadlock [4,
3], locations [18], parallel programming [2], and program
verification [14].

In most ownership systems, objects belong to boxes, and

each box belongs to an object; but note that boxes may be-
long to several objects [17] or objects may belong to several
boxes [6].

Furthermore, in most ownership systems, owners protect
the object from its environment. Thus, the owners were as-
signed roles such as owners-as-dominators [8] whereby the
owner controls all accesses to an object (i.e. the “outside”
may not access the “inside”), or owners-as-modifiers [14]
whereby the owner controls all modifications of an object
(i.e. the “outside” may not modify the “inside”), or owners-
as-articulation-points [17] whereby several objects sit at the
boundary of the box.

Thus, so far, ownership types have used boxes to provide
protection to the objects inside the box from the objects out-
side the box. The dual approach uses boxes to protect the
objects outside the box from the object inside the box.

We propose two new roles for owners: owners-as-restrictors,
whereby the owner restricts access to the environment from
the object (i.e. the “inside” may not access the “outside”),
and owners-as-filters, whereby the owner restricts the range
of modifications to the environment from an object (i.e. the
“inside” may not modify the “outside”).

Furthermore, we propose that one single language can use
owners to support all four roles. Namely, ownership deter-
mines the boxes (or, topology), and each owner may be as-
signed one or more of these roles. To our knowledge, this
is the first proposal for one language to support more than
one roles.

The roles of filter and restrictor have practical counter-
parts in systems where capabilities prevent untrusted ap-
plications from interfering with each other [11]. For exam-
ple, capabilities may be used in Javascript to protect the
integrity of the dom from the actions of mashups.

The contributions of our current work are: the identifica-
tion of the new roles, the incorporation of several roles in
one language, and an exploration of possible precise mean-
ings for the roles. The design space for the new roles is
wide; we need to undertake case studies in order to settle
that question. Therefore, we leave a concrete proposal for
the new roles, evaluation, full model, and static enforcement
to future work.

This paper is organized as follows: In Section 2 we sketch
a motivating example. In Section 3 we explore the design
space for guarantees given by the four roles. In Section 4
we argue that even though we do not yet know the exact
meaning of the roles, it is possible to design a static type
system to enforce their guarantees. In Section 5 we discuss

how we overcame the challenges in supporting several roles
in one language, and the possible relations between roles and
topology. Section 6 concludes.

2. MOTIVATING EXAMPLE
As shown in Figure 1, we assume the existence of the

following objects: poker and biotronic are Games, object
gamebox is a GameBox, object notifier is a Notifier used
to send notifications to friends, arbitrator is an Arbitra-

tor used to arbitrate in disputes among friends, activi-

ties is an Activities object, friendTable holds a lookup
table for friends, and theFaceBook is the object represent-
ing Facebook. The “inside” relation is described through
dotted rounded boxes; thus, poker and biotronic are in-
side the gamebox, while gamebox, notifier and arbitra-

tor are within activities, and finally, activities and
friendTable are within theFaceBook.

theFaceBook

activities

gamebox

poker biotronic

notifier

arbitrator

friendTable

Figure 1: Illustration of the Facebook Example.

We now define the roles as follows:

• activities, notifier, and friendTable should not
read or modify the contents of the games, therefore
gamebox is the dominator as well as the modifier of
poker and biotronic.

• The games should not read nor modify the contents of
the friends look-up table; therefore activities is the
restrictor and also the filter of poker and biotronic.

• notifier may send notifications to friends; therefore,
its filter is theBook. On the other hand, notifier

should not modify the friendship relation; therefore its
restrictor is activities.

• arbitrator is meant to arbitrate between friends, and
therefore affect their friendship status; therefore its re-
strictor as well as its filter is theFaceBook.

With this approach, the “inner objects” may not directly
read or modify the “outer objects”, but may do so indirectly,
by asking the objects which have the corresponding capabil-
ities. For example, when Sophia reaches a high score on
Biotronic, the object biotronic sends a message to noti-

fier, which in its turn reads friendTable, and sends the

appropriate notifications. On the other hand, when James

cheats Dave in poker, the object poker sends a message
to arbitrator which will determine how this affects their
friendship, and cause any necessary updates in the contents
of friendTable.

3. SKETCH OF THE LANGUAGE J ro
We give an overview of our approach by sketching a little

language called J ro, which stands for a Java-like language
with different roles for the owners.

ClassDecl ::= class ClassId〈o〉 where Constr Role
{ FieldDecl MethDecl }

Constr ::= o . o′

Type ::= ClassId〈oa〉
oa ::= o | this | top | bot
Role ::= o : qual
qual ::= dominator | modifier

| restrictor | filter

Figure 2: J ro syntax – extracts

3.1 Syntax, roles and the inside relation
As in traditional ownership type systems, a class has one

or more ownership parameters, each of which stands for an
object at run-time. The first owner parameter is special,
in that the object is directly inside it—in other words, this
parameter denotes the owner. The remaining owner param-
eters are not in any particular topological relation. In par-
ticular, in contrast to early ownership systems, we do not
expect the owner to be inside the other owner parameters.
We do, however, allow the expression of constraints on the
owner parameters as to their relative positions, where the
“is inside” relation is expressed through the . symbol.

Furthermore, each class declaration must indicate which
roles each owner parameter plays. Here we differ from ear-
lier ownership systems, where only one role was available
throughout the system, and this role was played implicitly
by the owner. J ro allows a role to be played by any of the
owner parameters of the class, and one owner parameter to
play several different roles for the same object.

Part of the syntax for class declarations is given in Fig-
ure 2. An example appears in Figure 3, where class A has
five owner parameters, and where o2 is expected to be inside
o3 and o4. In A the owner parameter o2 is the dominator, o3
is the modifier as well as the restrictor, and o5 is the filter.

class A<o1, o2, o3, o4, 05 >

where o2 < o3, o2 < o4

o2:dominator, o3:modifier,

o3:restrictor, o5:filter

{ ... }

Figure 3: Declaration of class A

The syntax of types follows previous work in the standard
way: a type consists of a class name followed by the own-
ership arguments. These are either owner parameters which
are in scope (o), or the current object (this), or the most
enclosing object (top), or the most enclosed object (bot).
Types are legal only if the actual owner parameters satisfy

all constraints mentioned in the class declaration. For ex-
ample, the type A<o6,o7,o8,o9,this> is legal only if o7 is
inside o8 and o9. This follows previous work in the standard
way. We do not consider subclasses; these would be handled
in the standard way [7].

We will also define functions O, D, M, R and F which,
when applied to a type return the immediate owner, domina-
tor, modifier, restrictor, or filter of that type. For our exam-
ple we will have that F(A < o6, o7, o8, o9, this >) = this.

The “is inside” relation is defined as the reflexive, tran-
sitive closure of the relation “has owner”. The “is inside”
relation depends on the heap, so for a heap H, and object
addresses ι and ι′ we will have a judgement H ` ι′ . ι.
Similarly, the dominators, modifiers, filters and restrictors
of addresses depend on their runtime types; thus we will
have lookup functions DH(ι), MH(ι), RH(ι) and FH(ι).

An example can be seen in Figure 4, where the squares
represent objects, i.e. we have objects 1, 2, 3 etc. Also, the
dotted rounded boxes indicate the direct owner relation, e.g.
1 owns 2 and 8, 2 owns 3 and 7, etc. Therefore, 5 is inside
4, 3, 2, and 1.

3.2 Formal prerequisites
In order to define the runtime guarantees in a precise man-

ner, we will need to talk about the most current receiver on
a stack of method frames. To do that, we need to be able to
distill out of a runtime configuration the sequence of stack
frames involved.

We adapt techniques from Cunningham et al. [9]. We de-
fine source expressions, es, which allow for method calls, but
not for nested method activations, and runtime expressions,
er, which allow for nested method activations:

es ::= x | this | es.f | es.f = es | es.m(es)

er ::= es | ι | er.f | er.f = es | ι.f = er

| er.m(es) | ι.m(er) | frameσ er

We also define frame-free contexts, E[], whereby:

E[] ::= E[].f | E[].f = e | ι.f = [] | E[].m(e) | ι.m(E[])

and frames F [], which allow for nested method activations:

F [] ::= E[frameσ F []] | E[].

A runtime expression of the form er = F [frameσ er
′] ex-

presses that one of the currently active method calls is σ.
A runtime expression of the form er = F [frameσ E[es]] ex-
presses that the innermost receiver in the stack of method
calls is σ(this). Finally, a runtime expression of the form
er = F [frameσ F ′[frameσ′ er

′]] expresses that some time
during execution, σ(this) indirectly called a method on
σ′(this).

3.3 Heap guarantees
Dominators and restrictors make guarantees about the

topology of the heap.

Dominators.
The dominators guarantee promises that an object o may

point to an object o′, only if o is inside the dominator of
o′. Note that in classical ownership types [8], the immediate
dominator of an object is its owner. However, in J ro, this
need not be so. In fact, in Figure 4 the immediate dominator
of 6 is 2, while its owner is 3. The references from 7 and 5

to 6 are legal, but the reference from 8 to 6 is illegal. This
guarantee is described formally in Definition 1.

1

2=D(6)

3

4

5

6

7

8

Figure 4: Illustration of the dominators guarantee:
the reference from 8 to 6 is forbidden, because 8 is
not inside the dominator of 6.

Definition 1. A heap H respects dominators iff H(ι, f) =
ι′ implies H ` ι . DH(ι′).

The dominators’ guarantee from Definition 1 is local, in
that it does not say anything about which paths are possible,
and it does not enforce the domination relation in the graph-
theoretic sense. For example, if DH(5) = 1, then a path
from 8 to 5 to 6 would be legal, even though a direct path
from 8 to 6 would be forbidden. A “deeper version” of the
guarantee would forbid such paths.

Definition 2. A heap H respects dominators deeply iff
H(ι, f1 . . . fn) = ι′ implies H ` ι . DH(ι′).

Often, in order to obtain the deep domination guarantee,
one requires that the heap respects dominators, and that
domination is monotonic with respect to ownership:

Definition 3. Dominators are monotonic with owners,
if H ` ι . ι′ implies H ` DH(ι) . DH(ι′) for all heaps H.

Furthermore, there are guarantees for method activations:
the receiver and arguments of enclosing calls are not inside
the receiver of inner calls (such guarantees are crucial for
garbage collection):

Definition 4. The calls of a configuration H, er respect
dominators iff er = F1[frameσ1 F2[frameσ2 er

′]] implies
that H ` H(σ1(x1)) 6. H(σ2(x2)), for any x1 ∈ dom(σ1),
x2 ∈ dom(σ2).

Restrictors.
The restrictors’ guarantee promises that an object does

not contain references which point outside its restrictor. For
example, assume, as shown in Figure 5, that 3 is the restric-
tor of 5. Then the reference from 5 to 6 is legal, but the
reference from 5 to 7 is illegal. This guarantee is described
formally in Definition 5.

1

2

3=R(5)

4

5

6

7

8

Figure 5: Illustration of the restrictors guarantee:
the reference from 5 to 7 is forbidden, because 7 is
not inside the restrictor of 5.

Definition 5. A heap respects restrictors iff H(ι, f) = ι′

implies H ` ι′ . RH(ι).

Strengthening the restrictors’ guarantee to paths, so that
H(ι, f1...fn) = ι′ implies H ` ι′ . RH(ι) does not seem
useful. Nor do we have a motivation for requiring restrictors
to be monotonic with ownership.

3.4 Update guarantees
Modifiers and Filters make guarantees as to who causes

updates to an object. We first discuss the meaning of“causes
modification of an object”: Is it the receiver in the innermost
execution frame at the point of modification, or just one of
the receivers in the execution frames? Both interpretations
make sense, and we will allow for both.

Modifiers.
The modifiers guarantee promises that an object o may

modify another object o′ only if o is inside the modifier of o′.
Note that in the classical universes system [14], the modifier
of an object is implicitly its owner. However, in J ro, this
need not be so. In fact, in Figure 6 the modifier of 6 is 2,
while its owner is 3. Thus, 5 and 7 may modify 6, but 8

may not modify 6.
Formal descriptions of this guarantee are given in Defini-

tion 6 and in Definition 7, which differ in the exact interpre-
tation of the term “causes the modification of”, as discussed
above.

Definition 6. An execution H, er ; H ′, er
′ respects mod-

ifiers iff H(ι, f) 6= H ′(ι, f) and er = F [frameσ E[es]] imply
H ` σ(this) .MH(ι).

Definition 7. An execution H, er ; H ′, er
′ weakly re-

spects modifiers iff H(ι, f) 6= H ′(ι, f) implies that ∃ F ,
σ, er

′′, so that er = F [frameσ er
′′] and H ` σ(this) .

MH(ι).

The universes system [14] imposes a stronger guarantee
than the one from Definition 6, i.e. that only modifiers may

1

2=M(6)

3

4

5

6

7

8

Figure 6: Illustration of the modifiers guarantee:
the object 8 may not directly modify the object 6,
because 8 is not inside the modifier of 6.

cause modifications, and that, except for calls to pure meth-
ods, the direct caller of a method on an object is its own
modifier.1

Definition 8. An execution H, er ; H ′, er
′ respects

modifiers in the universes sense iff

• H(ι, f) 6= H ′(ι, f) and er = F [frameσ E[es]] imply
H ` σ(this) =MH(ι).

• er = F [frameσ E[frameσ′er
′′]] implies that

σ(this) =MH(σ′(this))

Filters.
The filters guarantee promises that an object o may only

modify objects which are inside o’s filter. Therefore, in Fig-
ure 7, where 3 is the filter of 5, the object 5 may modify 6,
but may not modify 7. Depending on the interpretation of
the term “causes the modification of” we give a formal de-
scription in Definition 9 and stricter version in Definition 10.

Definition 9. An execution H, er ; H ′, er
′ respects fil-

ters iff H(ι, f) 6= H ′(ι, f) and er = F [frameσ E[es]] imply
that H ` ι . FH(σ(this)).

Definition 10. An execution H, er ; H ′, er
′ weakly re-

spects filters iff H(ι, f) 6= H ′(ι, f) implies that ∃ F , σ, er
′′,

so that er = F [frameσ er
′′] such that H ` ι . FH(σ(this)).

A very strict version of the guarantee, whereby an ob-
ject may be modified, only when it is within the filter of all
the current callers on the stack, i.e. where H, er ; H ′, er

′

and H(ι, f) 6= H ′(ι, f) and er = F [frameσ er
′′] imply that

H ` ι . FH(σ(this)), would be far too strong. For exam-
ple, it would prevent the object arbitrator from modifying
friendTable when being called by poker.

1Note however, that these requirements have been weakened
in subsequent work [10].

1

2

3=F(5)

4

5

6

7

8

Figure 7: Illustration of the filters guarantee: the
object 5 may not directly modify the object 7, be-
cause 7 is not inside the filter of 6.

4. TYPE CHECKING
The exact guarantees of the roles are not yet clear, and

nor is it clear whether the guarantees should be checked
statically or dynamically. Therefore, at the current stage,
we do not know enough to design a type system.

Nevertheless, we do know enough to be in a position to
argue that such a static type system is possible. In the
remainder of this section we will sketch such a type system.

We assume the existence of the usual typing judgement
Γ ` e : T giving to e the type T, and a topological judgement
Γ ` o . o′ which guarantees that at runtime the object
standing for o will be inside the object standing for o′ —
such judgements are commonplace in systems which support
constraints on ownership parameters, e.g. [7].

The most interesting question is what checks need to be
performed upon field assignment and upon method call. As-
suming that we wanted to guarantee the properties defined
in Definitions 1, 5, 6 and 9, then properties to be checked
are outlined in the following rule:

Γ ` x : T Γ ` y : T′ ` T′ ≤ fType(T, f)
Γ ` O(T) . D(T′) Γ ` O(T′) . R(T)

Γ ` this .M(T) Γ ` O(T) . F(this)

Γ ` x.f = y : T

In the rule from above, the first three premises are stan-
dard. We now explain the remaining four premises:

O(T) . D(T′) enforces the dominators guarantee (Defini-
tion 1): The the object x, i.e. the one which will be
holding a reference to y, must be inside the dominator
of y.

O(T′) . R(T) enforces the restrictors guarantee (Definition 5):
the object to which x will be pointing, i.e. y, must be
inside the restrictor of x.

O(T′) . R(T) enforces the modifiers guarantee (Definition 6):
the current receiver must be inside the modifier of x.

O(T) . F(this) enforces the filters guarantee (Definition 9):
the object being modified, i.e. x, must be inside the fil-
ter of the current receiver.

Interestingly and somewhat surprisingly, the only checks
necessary at the point of method call are that the types of
the actual parameters match those of the formal parameters.

5. DISCUSSION

Challenges and our Approach.
In the past, we tried to develop a system supporting the

modifier as well as the dominator role, but were unable to
make progress. Namely, we thought that owners would im-
plicitly pay one of the two roles, and thus, we thought that
for some objects the owner would be their dominator, and
for others it would be their modifier. We thought that a
pluggable type system would help, but had difficulty in de-
termining which protocol (the modifiers or the dominators
protocol) to enforce on which objects.

We had also considered the possibility that an object would
have two owners: the dominator owner, and the modifier
owner; in this case, it is clear which protocol needed to be
enforced (namely both), however, we did not know what the
topology of the heap should be. Should the modifier owner
always be within the dominator owner? If so, why?

We realized that the reason for our difficulties was our
expectation that owners would implicitly play certain roles.
In this paper, there are no implicit roles for owners. We
separate the issue of the topology (ie the box structure),
from the role of owners in providing guarantees. We remove
the expectation that the direct owner plays any specific role,
other than directly containing the object. The class decla-
ration then assigns each of the four roles to one of the owner
parameters (not necessarily different ones).

In this sense, our approach is similar to that by Aldrich
and Chambers [1], which separates methodology from mech-
anism; it differs in that their approach supports one role (re-
striction of links), whereas ours can support any number of
roles.

Relations between Roles and Default Roles.
An open question is the relation between the objects play-

ing different roles. For example, it seems sensible to require
that the filter should be inside the restrictor and that the
modifier should be inside the dominator.

However, it is less clear what, if any inside relation, there
should be between the restrictor an the dominator of an
object, or even maybe of different objects. Also, should
there be some relation between the objects playing a certain
role for objects from the same box? Should, for instance,
the objects of one box share the same dominator?

Finally, does an object need to be inside the objects play-
ing certain roles for it? If we adopt the ideas from ownership
domains [1], then the answer seems to be no. For exam-
ple, we might want to allow the arbitrator to modify the
contents of friendTable, without giving it the capability
to modify other objects within theFaceBook, and thus, we
might want to make friendTable the filter of arbitrator,
even though arbitrator is not inside friendTable.

Another pertinent question concerns default values: our
system comes with the heavy annotation burden of requiring
the provision of four roles per class. It is crucial in such

a system to alleviate the annotation burden by supporting
sensible default rules. For example, if no dominator has been
specified, then it should be the owner, while an unspecified
filter defaults to top.

We leave all these questions open for further work.

6. CONCLUSIONS AND FUTURE WORK
The main contributions of our work are

• The realization that the remit of owners in describing
the heap topology can be separated from the remit in
describing protection or capabilities schemes.

• The identification of two new roles for owners, namely
restrictors and filters.

• The exploration of the design space for the guarnatees
given by the four roles.

Restrictors and filters are of importance when one wants
to sandbox some piece of code and protect its environment
from its effects. We believe that our ideas are applicable to
object-capability systems [13, 12] giving assurance that the
code of a particular system implements a given policy.

By separating the remit of owner parameters as a way of
describing the heap topology, from its remit in proving capa-
bilities/protection, we have shown how one type system can
be devised so as to supports four different roles for owners.
We expect that more roles could be supported in that way.

We expect that practical systems may adopt only some
or a variation of the roles suggested in our paper, however,
our work shows how such a combination of the roles can
achieved.

More work needs to be done to investigate which guar-
antees should be enforced, how these can be enforced, what
are sensible relations between roles, and how to alleviate the
annotation burden.

Acknowledgements We thank Sergio Maffeis for useful
discussions about capabilities and Javascript, and the anony-
mous referees for constructive feedback and comments hu-
morous.

7. REFERENCES
[1] J. Aldrich and C. Chambers. Ownership domains:

Separating aliasing policy from mechanism. In
M. Odersky, editor, European Conference on
Object-Oriented Programming (ECOOP), volume 3086
of LNCS, pages 1–25. Springer-Verlag, 2004.

[2] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A Type and Effect System
for Deterministic Parallel Java. In OOPSLA, 2009.

[3] C. Boyapati. SafeJava: A Unified Type System for
Safe Programming. PhD thesis, MIT, 2004. Available
from pmg.lcs.mit.edu/ chandra/publications/.

[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: Preventing data races and
deadlocks. In OOPSLA, Nov. 2002.

[5] C. Boyapati, B. Liskov, and L. Shrira. Ownership
types for object encapsulation. In POPL ’03:
Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,

pages 213–223, New York, NY, USA, 2003. ACM
Press.

[6] N. Cameron, S. Drossopoulou, J. Noble, and
M. Smith. Multiple Ownership. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 441–460. ACM, 2007.

[7] D. Clarke and S. Drossopoulou. Ownership,
Encapsulation and the Disjointness of Types and
Effects. In OOPSLA, pages 292–310, Seattle,
Washington, USA, November 2002. ACM Press.

[8] D. G. Clarke, J. M. Potter, and J. Noble. Ownership
types for flexible alias protection. In OOPSLA, volume
33(10), pages 48–64. ACM Press, 1998.

[9] D. Cunningham, S. Drossopoulou, and S. Eisenbach.
Universe Types for Race Safety. In Verification and
Analysis of Multi-threaded Java-like Programs
(VAMP), pages 20–51, 2007.

[10] K. R. M. Leino and P. Müller. Object invariants in
dynamic contexts. In ECOOP, volume 3086 of LNCS,
pages 491–516. Springer-Verlag, 2004.

[11] S. Maffeis, J. Mitchell, and A. Taly. Object capabilities
and isolation of untrusted web applications. In Proc of
IEEE Security and Privacy’10. IEEE, 2010.

[12] M. S. Miller. Robust Composition: Towards a Unified
Approach to Access Control and Concurrency Control.
PhD thesis, Johns Hopkins University, May 2006.

[13] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability
myths demolished. Technical Report SRL2003-02,
Systems Research Laboratory, Johns Hopkins
University, 2003.

[14] P. Müller. Modular Specification and Verification of
Object-Oriented Programs, volume 2262 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[15] J. Noble, J. Potter, and J. Vitek. Flexible alias
protection. In ECOOP, Brussels, Belgium, July 1998.

[16] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed
actors for Java. In ECOOP, 2007.

[17] J. Vitek and J. Bokowski. Confined types for java.
Software Partice and Experience, 2001.

[18] Y. Welsch and J. Schäfer. Location types for safe
distributed object-oriented programming. In TOOLS,
2011.

[19] T. Zhao, J. Baker, J. Hunt, J. Noble, and J. Vitek.
Implicit ownership types for memory management.
Science of Computer Programming, 71(3):213–241,
2008.

