
XCS with Combined Reward Method (XCSCR)
for Policy Search in Multistep Problems

Zheming Zhang
Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand
tonyzhang@ecs.vuw.ac.nz

Will N. Browne
Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

will.browne@vuw.ac.nz

Dale A. Carnegie
Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand
dale.carnegie@vuw.ac.nz

Abstract—A reward mechanism is critical for a Reinforcement
Learning agent to learn action policies from rewards. The reward
mechanism establishes a policy by estimating contributions of
constituents of the policy to a reward. Traditionally, rewards
from an environment have two categories: long-term rewards for
guiding the policy learning process, and short-term rewards for
optimisation. However, long-term, positive rewards are scarce at
the initial learning phase in multistep problems such that existing
reward mechanisms lack sufficient stimulus to learn policies
effectively. This paper proposes XCSCR, an Accuracy-based
Learning Classifier System (XCS) algorithm with a combined
reward (CR) method, to guide the search for global optimal
policies in multistep maze problems. The XCSCR discriminates
long-term and short-term rewards through four novel reward-
assignment mechanisms: 1) A short-term reward mechanism
encourages exploration of the RL agent searching for policies
based on short-term rewards. 2) An imprinting mechanism
amends the negative impact of indiscriminate rewards between
exploration and exploitation. 3) A learning-rate switching mech-
anism emphasises the impact of long-term positive rewards in the
policy searching process. 4) A learning step-threshold mechanism
creates an optimisation pressure for policies. Experiments were
conducted in three maze environments as this enabled the effects
of XCSCR on policies to interpreted easily. Results show that
the XCSCR enables learning the optimum path-finding policies
quicker and more often than previous XCS algorithms. The
XCSCR’s improvements for the policy search will facilitate real-
world applications, e.g. robotic applications.

Index Terms—reward mechanism, scarce/sparse reward, Re-
inforcement Learning, multistep, maze problems, XCS, XCSCR

I. INTRODUCTION

A Reinforcement Learning (RL) agent seeks to learn to im-
prove performance from its interactions with an environment.
The RL agent performs actions in an environment and receives
rewards as feedback from the environment. These rewards are
assigned by a reward method within the agent to estimate the
contributions of each action. Actions that would contribute
to the maximum reward are selected as optimal policies
as estimations become accurate. By successively applying
learned policies, an agent can optimise its performances in
the environment.

An RL agent often faces a vast policy space when searching
for a global optimal policy in a multistep environment. A
multistep environment, such as a way-finding maze, requires
an RL agent to take steps and perform sequential actions to

complete a task. For example, the agent is required to complete
a navigation task by choosing four directions within ten steps
in the maze 4 environment (see Section IV-A). There are three
global optimal policies compared with a policy space with
naı̈vely 410 policies (the number of possible combinations of
four actions that the agent can attempt to take in ten steps). The
vastness of a policy-searching space increases the difficulty to
solve the credit assignment problem. The credit assignment
problem was introduced by Minsky [1]: “If a sequence of rules
fires before the system solves a particular problem, how can
credit or blame be accurately assigned to early rules that set
the stage for the final result? [2]” Specifically, the vastness
of a policy-searching space requires efficient estimations of
the worth of actions within policies to search for an optimum
policy.

The standard reward methods can not efficiently estimate
actions and policies when positive rewards are scarce [3]. An
estimation relies on assigned rewards through the Bellman’s
equation (see Section II-C), which does not discriminate long-
term rewards between positive ones and negative/neutral ones.
Actions and policies can be estimated effectively when positive
rewards are frequently achieved as they guide the search. If
the number of the negative/neutral rewards is overwhelming,
the estimations generated by scarce positive rewards will
be quickly offset by the interference of the negative/neutral
rewards. As the reward method fails to estimate actions and
policies efficiently, global optimal policies are elusive to the
RL agent in multistep problems.

These problems are particularly apparent in real-world
robotics experiments where it is impractical to conduct mil-
lions of iterations, which are common in simulations. Simi-
larly, although modern computing power is increasing, those
available to an autonomous robot is often limited. Previous
work by Williams et al. [4] [5] has adapted Learning Classifier
Systems for policy learning in real-robots (see Section II-B),
but this work still suffered from credit assignment problems
in relation to scarce rewards in a real-world environment.
In addition, the work did not take into account the benefits
of an autonomous agent in terms of being able to identify
short-term reinforcement, e.g. the ability to note a collision
during a policy learning trial. Therefore, a reward method
that emphasizes these credit assignment problems would be

978-1-7281-2153-6/19/$31.00 c©2019 IEEE 2982

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 28,2020 at 04:48:35 UTC from IEEE Xplore. Restrictions apply.

beneficial to real-world robotic applications.
This paper proposes an XCSCR, a combined reward (CR)

method for an Accuracy-based Learning Classifier System
(XCS) algorithm, to achieve global optimal policies in multi-
step problems. That is, XCSCR needs to introduce immediate
short-term negative rewards to encourage exploration when
long-term, positive rewards are scarce. XCSCR also considers
to exploit the policies that led to long-term, positive rewards
to balance potential interferences from long-term, negative
rewards. In addition, XCSCR emphasises the effect of long-
term, positive rewards, and includes a dynamic threshold to
drive policies to move toward globally optimal ones. The
effects of XCSCR on policy search will be demonstrated with
experiments using interpretable multistep maze problems.

II. BACKGROUND

A. XCS

Learning Classifier Systems (LCSs) are rules-based ma-
chine learning algorithms. An LCS agent learns interpretable
“condition-action” rules, termed classifiers, through interac-
tions between the learning agent and its environment. These
interactions allow the LCS agents to estimate the worth of
rules through various criteria. An Accuracy-based Learning
Classifier System (XCS) is an LCS algorithm that estimates
the worth of rules based on the accuracy of the prediction of
these rewards. An XCS agent can learn to complete a task as
these estimations become accurate.

B. Standard XCS Learning Iteration

A standard XCS agent estimates rules through iterations
of these interactions. Based on how the agent perceives the
environment in each iteration, rules in the XCS agent will
advocate an action as the agent’s effect on the environment
(see Figure 1.a). All rules in the XCS rules’ population [P]
that match the current perception will form a Match Set [M]
through the match filter. Next, [M] selects an action by the
selection filter through either an exploration or an exploitation
method. In exploration, the selection filter selects an action
randomly from all options. In exploitation, the selection filter
selects the most promising action with the maximum worth in
[M] (see Equation 6). The selected action will be executed
by the agent, and rules in [M] who vote for the executed
action will form an Action Set [A]. After the action execution,
the agent will immediately receive a step reward ra from the
reward filter as feedback from the environment in single step
problems. The worth (fitness) and other statistics of the rules in
[A] are updated according to the step reward ra. As iterations
progress, fitness better reflects the utility of a rule to guide
evolutionary search to better solutions (policies of actions).

The reward filter updates each rule in [A] by updating
statistics of a rule, including predicted reward rp, prediction
error ε, and fitness F based on its ra. Predicted reward rp is
updated by a learning rate β (see Equation 1).

rp = rp + β ∗ (rp − ra) (1)

Prediction error ε is also updated in a similar way (see
Equation 2).

ε = ε+ β ∗ (|rp − ra| − ε) (2)

Finally, fitness fit, the worth of the rule, is updated through
calculations of absolute accuracy κ and relative accuracy κ,

(see Equations 3, 4, 5).

κ =

{
1, if ε ≤ ε0
(ε/ε0)

ν
, otherwise.

(3)

κ, = κ/(
∑

[A] κ) (4)

fit = fit+ β ∗ (fit− κ,) (5)

worthaj =

∑
clk∈[M]|aj rpk ∗ fitk∑

clk∈[M] fitk
,

where j,k ∈ N, cl is a classifier, aj is the action of cl,
fit is the fitness of cl, rp is the predicted reward of cl,

worthaj is applied to a rule set [M].

(6)

C. Multistep problem and Robotics Adaption

XCS algorithms have been applied to solve multistep prob-
lems [6], such as maze problems introduced by Wilson [7]. In
maze problems, the agent has to execute actions in sequential
iterations to complete a navigation task. Rewards are provided
only in certain states in the multistep problems. A long-term
reward rl represents the completion of the task. rl equals an
arbitrary value of 1000 if the task is completed. Otherwise, rl
equals zero in non-goal states or if the task fails (e.g. the agent
has taken more steps than the step-threshold in an epoch of a
trial). A short-term reward (immediate reward) rs traditionally
represents the agent’s execution effects during each iteration.
rs equals an arbitrary value of -1 as a cost of the agent moving
a step forward. rs equals an arbitrary value of -50 if a collision
occurs.

Traditionally, a reward propagation is required by a re-
ward method for applying the standard XCS iteration loop
in the multistep problems. The reward method is internally
responsible for assigning external rewards, including short-
term rewards and any long-term reward, to step rewards for
each iteration. The step reward ra is the reward which the
agent assigns to recent active rules in [A]i for the step i, as
mentioned in the single step problem above. The standard XCS
reward method encapsulates long-term rewards into short-
term rewards through a Q-learning like algorithm [6] [7]. The
maximum potential reward available is propagated to previous
actions [A]i−1, even if that action is not taken in [A]i. Although
Q-learning can mathematically guarantee the approximation of
estimated ra, it might take a long time before the effect of a
rl can propagate to ras of early states. The propagation speed
of the standard reward method might be not fast enough for
robotic applications in the real-world.

Williams et al. [4] [5] proposed a reward method suited to
robotic applications to solve multistep problems. The reward
method encapsulates short-term effects, such as collisions and

2983

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 28,2020 at 04:48:35 UTC from IEEE Xplore. Restrictions apply.

(a) Standard XCS Iteration Loop (b) Robotic XCS Iteration Loop (c) XCSCR Iteration Loop

Fig. 1: XCS algorithms’ learning iteration
Blue blocks are the standard XCS sub-processes, grey blocks are XCS rule sets, orange blocks are sub-processes of reward
methods, and purple blocks indicate the agent’s interactions with a maze environment. Arrows indicate the agent’s working
flow, and dotted arrows indicate classifiers/rules working flow.

number of steps taken, into the time factor (time) of long-term
rewards (see Equation 7). Instead of updating [A] at the end
of each iteration as the standard XCS reward method does,
the robotics method records [A] in a Reward Stack [R] (see
Figure 1.b). At the end of a task, the robotic reward method
propagates the long-term reward rl backward to all previously
active XCS rules evenly (see Equation 8) or with a discount
factor (γ) to emphasise the contributions of recently active
rules (see Equation 9).

rl = 1000 + 1/time (7)

ra, i = c ∗ rl/numstep,

where c is a constant, and i ∈ step
(8)

ra, i = rl ∗ γi,
where i ∈ step

(9)

D. Related Work

Nakata et al. [11] proposed XCS with Adaptive Action
Mapping (XCSAM) to solve multistep problems. XCSAM
targets these problems by focusing evolution on the best
actions. XCSAM sorts actions by their worth (see Equation 6),
and selects classifiers/rules which contain the actions with the
best worth, as best action mappings. XCSAM thus focuses on
the evolution of the best action mappings to search for action
policies. XCSAM records the effects of scarce positive rewards
on the estimation of the worth of actions/rules. Instead of
improving the accuracy of the estimation, XCSAM applies the
estimation directly for the evolution and relies on the evolution
to guide search in the vast policy space.

XCSAM may apply transferable policies learned in a
smaller policy space to learn a bigger policy space. Although
experiments were conducted in the same maze 6 environment,
the starting cell was randomly placed. The closer to the
targeted cell a starting cell is, the smaller the policy space
to search. Policies that are learnt in a smaller policy space
can be transferred and applied to the policy search in a larger
space. To rule out the effects of the transferable policies, this
work will require a fixed end-to-end experimental setting.

Deep Reinforcement Learning (deep RL) also faces chal-
lenges of sparse rewards. Behavioural cloning is applied in
deep RL for policy search when the rewards are sparse or a
reward function is unavailable [3] [8]. Behavioural cloning
learns policy from mapping state-action pairs from expert
trajectories, without learning the reward function. Recently,
in robotics applications, the sparse final reward problem
was addressed by augmenting auxiliary rewards. Mirowski
et al. [9] added auxiliary rewards to facilitate an end-to-end
maze navigation task. The auxiliary reward includes randomly
placed fruits to encourage exploration. Similarly, this work will
include negative rewards, such as punishments for collisions,
as auxiliary rewards to facilitate a policy learning process.
Deep RL often requires a large computational budget for both
learning and interpreting the policies, which restricts its use
on small autonomous robots.

III. METHOD

This paper proposes XCSCR, an extension of XCS with
a combined reward (CR) method, to guide the search for
global optimal policies in multistep problems. CR discerns
the impact of various long-term and short-term rewards to

2984

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 28,2020 at 04:48:35 UTC from IEEE Xplore. Restrictions apply.

address different challenges arising from the scarcity of long-
term, positive rewards. Its combined reward method includes
a short-term reward mechanism and a modified long-term
reward mechanism. The short-term reward mechanism aims
to encourage exploration at the learning agent’s initial training
phase, when the agent faces a vast policy searching space. The
long-term reward mechanism aims to exploit the long-term,
positive reward effectively. The long-term reward mechanism
is developed from the standard reward method with three novel
reward mechanisms: an imprinting mechanism, a learning-rate
switching mechanism, and a learning step-threshold mecha-
nism. The imprinting mechanism aims to balance the negative
effects of an agent’s explorations on current best policies in
multistep problems. The learning-rate switching mechanism
differentiates long-term rewards between positive ones and
negative ones. The learning step-threshold mechanism aims to
create an optimisation pressure to drive local optimal policies
toward global optimal policies.

A. Short-term Reward Mechanism

Short-term rewards are defined as immediate rewards that
the agent receives in each step. Traditionally, in a Markov
model, short-term rewards are arbitrary negative values that
demonstrate immediate effects of an agent’s recent step [10].
If the agent runs to an obstacle-free cell, a small negative
value, such as -1, will be assigned to this step as its cost. If
a step leads to a collision, another negative value with a large
magnitude, such as -50, may be the short-term reward as a
severe punishment to the step. By taking short-term rewards
into an optimisation function, a training process would drive
local optimal policies toward global optimal policies.

The reward encapsulation of the adapted robotic reward
method [4] [5] fails to identify the rules that directly respond
to short-term rewards (see Section II-C). The effects of short-
term rewards were encapsulated as a time factor (see Equation
7), which sums up the agent’s short-term performances in the
standard reward filter (see Figure 1). Although the time factor
encapsulates effects of collisions if they happened during
a trail, the time factor fails to record when these negative
rewards happened. Thus, information to identify responsible
rules is neglected by this method.

As the adapted robotic reward method fails to identify
the rules responsible for the negative rewards, this leads to
a purely random search in an agent’s initial training phase.
Before the establishment of effective policies, long-term, pos-
itive rewards are scarce and the agent frequently receives
long-term, negative rewards. All the long-term rewards are
indiscriminately propagated to rules as the reward method
suggests (see Equations 8 and 9). The overwhelming majority
of negative rewards could be unintentionally propagated to
rules that could otherwise lead to positive rewards. Therefore,
all rules could be estimated as equally bad (see Figure 2). In
this case, the agent will essentially take purely random actions
because explorations rely on the difference between the worth
of rules.

In contrast, this paper proposes the short-term reward mech-
anism that attributes any severe negative short-term rewards
only to the latest activated rules. The short-term reward
mechanism is implemented by a short-term reward filter, which
is inserted at the end of an XCS iteration loop (see Figure 1.c).
The short-term reward filter aims to immediately respond to
severe negative short-term rewards, such as severe collisions,
at the current step/state (see Algorithm 1). In the filter, the
worth of the responsible rules in an [A] will decrease by adding
a short-term reward rs, a negative reward in this case. Then,
the calculated worth will be applied to update [A] through
the XCS standard rules’ updating procedure (see Equation
6 for calculating an action’s worth from a chosen rule set).
The updated [A] is recorded in a [R] for the long-term reward
mechanism at the end of the iteration loop. In addition, minor
negative short-term rewards, such as a step’s cost, could be
ignored through setting parameter θrs for saving computing
budget.

The short-term reward mechanism bootstraps the policy
search when long-term positive rewards are scarce in the initial
training phase. The mechanism can differentiate potential
useful rules from useless ones, because the useless rules
are responsible for severe negative effects and their worth
decreases. Even if the long-term positive rewards are scarce,
this differentiation can encourage the agent to explore the
targeted states appropriately (see Section IV and Figure 5.a).

algorithm 1 Short-term Reward Filter

Inputs: Short-term Reward rs, Action Set [A], Population[P].
Outputs: Action Set [A].

1: function UPDATE SHORT-TERM REWARD(rs, [A])
2: if rs <= θrs then
3: aj ← [A] ///get the last executed action aj
4: worthaj ← (aj , [P])
5: worthaj = worthaj + rs
6: Call Function: reward procedure ([A], worthaj)
7: end if
8: return [A]
9: end function

B. Imprinting Mechanism

An exploration and an exploitation method are common
optimisation components for machine learning algorithms,
including XCS algorithms. In XCS algorithms, the exploration
and the exploitation are applied to select an action in the
selection filter (see Figure 1). In exploitation, the filter will
select the action with the best action worth, worthaj (see
Equation 6). The filter will also activate exploration with a
probability parameter pexplr to choose an action purely ran-
domly. Previous studies show that a sensitive balance between
the exploration and the exploitation is critical for XCS to learn
optimal policies in single-step problems [12] [13].

However, the exploration and the exploitation can hardly
achieve the sensitive balance that drives XCS to learn optimal
policies efficiently in multistep problems. This is because

2985

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 28,2020 at 04:48:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Worth of Rules (actions). When the long-term, positive
rewards are scarce, all actions in initial steps are equally bad.
Red arrows: worth of rules, magnitude suggests the negative
value of the worth. Green arrows: optimal actions/policies,
magnitudes are fixed. Light grey cells suggest they have been
visited by the agent in this epoch of a trail. The dark grey cell
suggests the location where the agent ended up at the end of
the epoch.

algorithm 2 Imprinting Procedure

Inputs: Current Policy p, Policy Set [PS], long-term reward
rl, Population Set [P].

Outputs: Policy Set [PS], Population Set [P].
1: function IMPRINTING PROCEDURE(p, [PS], rl)
2: if rl == 1000 then /// p achieved the goal position
3: Call Function: update [PS] procedure (p, [PS])
4: return [PS]
5: else if (RandomNumber[0, 1) > θx and [PS] is not

empty then
/// When p failed to achieve the goal position,

a learning from [PS] will be randomly actived.
6: randomly select a Policy pi from [PS]
7: Call Function: behavioural cloning procedure (pi,

[P])
8: return [P]
9: end if

10: end function

the standard reward-assignment mechanisms for multistep
problems do not differentiate explored steps and exploited
steps when the mechanism propagates rewards [6] [10]. The
Q-learning reward-assignment mechanism, the even reward-
assignment mechanism (see Equation 8) and the discount
reward-assignment mechanism (see Equation 9) propagate re-
wards based on the sequence of steps (see Section II-C). Thus,
effects of exploration and exploitation activated in different
steps can be interfering with each other. For example, an
iteration could fail because of an explored action, which is
activated by the probability of pexplr, in a step. Without an
additional algorithm to differentiate steps between exploration
and exploitation, rules, which contribute to exploited actions,

would be punished with the explored rules for the failure.
Since the exploration will be activated with the probability of
pexplr, the best rules, which are in the majority of exploration
steps, will be affected. Therefore, global optimal policies,
which consist of the best rules, are hard to achieve effectively
or be stable in a multistep XCS agent.

algorithm 3 Updating [PS] Procedure

Inputs: Current Policy p, Policy Set [PS].
Outputs: Policy Set [PS].

1: function UPDATING [PS] PROCEDURE(p, [PS])
2: if [PS] is empty then
3: initialise [PS] with p
4: else if p.length == pi.length (pi ∈ [PS]) and p /∈

[PS] then
5: cover p by [PS]
6: else if p.length < pi.length (pi ∈ [PS]) then
7: [PS]← empty
8: cover p by [PS]
9: end if

10: return [PS]
11: end function

algorithm 4 Behavioural Cloning Procedure

Inputs: Selected Policy pi, Population Set [P].
Outputs: Population Set [P].

1: function BEHAVIOURAL CLONING PROCEDURE(pi, [P])
2: Behavioural Cloning Set [BC]← empty
3: for each state-action pair in p do
4: [BC] ← ([P] ∩ state-action pair)
5: end for
6: Call Function: reward procedure ([BC])
7: return [P]
8: end function

An imprinting mechanism seeks to restore exploration and
exploitation balance by emphasising exploitation of the current
optimal policies. Similar to ideas in the deep RL’s behavioural
cloning, the imprinting mechanism increases the worth of
rules that applied in the current best policies. This will be
achieved by inserting an imprinting procedure to the long-
term reward filter (see Figure 1.c). The imprinting procedure
manages a Policy Set [PS], for exploitation reinforcements
(see Algorithm 2). When a policy emerges during iterations,
the imprinting procedure will update the [PS] through an
updating PS procedure to keep the current best policies (see
Algorithm 3). When the agent fails in an iteration because
of explorations, the imprinting procedure will active [PS]
with a probability θx (e.g. θx=0.5) to emphasise exploitation.
The emphasising process will randomly choose a current
best policy from [PS] for behavioural cloning procedures. A
behavioural cloning procedure allows rules, which led to the
chosen policy in [P], to increase their worth as if they had led
to a current successful iteration (see Algorithm 4). Through

2986

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 28,2020 at 04:48:35 UTC from IEEE Xplore. Restrictions apply.

(a) Maze 4
three global optimal policies

(b) Maze 5
one global optimal policy

(c) Maze 6
two global optimal policies

Fig. 3: Three Maze Environments
Start position is at the left, top cell of each maze environment, and targeted position is at the right, bottom cell. Global
optimal policies/rules are shown with blue arrows.

these procedures, the imprinting procedure allows [P] to learn
from “expert policies”. The worth of rules that have been
interfered with by the exploration method can recover their
worth in an implicit way. In future, both the updating PS
procedure and the behavioural cloning procedure can employ
individual XCS agents for their learning and evolving (see
Section II-D). XCS agents in these two procedures can co-
evolve with an XCSCR agent at different hierarchies.

C. Learning-rate Switching Mechanism

Learning-rate, which specifies the percentage of the up-
dating parameter, can significantly impact an agent’s training
progress. For example, in equation 1, a learning-rate β spec-
ifies the predicted reward’s updating process. If β is set to a
large value, the predicted reward rp will rely on the current
ra more than the historic estimation. Otherwise, if β is set to
a small value, the predicted reward rp will have a tiny update
toward the current ra. Traditionally, the learning-rate is well-
tuned and pre-set as a fixed parameter for the XCS algorithm.

The learning-rate switching mechanism is proposed to
compensate for the scarcity of long-term, positive rewards
by switching the learning-rate to appropriate values in the
training cycle. To encourage XCS rules learning aggressively
from scarce, positive results, the β in equation 1 is set to a
large value, such as 0.2, when the agent receives long-term,
positive rewards. Negative rewards are more frequent than the
positive ones in a training process. When the agent receives a
punishment, the β is switched to a small value, e.g. 0.05, to
learn from punishments slowly. The reason for this discretion
is to avoid an optimal rule in a step of an iteration being
overwhelmed by “wrong rules” applied in the same iteration.
As a result, the learning-rate switching mechanism emphasises
the role of scarce long-term, positive rewards.

D. Learning Step-threshold Mechanism

Step-threshold was introduced into multistep learning agent
as a threshold for computing resources. The agent needs to

terminate a training iteration before a memory crash if the
agent has taken too many steps in a vast space. Step-threshold
is a parameter which specifies the maximum number of steps
allowed for the agent to search in an iteration. Once the agent
takes a number of steps over the value of step-threshold, the
agent terminates this trial with a failure to achieve the target.
Traditionally, the step-threshold is pre-set according to the
property of an environment.

Learning step-threshold mechanism applies this threshold to
generate pressure for better policies. The step-threshold θstep
is set as a parameter that is learnt from discovered optimal
policies. Following the Bellman’s function, the step-threshold
is updated whenever it is larger than the number of steps
stepa taken in the currently applied policies (see Equation 10).
When step-threshold approaches the number of steps taken in
the global optimal policies, it will create an optimal pressure
driving local optimal policies toward global optimal ones.

θstep = θstep + β ∗ (stepa − θstep) (10)

IV. RESULTS

A. Experimentation

Maze problems provide suitable environments to test an
algorithm’s performance on searching for global optimal poli-
cies. Maze environments include a large policy space but with
known and interpretable optimal paths as policies. This work
includes experiments in three maze environments: the maze
4, 5, and 6 (see Figure 3). These maze environments have
been frequently applied to demonstrate XCS performance on
multistep problems [7] [12] [14]. Maze environments contain
free paths, obstacles, a starting position and a targeted position.
Free paths are shown as white cells that can be occupied by
an agent. Obstacles are black cells.

The navigation task requires an agent to start at the left, top
cell of the maze, targeting to the right, bottom cell. In each
step (XCS iteration) of an iteration, the agent can choose
one direction from four options (left, right, up, and down) to

2987

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 28,2020 at 04:48:35 UTC from IEEE Xplore. Restrictions apply.

(a) Maze 4 (b) Maze 5 (c) Maze 6

Fig. 4: Distribution of Global Optimal Policies in the Maze Problems. The total number of trials: 100. The higher count at
fewer epochs, the better.

move forward as its action. A greater number of directions, e.g.
eight, can be used but this increases the search space and more
importantly makes visualisation of the results more cluttered
so is difficult to interpret the effects of novel methods. Actions
toward any black cell or boundary in a step would cause a
collision. In these cases, the agent will stay at the same place
until the next step.

Policies can be learned through iterations. As introduced
above, a policy is a sequence of actions that are intended to
lead the agent to achieve its target position. Each action in a
policy has the maximum value of action among other three
actions (see Equation 6). A global optimal policy is a policy
with the minimum number of sequential actions that reaches its
target. Global optimal policies, which are shown as sequences
of blue arrows in Figure 3, are the objective that the XCS
algorithms attempt to learn.

Experiments were conducted to test the XCSCR’s ability to
search global optimal policy in multistep problems. In each
maze problem, 100 trials were conducted for each of XCS,
the adapted XCS algorithm and the proposed algorithm. In
each trial, the number of iterations (epochs) it took for an
algorithm to achieve a global optimal policy for the first time
is recorded (see Figure 4). In each iteration/epoch, an XCS
agent takes steps to complete a maze navigation task. In each
step of the interaction, the XCS agent interacts with the maze
environment through an XCS iteration loop (see Section II).
The XCS agent will be implemented by the XCSCR, the
adapted XCS algorithm, and the standard XCS. These XCS
algorithms have common parameters with the same settings
from Butz [6]. Other parameters that are modified are specified
in the method section.

B. Results and Analysis
The XCSCR performed better than the previous adapted

XCS and the standard XCS in all of the three maze envi-
ronments. XCSCR achieved the global optimal policy more
often than the other two algorithms (see Figure 4). In maze
4, XCSCR achieved the global optimal policy 79 times,
compared to 77 times of the adapted XCS and 7 times of
the standard XCS. In maze 5, XCSCR achieved 54 times,
compared to 29 times of the adapted XCS and 2 times of

the standard XCS. In maze 6, XCSCR achieved 65 times,
compared to 25 times of the adapted XCS and zero times of
the standard XCS within 180 epochs.

In addition, XCSCR achieved global optimal policy earlier
than the other two algorithms in these three mazes. The
distributions of the XCSCR are concentrated on early epochs,
while the adapted XCS and the standard XCS distribute
among the entire epoch-axis (see Figure 4). In maze 4, major
achievements of XCSCR happened before the fortieth epochs,
while achievements of the adapted algorithm and standard
XCS were distributed evenly. In maze 5, major achieve-
ments of XCSCR happened before the seventieth epochs,
while achievements of the adapted algorithm majorly were
distributed after the seventieth epochs. In the maze 6, major
achievements of XCSCR also happened before the seventieth
epochs, while achievements of the adapted algorithm majorly
were distributed after the seventieth epochs. Therefore, XC-
SCR changed the distribution of achievement of the global
optimal policy, and XCSCR achieved the global optimal policy
more frequently and earlier than the adapted XCS and the
standard XCS.

Analysis of the agent’s learning process illustrates the
XCSCR’s effects on generating policy. The short-term reward
mechanism contributes to policy emerging in an early learning
phase. Since the long-term, positive rewards are scarce at this
phase, the worth of rules were estimated by punishments,
especially through the short-term reward filter (see Figure 1.c).
Thus, a policy is based on comparisons on a negative worth
of rules (see Figure 5.a). In addition, magnitudes of negative
worth are decreasing from the starting cell to the targeted cell
in a policy, while magnitudes of positive worth are increasing.
This suggests the value of the worth is related to the vastness
of the searching space. The further the cell is from the targeted
cell, the more vast a searching space will be, and the higher
likelihood that rules receive negative rewards.

The long-term reward mechanisms tend to increase the sta-
bility of a policy as iterations progress. The long-term reward
filter, which combines the three novel reward mechanisms with
the standard one, can propagate long-term positive rewards to
rules. For example, in the first four steps of Figure 5.b, the

2988

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 28,2020 at 04:48:35 UTC from IEEE Xplore. Restrictions apply.

(a) Iteration = 44
The policy is bootstrapped by
negative rule worth during the initial
learning phase.

(b) Iteration = 79
The policy is bootstrapped by
positive rule worth as the training
progresses.

(c) Iteration = 111
The positive worth become
equivalent after sufficient iterations.

Fig. 5: Policy Learning Process in the Maze 4
Blue and red arrows: worth of rules, the direction of an arrow suggests the direction of action in the rule, magnitude suggests
the value of the worth, red suggests negative worth and blue suggests positive worth. Green arrows: policy, sequential rules
with the best worth, the direction of an arrow suggests the direction of the best rule, the magnitude is fixed. Light grey cells
suggest they have been visited by the agent in this epoch of a trail. The dark grey cell suggests the location where the agent
ended up at the end of the epoch.

values of the worth of rules, which belong to the policy, turn
from negative to positive. In contrast, the values of the worth
of rules that suggest a different action from the optimum policy
remain negative.

As the training encounters sufficient iterations, the magni-
tude of the worth becomes more even. The long-term positive
rewards were evenly assigned to rules in different steps. The
magnitudes of the worth, which advocate for a policy, became
more evenly spread in Figure 5.c than they are in Figure 5.b.

The changing worth of rules in the XCSCR learning iter-
ations also indicates that XCSCR was able to increase the
quality of policy in terms of stability. The stability of a policy
depends on the difference between the worth of rules in the
same state. A policy will increase its stability as the differences
increase. In the experiments, the differences along a policy
were increased by XCSCR learning (see Figure 5), suggesting
that the quality of the policy was increasing.

V. CONCLUSION

This paper proposed XCSCR, an XCS algorithm with
an combined reward method, for global optimal policies in
multistep problems. The XCSCR adopts four novel mecha-
nisms to the reward method for better usages of long-term
and short-term rewards. Experiments were conducted in three
standard maze environments (the maze 4, 5, and 6) to test
the XCS algorithms’ performances on their search global
optimal policies. Results show XCSCR performed better than
the standard XCS and the adapted for robotics XCS methods.
In all the three mazes, the XCSCR enabled global optimal
policies to emerge earlier and more frequent than the other two
approaches. Analyses also provide interpretable insights about
the policy learning process. The insights illustrate effects of the

the four novel mechanisms, which allows XCSCR to increase
the stability of the policy throughout the training iterations.

REFERENCES

[1] Minsky, M., 1961. Steps toward artificial intelligence. Proceedings of
the IRE, 49(1), pp.8-30.

[2] Grefenstette, J.J., 1988. Credit assignment in rule discovery systems
based on genetic algorithms. Machine Learning, 3(2-3), pp.225-245.

[3] Li, Y., 2017. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274.

[4] Williams, H., Lee-Johnson, C., Browne, W.N. and Carnegie, D.A., 2015,
May. Emotion inspired adaptive robotic path planning. In Evolutionary
Computation (CEC), 2015 IEEE Congress on (pp. 3004-3011). IEEE.

[5] Williams, H., 2016. Human inspired robotic path planning and het-
erogeneous robotic mapping. PhD dissertation, Victoria University of
Wellington.

[6] Butz, M.V. and Wilson, S.W., 2002. An algorithmic description of XCS.
Soft Computing, 6(3-4), pp.144-153.

[7] Wilson, S.W., 1995. Classifier fitness based on accuracy. Evolutionary
computation, 3(2), pp.149-175.

[8] Pomerleau, D.A., 1991. Efficient training of artificial neural networks
for autonomous navigation. Neural Computation, 3(1), pp.88-97.

[9] Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A.J., Banino,
A., Denil, M., Goroshin, R., Sifre, L., Kavukcuoglu, K. and Kumaran,
D., 2016. Learning to navigate in complex environments. arXiv preprint
arXiv:1611.03673.

[10] Whitehead, S.D. and Lin, L.J., 1995. Reinforcement learning of non-
Markov decision processes. Artificial Intelligence, 73(1-2), pp.271-306.

[11] Nakata, M., Lanzi, P.L. and Takadama, K., 2012, December. XCS
with adaptive action mapping. In Asia-Pacific Conference on Simulated
Evolution and Learning (pp. 138-147). Springer, Berlin, Heidelberg.

[12] Lanzi, P.L., 1999. An analysis of generalization in the XCS classifier
system. Evolutionary Computation, 7(2), pp.125-149.

[13] Butz, M.V., Kovacs, T., Lanzi, P.L. and Wilson, S.W., 2004. Toward
a theory of generalization and learning in XCS. IEEE transactions on
evolutionary computation, 8(1), pp.28-46.

[14] Cheng, X., Browne, W.N. and Zhang, M., 2018, July. Decomposition
Based Multi-Objective Evolutionary Algorithm in XCS for Multi-
Objective Reinforcement Learning. In 2018 IEEE Congress on Evo-
lutionary Computation (CEC) (pp. 1-8). IEEE.

2989

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on August 28,2020 at 04:48:35 UTC from IEEE Xplore. Restrictions apply.

