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Abstract

Adaptable navigation is critical to extend the
range of applications for mobile robots in daily
life. An ideal architecture of mobile robots
should adapt its path-planning methods to var-
ious navigation scenarios. But traditional ar-
chitectures are static, plus they often need
hand-coded prior knowledge (e.g. tuned hy-
perparameters for targeted scenarios) to en-
sure the path-planning methods function well.
This paper proposes an adaptive architec-
ture through a hyperparameter-adjustment ap-
proach for robotic path-planning tasks. The
architecture can automatically learn adaptive
path-planning knowledge, termed Planning-
Action-Outcome Contingency (PAOC ), which
is inspired by emotion theories in cognitive neu-
roscience. PAOC knowledge is learned in a pat-
tern of human interrogable “if-then” rules by
an Accuracy-based Learning Classifier System
(XCS ) algorithm. Navigation simulations of a
mobile robot were conducted within 31 differ-
ing scenarios. Results show the proposed archi-
tecture achieved adaptive path-planning by au-
tomatically learning PAOC patterns in all the
scenarios. These PAOC patterns also provide
visual interpretations regarding what the robot
perceives in the scenarios.

1 Introduction

Adaptation within a real-world navigation task is im-
portant for mobile robots as diverse scenarios require
different adjustments (e.g. parameter adjustment). Nav-
igation adaptation refers to a robot’s path-planning ad-
justment to varing scenarios, each of which includes a
navigation environment, a navigation task, and the robo
t’s admissible behaviours to fulfil the task in the envi-
ronment. Navigation adaptation is challenged by uncer-
tainty within scenarios such that traditional approaches

require prior knowledge to handle the uncertainty. This
required prior knowledge may include knowledge about
uncertainty-causing factors, the effects of these factors,
and mappings and contingencies between the factors and
the effects. This prior knowledge that can be hand-coded
tediously by an engineer is limited and thus restricts a
mobile robot’s navigation success.

The existing planning algorithms have limited navi-
gation adaptation. The path-planning algorithms can
be traditionally categorised into two methods: classical
methods and heuristic methods [Elbanhawi et al., 2013;
Mac et al., 2016]. The classical methods are deter-
ministic so have little navigation adaptation. In con-
trast, the heuristic methods increase navigation adapta-
tion through a path-selecting adjustment approach. In
the path-selecting adjustment approach, heuristic meth-
ods could select an optimal path according to a current
condition when multiple paths are generated. However,
the path-selecting adjustment approach of the heuris-
tic methods does not properly adapt to scenarios unless
prior knowledge (e.g. hyperparameters) are introduced
into the navigation architecture by humans.

A hyperparameter of a method is a parameter that
has determining effects on the method’s performance. A
hyperparameter is beyond methods and implicatations
that it is applied to. For example, inflation radius is
a hyperparameter of path-planning methods, and it can
be applied for A-star algorithm and other path-planning
methods. This hyperparameter will directly affect the
perceived map that the path-planning method works
on (see Section 3.1). Traditionally, it is the engineer’s
responsibility to tune hyperparameters scenario by sce-
nario to ensure the path-planning method can generate
paths. When these hyperparameters are finalised, the
calculation process of a path-planning algorithm is de-
terministic. If these hyperparameters are not fit for a
new scenario, the deterministic path-planning calcula-
tion would not necessarily generate a valid path. In the
worst cases, a valid path could not be generated simply
because these hyperparameters are inappropriate for the



new scenario. For example, in scenario No.4 (see Figure
7.b and Figure 1.c), the inflation radius with a value
of 0.8 metres is appropriate for the wide-open area on
top right corner of the local zoom map, but this value
will lead to an enclosed perception of the doorway (see
Section 3.1).

A novel hyperparameter adjustment approach is pro-
posed to overcome the above deficiencies. The hyper-
parameter adjustment approach aims to guarantee valid
paths in each scenario, if such paths could exist when
hyperparameters are fine-tuned. The approach will ad-
just the hyperparameters of a path-planning method to
changing or new scenarios. The adjustment requires
knowledge about mappings and contingencies between
hyperparameters and scenarios. The hyperparameter
adjustment also requires a reasoning mechanism that can
automatically learn the required knowledge.

For the hyperparameter adjustment approach, emo-
tion theories provide inspiration for a representation
of the required knowledge and a reasoning mecha-
nism for learning this knowledge. Firstly, Planning-
Action-Outcome Contingency (PAOC ) is proposed as a
cognitive architecture, a scenario-and-hyperparameter-
encapsulated knowledge, to represent the required
knowledge of the hyperparameter adjustment approach.
PAOC originates from emotion theories: appraisal the-
ory and constructive theory. The appraisal theory
treats emotion as a reaction to events through assess-
ments during Planning processes [Scherer et al., 2010;
Schlesinger and McMurray, 2012]. In the Planning pro-
cesses, elements of a scenario (e.g. a goal of a task) will
be assessed for emotional appraisal processes [Sequeira
et al., 2014]. The Planning is adopted as the first part
of PAOC to encapsulate key elements from a scenario
for assessment. On the other hand, constructive theory
focuses on an Action-Outcome contingency (AOC ) to in-
crease flexibility. After the establishment of AOCs, ac-
tions and behaviours in AOC can be linked to “labels”
and thus be considered as symbolic behaviours. The
benefit of symbolic behaviour is that it may increase the
flexibility of agents in the actual actions that are pro-
duced [Rolls, 2013]. Because the flexibility is necessary
for the adaptation, the AOC is also adopted in PAOC
to increase the flexibility and hence the adaptation of
the agent, namely, a robot. Therefore, inspired by the
appraisal theory and the constructive theory, this paper
advocates that PAOC is an appropriate cognitive archi-
tecture that a mobile robot needs for navigation adap-
tation.

The second inspiration from emotion theories relates
to how a reasoning mechanism works, e.g. instrumental
learning theory. The instrumental learning theory indi-
cates that a reasoning mechanism should work through
interactions between an agent and its environment. As a

result, the agent would learn to associate their behaviour
with reinforcers or outcomes [Rolls, 2013].

Learning Classifier Systems (LCSs), a machine learn-
ing technique, learns knowledge through interactions as
the instrumental learning theory suggests. An LCS
is a rule-based technique that learns “if-then” rules
through interactions between the learning agent and
its environment. The LCS rules are updated based
on a reinforcement learning process that assigns re-
wards from the environment. Based on various up-
date criteria of the reinforcement learning process, the
LCS s have two major categories: Accuracy-based Learn-
ing Classifier System (XCS ) and Strength-based Learn-
ing Classifier System [Urbanowicz and Moore, 2009;
Urbanowicz and Browne, 2017]. XCS agents update the
worth of the rules based on the accuracy of the predic-
tion of these rewards. In contrast, Strength-based Learn-
ing Classifier System agents’ updates are based on the
value of the rewards. A XCS agent is to be adapted to
generate accurate, maximally general rules to represent
PAOC knowledge such that the learned rules could apply
the same hyperparameters to similar scenarios, where
they are appropriate. However, the standard approach
of XCS tends to generate overgeneral rules (see Section
3.5). Therefore, an amendment to introduce an addi-
tional accuracy pressure, termed the mitosis approach,
is needed for a better algorithm (see Section 4).

The aim of this paper is to develop an emotion-
inspired cognitive architecture for adaptive path-
planning tasks for a mobile robot. The first objective of
this paper is to provide a cognitive architecture, PAOC
knowledge, that will be beneficial to adaptive path-
planning tasks through the hyperparameter adjustment
approach. PAOC knowledge will guarantee a valid path
generation from a path-planning module. The learned
PAOC knowledge, which is to be achieved by a reason-
ing mechanism, will replace hand-coded mappings that
could introduce human bias. The second objective is
to apply an accuracy pressure to XCS in the reason-
ing mechanism for the robot to learn PAOC knowledge.
The novel mitosis approach (see Section 4) will intro-
duce accuracy pressure into the standard approach of the
XCS algorithm to amend over-generalization pressure
during the algorithm’s evolutionary processes. The mi-
tosis approach will boost the XCS algorithm’s learning
ability in learning PAOC knowledge in terms of predic-
tion accuracy, pattern robustness and pattern accuracy.
The third objective is to interpret the learned, quali-
fied PAOC knowledge. After visualisation, the qualified
PAOC knowledge can provide insight into what the robot
perceived in the navigation scenario.



(a) Ground Truth Map (b) Robotic Perception
Map 1

(c) Robotic Perception
Map 2

(d) Representation from
Learned Knowledge

Figure 1: Different Representations of Willow Garage Office Environment.
(a) Environment Viewed in Gazebo (targeted navigation path is illustrated by black arrows); (b) Inflation Radius
(IR) = 0.1 m; (c) IR = 0.8 m, (maximum value in this paper.) (IR = 5.5 m is the default value of the navigation

package); (d) Learned IR Patterns (the yellow cuboids, see Section 5.3), for target path (a).

2 Related Work

Emotions have been shown to be beneficial to robotic
navigation scenarios due to the similarity between robots
and biological agents in the decision-making process and
the reward-assignment process [Moerland et al., 2018;
Sequeira et al., 2014]. Lee-Johnson introduced arti-
ficial emotional modules into a mobile robot’s hybrid
architecture[Lee-Johnson and Carnegie, 2010]. The
classes of artificial emotions are pre-set and hand-coded
as Fear, Anger, Happiness and Sadness. Artificial emo-
tions affected an obstacle distance function, which di-
rectly impacted the navigation performance. The robot
had fewer collisions and more exploration, yet longer
path times and slightly slower speed. However, this ap-
proach introduced human bias into the artificial emo-
tional modules by hand-coding functions.

Tsankova proposed a robotic navigation architecture
with a combination of artificial immune networks and
emotion mechanisms [Tsankova, 2009]. Fear is intro-
duced by the immune networks into a short-term mem-
ory. Experiments showed that the architecture increases
the probability of negotiating some closed-loop situa-
tions. This approach also requires hand-coding emotion
mechanisms.

Williams proposed an emotion inspired adaptive path-
planning cognitive architecture without introducing hu-
man bias [Williams et al., 2015; Williams, 2016]. The
architecture automatically learned mappings between
perception states, emotional states, and action states
through a reinforcement learning approach. The learned
mappings replaced the hand-coded mappings that could
introduce human bias. After training, a robot would
move faster in a “happy” state, and the robot would have
fewer collisions in a “fear” state. However, the number
of learned heterogenic emotion states was limited.

3 Preliminaries

3.1 Experimental Scenarios

Experiments were conducted in the Willow Garage Of-
fices (see Figure 1.a), which is a simulation environment

sustained by a Robotic Operation System backend en-
gine, the Gazebo simulator [Williams et al., 2015]. A
mobile robot navigates along a targeted path (see Figure
1.a), which is separated into 31 segments. Each segment
is contained in a 3m by 3m square area, also termed a
PAOC window. Although it is not a necessary require-
ment, each PAOC window is the same size as the local
perception map in the ROS path-planning module to
facilitate the analysis of the results. A PAOC window
is the navigation environment of a scenario (see defini-
tion of scenario in Section 1). Thus, the segmentations
ensured that the 31 scenarios contain various territories
(see Figure 1), such as wide-open areas, door-way areas,
long narrow corridors and irregular territories.

The targeted mobile robot is Pioneer [Williams et al.,
2015], which is equipped with a LIDAR, front and rear
bump sensors, and sonars. Three sources of Gaussian
noise are added into the LIDAR, the sonars, and the
location perception of the Pioneer to simulate a real-
world environment. The common ROS navigation stack
[Williams, 2016] was applied as the path-planning mod-
ule. The navigation task of a scenario is to require the
path-planning module to generate a path to a goal po-
sition. Although the architecture is capable of operat-
ing in the physical world, repetition for statistical anal-
ysis is too time-consuming, so tasks were conducted in
the simulation environment. Because the physical world
may contain different noise and uncertainty, robustness
is considered in the performance analysis (see Section
5.3).

The path-planning module’s admissible behaviours
largely rely on hyperparameters, as described in Sec-
tion 1. These hyperparameters include inflation ra-
dius, cost factor, publishing frequencies and so on [Ei-
tan, 2018]. Among these hyperparameters, inflation ra-
dius has a dominant effect on admissible behaviours of
the path-planning method. The inflation radius spec-
ifies an obstacle-spreading distance from obstacles [Ei-
tan, 2018], and this hyperparameter is critical to the
results of the path-planning method: whether the path-
planning method can generate a path within the cur-



rent scenario or not. This is because different values
of the inflation radius will result in different perceived
environments of the same scenario, especially in narrow
spaces (see Figure 1.b, 1.c and 1.d). An overlarge value
of inflation radius (e.g. 0.8 metre) will fill space around
obstacles with large inflation (see Figure 1.c). Hence,
narrow spaces, where the path-planning method should
be able to generate a path through, will be considered as
being occupied by an obstacle as well. Door-way areas
in the scenario No.4 and No.24 (see Figure 7.b and 7.h)
are such narrow spaces where the path-planning method
could fail to generate a valid path through these areas
(see Figure 1.c).

3.2 Knowledge-encapsulated PAOC

Figure 2: Relationship between XCS Classifier, PAOC,
and ROS Navigation Package.

PAOC knowledge seeks to encapsulate the contin-
gences between hyperparameters and scenarios based on
its semantic origin (see Section 1). A PAOC is a four-
tuple containing different elements of hyperparameters
and scenarios (see Figure 2). The first and second at-
tributes of a PAOC are for the Planning part, which
contains the goal position of the navigation task. Be-
cause a goal position is kept in an orthogonal coordinate
system (an x-axis-and-y-axis plane), the two attributes
are needed. The third attribute is for the Action part,
which is assigned to a hyperparameter, inflation radius.
This hyperparameter is scaled by a modifier axis. The
fourth attribute is for the Outcome part, which repre-
sents the result of a path-planning method The value
of one represents a success of generating a valid path to
the goal (the first and second attributes) under the value
of chosen inflation radius (the third attribute). Other-
wise, the value of zero represents a failure. Therefore, a
PAOC represents a specific contingency between a value
of inflation radius and a specific scenario. For example,
a PAOC of (1, 3, 0.3, 1) means that the path-planning
module can successfully generate a path to the goal po-
sition of (1 metre, 3 metres) if the inflation radius is 0.3
metre.

In addition, a four-tuple of a PAOC can be visualised
in a three-dimensional space, termed a PAOC space (see

examples in Figure 6 and 7). The axes of the first three
attributes (the x-axis, y-axis and modifier axis) con-
struct the PAOC space. The fourth attribute of a tuple
is indicated by the colour of the points. Blue is for the
value of one and red is for the value of zero. Therefore,
a PAOC is visualised as a spatial, colourful point in the
PAOC space (see examples in Figure 6.c and Figure 6.e).

PAOC datasets are needed for a reasoning mech-
anism to generate a more generalized scenario-and-
hyperparameter-encapsulated knowledge than a specific
PAOC. For each PAOC window, a collected PAOC
dataset contains 800 PAOCs, which can be adjusted to
fit the granularity required in the domain. As shown in
Figure 6.c and Figure 6.e, PAOC dataset contains inac-
curate PAOCs, which is a challenge to XCS algorithms
as they aim to generate accurate rules.

3.3 PAOC Application of XCS Algorithm

The rule-based XCS algorithm is applied to learn rules,
produce generalized, accuracy knowledge and detect pat-
terns from PAOC datasets. Each XCS rule contains a
condition-action pair, and the rule is termed a classifier
when complemented by statistics regarding its worth to
the system. Initially, the condition part of a classifier
covers the Planning and Action of PAOC, and the ac-
tion part predicts the Outcome of the PAOC (see Fig-
ure 2 and Section 3.2). During training, classifiers will
receive feedback from the environment. The feedback
includes reward, if their action parts correctly predict
the Outcome of a PAOC instance. Otherwise, classi-
fiers will receive a punishment. Classifiers should evolve
toward accurate, maximally general rules, which cover
as many PAOC instances as possible and also predict
the Outcome accurately. Therefore, the condition parts
of these accurate, maximally general classifiers contain
accurate, maximally general PAOCs knowledge, termed
PAOC patterns or Inflation Radius (IR) patterns (see
Section 5.3). Because the PAOC patterns can be visu-
alised in the PAOC space as cuboids, a qualified PAOC
pattern could represent what a robot perceives in the
environment, e.g. space occupied by an open path or
obstacles (see Section 5.3).

3.4 Main Loop of Standard Approach of
XCS algorithm

An XCS algorithm agent learns classifiers by its inter-
actions with an environment in its iteration loops: per-
ception of a current state from the environment, exe-
cution of a chosen action to the environment, and re-
ceiving a reward from the environment (see Figure 3).
At the beginning of an iteration loop, the XCS agent
perceives a current state, which is a niche from the envi-
ronment, as a perception. Then, the XCS agent initiates
its matching method to choose classifiers from the pop-
ulation ([P ]). The niche-coverage of the condition part



of the chosen classifiers must be able to cover the per-
ception. If there is no classifier in [P ] that meets this
requirement, the covering method will be activated to
generate a perception-covered classifier. The chosen clas-
sifiers or the perception-covered classifier form a match
set ([M ]). As an iteration loop progresses, the selection
method chooses an action from the available actions,
which come from the classifiers in [M ]. Classifiers with
the chosen action in [M ] form an action set ([A]). After
the execution of the chosen action, the agent will receive
a reward from the environment. Based on the reward,
classifiers in [A] are updated and returned to the [P ] at
an end of the iteration loop. In addition to these meth-
ods, a Genetic Algorithm (GA) method will be activated
conditionally within [A] to generate new classifiers.

Figure 3: Standard Approach in XCS algorithm’s Learn-
ing Processes.

3.5 Overgeneralized Tendency of XCS
Algorithm

XCS algorithms are applied as the reasoning mechanism
for this study. However, the standard approach of an
XCS suffers from an over-generalization tendency. That
is, the condition part of a classifier tends to extend its
niche-coverage. This tendency is rooted in Wilson’s gen-
eralization hypothesis [Wilson, 1995]. The generalization
hypothesis suggests that XCS algorithms have a general-
ization pressure, which is an intrinsic tendency to evolve
accurate, maximally general classifiers. Butz also con-
firmed the existence of the generalization pressure on
Boolean Multiplexer Problems [Butz et al., 2004]. In ad-
dition, Butz noted that the generalization pressure orig-
inates from interactions between niched evolution (i.e.
GA in [A]) and panmictic deletion (i.e. removal of ex-
cess rules from [P ]). In niched evolution, the classical GA
of the standard XCS creates a much stronger generalisa-
tion pressure than specification pressure. As a result, the
over-generalization tendency causes the following prob-
lems:

1 An accurate classifier lacks robustness to maintain
its accurate state;

2 Classifiers tend to be stuck at a local optimum,
where those classifiers stop evolving toward maxi-
mal general and accurate classifiers.

The overgeneralized tendency of XCS algorithms needs
an amendment to improve the achievement of maximal

general and accurate classifiers.

4 Method

As described in the section 3.5, the overgeneral pres-
sure tends to produce overgeneral classifiers, which mix
accurate niche-coverage with inaccurate niche-coverage.
The XCS algorithm lacks the ability to distinguish over-
general classifiers from other inaccurate classifiers. The
standard approach also lacks the ability to distinguish
accurate niche-coverage from inaccurate niche-coverage
in overgeneral classifiers. As a consequence, qualified
classifiers are rare, especially in a noisy environment.

To amend the overgeneral pressure that frequently
dominates the evolutionary processes of XCS, this pa-
per proposes a novel accuracy pressure. The mitosis ap-
proach is inspired by the biological cell’s mitosis proce-
dure. In the biological mitosis procedure, an original
cell divides into two new cells, and mother chromosomes
replicated are separated into two daughter nuclei. Sim-
ilarly, the proposed artificial mitosis method will gener-
ate children classifiers aiming to inherit accurate niche-
coverage from a parent classifier but abandon inaccurate
niche-coverage. As training progresses, the accurate chil-
dren classifiers will eventually replace their inaccurate
parents in a classifier population. As a result, the mi-
tosis approach is anticipated to increase the accuracy of
the entire classifier population.

4.1 Mitosis Method

Figure 4: Mitosis Approach in XCS algorithm’s Learn-
ing Processes.

Figure 5: Mitosis’ Two-step Procedure.

The mitosis method is added into XCS for the mitosis
approach (refer Figure 4, and see the standard coun-
terpart in Figure 3). Structurally, the mitosis method is
parallel to the updating method, which updates the pop-
ulation according to a reward. Yet the mitosis method
needs to be activated before an execution of the updat-
ing procedure. This is because the updating method will



update and affect accuracy elements of overgeneral clas-
sifiers, from which the mitosis method could generate
more accurate classifiers.

A classifier’s generation process takes two steps in the
mitosis method (see Figure 5). Firstly, the mitosis-
parents-selection procedure chooses qualified overgeneral
classifiers from [A]. All the qualified overgeneral classi-
fiers are denoted as mitosis parents and are preserved
in mitosis parent set ([MiP ]) waiting for the second
step. The second step, mitosis-children-generation pro-
cedure, will generate new classifiers (denoted as mitosis
children), and thus insert them into [P ]. The proce-
dure removes inaccurate niche-coverage from the mitosis
parents and preserves accurate niche-coverage and other
accurate elements for the mitosis children. These accu-
rate mitosis children in [P ] create the accurate pressure
to amend the overgeneralized pressure in [A].

4.2 Mitosis-Parents-Selection Procedure

algorithm 1 Mitosis Parents Selection

Inputs: Reward R, Action set [A], Mitosis Parents
Set [MiP ], a classifier cl, a classifier’s accu-
racy cl.acc, a classifier’s predicted reward cl.prd,
a preset difference threshold of predicted-reward
threshold.prd.diff .

Outputs: Select qualified mitosis parents.
1: function Select Mitosis Parents(R, [A])
2: [MiP ]← empty
3: for cl in [A] do
4: if cl.acc > threshold.acc and cl.prd >
threshold.prd then

5: if |cl.prd| < |R| and |cl.prd − R| >
threshold.prd.diff then

6: [MiP ]← cl.id
7: end if
8: end if
9: end for

10: return [MiP ]
11: end function

The mitosis-parents-selection procedure identifies mi-
tosis parents because they represent the overgeneralized
pressure around optimum solutions. The mitosis par-
ents must meet three requirements (see Algorithm 1).
Firstly, mitosis parents are classifiers that make the cur-
rent incorrect prediction in the current iteration. This
will directly separate inaccurate classifiers from accurate
classifiers. Secondly, mitosis parents must have achieved
the maximum accuracy (threshold.acc) before this it-
eration. This requirement will filter overgeneral classi-
fiers from the rest of the incorrect classifiers. Thirdly,
mitosis parents have to reach the value of the max-
imum reward (threshold.prd). This requirement at-

tempts to identify qualified overgeneral classifiers that
are around optimum solutions. If a classifier’s abso-
lute value of a predicted reward (cl.prd) has achieved
the value of the maximum reward, this classifier is more
likely to reach the global optimum solution than those
who have not. If [MiP ] is empty, the next procedure,
the mitosis-children-generation procedure, will not be ac-
tivated. Therefore, the mitosis-parents-selection proce-
dure potentially increases the efficiency of the mitosis
method by focusing on qualified overgeneral classifiers.
In addition, without this procedure to filter out unquali-
fied classifiers, the mitosis method risks the introduction
of an undesirable over-specified pressure into [P ].

4.3 Mitosis-Children-Generation
Procedure

algorithm 2 Mitosis Devision

Inputs: An Individual Mitosis Parent cl, Stituation σ,
New Generation’s Gene Set [Gene]

Outputs: Target: Give birth to mitosis children
through mitosis process

1: function Mitosis Execution Process(cl, σ )
2: [Gene]← Chromosome Morphing(cl, σ)
3: [NewBorn]← Telophase(cl, [Gene] )
4: return [NewBorn]
5: end function

The mitosis-children-generation procedure passes ac-
curate elements from mitosis parent to children classi-
fiers. If there are qualified mitosis parents in [MiP ],
the mitosis-children-generation procedure will activate
a mitosis-children-generation loop. In this loop, each
mitosis parent in [MiP ] generates its own children
classifiers by a procedure, termed the mitosis-division
procedure This procedure contains two sub-procedures:
chromosome-morphing procedure and telophase proce-
dure (see Algorithm 2).

The chromosome-morphing procedure generates an ac-
curate condition part for children classifiers by detecting
(and thus removing) inaccurate niche-coverage within
the mitosis parent. The detecting is based on overlaps
between the current perception and the niche-coverage
of the condition part of mitosis parent. Because the
mitosis parent is inaccurate under the current percep-
tion, these overlaps must contain an inaccurate niche-
coverage. Thus, condition parts that have removed one
of the overlaps have a more accurate niche-coverage for
the mitosis child.

The telophase procedure combines every part of a clas-
sifier into the new mitosis child. The condition part has
been generated by the chromosome-morphing procedure.
The action part directly inherits from the mitosis par-
ent. The statistics of children classifiers also inherit from



their parent, except numerosity and experience. The nu-
merosity specifies the number of copies of a classifier.
The experience tells how many times a classifier has been
activated. In this procedure, these two statistics are re-
set to their initial values of one.

5 Result and Discussion

5.1 Result

The experiments show that the emotion inspired cogni-
tive architecture was able to increase navigation adapta-
tion of the mobile robot. The cognitive architecture of
learned PAOC patterns was able to generate valid paths
in all 31 navigation scenarios (see Figure 1.d and Sec-
tion 5.2). PAOC patterns, the knowledge-encapsulated
cognitive architecture, were visualised for interpretation
(see Section 5.3). Experiments also showed that the emo-
tion inspired reasoning mechanism applied by XCS algo-
rithms was capable of learning PAOC knowledge in the
31 navigation scenarios. The mitosis approach of XCS
algorithm performed better than the standard approach
on almost all of the 31 navigation scenarios in terms of
prediction accuracy (see Section 5.2), pattern robustness
(see Section 5.3), and pattern accuracy (see Section 5.3).

5.2 Quantitative Analysis

Quantitative analysis is based on the prediction accuracy
of learned PAOCs. The prediction accuracy measures
the ratio of the number of correctly predicted PAOC in-
stances to the number of all instances in a PAOC dataset.
The standard XCS approach provides the benchmark for
the mitosis approach proposed. A one-hidden-layer neu-
ral network is included to demonstrate potential interfer-
ences from the PAOC datasets, because these datasets of
various scenarios contain different numbers of inaccurate
instances.

The quantitative analysis of prediction accuracy high-
lighted that the mitosis approach achieved better pre-
diction accuracy than the standard approach (see Table
1). The mitosis approach had statistically significant im-
proved prediction accuracies in 23 of the 31 navigation
scenarios based on two-tailed T-test with 0.05 P-Value

(see Table 1, each navigation scenario run 30 trails). In
the remaining eight navigation scenarios, prediction ac-
curacies were not significantly different between the two
approaches, yet the mitosis approach achieved a higher
value of the mean of prediction accuracy in seven of these
eight scenarios and a slightly worse performance in one
scenario. As the mitosis approach had overall better two-
tailed performances, this also indicated that the accuracy
pressure that was introduced by this method could effec-
tively amend the overgeneralized tendency of the stan-
dard XCS algorithm.

5.3 Inflation Radius Pattern Analysis

A major advantage of the two XCS approaches over the
applied neural network is that the learned knowledge of
the XCS approaches is easy to interpret. The neural net-
work learns knowledge through matrix modules, in which
mappings and weights usually require extra efforts to in-
terpret. In contrast, XCS preserves knowledge in rules,
where the “if-then” structure is comprehensible. In addi-
tion, because PAOC knowledge is directly encoded into
XCS rules (see Section 3.3 and Figure 2), learned, qual-
ified PAOC knowledge, termed PAOC patterns, can be
conveniently harvested from a qualified classifier for vi-
sualisation.

PAOC patterns were visualised as cuboids in the three-
dimensional PAOC Space(see Section 3.2) for interpre-
tation (see Figure 6 and 7). A shape of a cast from
a pattern to the x-axis-and-y-axis plane covers the tar-
geted area within the navigation environment that these
patterns can apply. The length of cast from a pattern
to the modifier axis indicated an inflation radius value,
which is what the path-planning module applies to the
targeted area. Therefore, patterns provide more gen-
eralized knowledge than specific PAOCs. Besides, the
PAOC patterns also are also called Inflation Radius (IR)
patterns, because these patterns describe the learned in-
flation radius distribution on the x-axis-y-axis plan. Ide-
ally, four types of IR patterns could be generated by XCS
algorithm (see Table 2). Specifically, TP and TN pat-
tern advocate values of inflation radius for open space,
and FP and FN pattern work for space that contains

Table 1: Statistics of The Two Approaches and The Standard One-hidden-layer Neural Network

Scenario ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Mean 1 0.836 0.909 0.902 0.823 0.818 0.875 0.777 0.798 0.826 0.814 0.847 0.805 0.812 0.894 0.940 0.886
Mean 2 0.826 0.901 0.892 0.814 0.808 0.866 0.760 0.779 0.813 0.816 0.834 0.770 0.791 0.860 0.940 0.868
Mean 3 0.800 0.851 0.840 0.732 0.721 0.787 0.644 0.706 0.641 0.630 0.614 0.688 0.611 0.858 0.836 0.807
P value 0.005 0.009 0.004 0.117 0.159 0.022 0.002 0.000 0.005 0.704 0.002 0.000 0.006 0.000 0.786 0.000

Scenario ID 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Mean 1 0.909 0.926 0.923 0.925 0.886 0.918 0.911 0.836 0.805 0.819 0.837 0.800 0.772 0.805 0.857
Mean 2 0.904 0.918 0.908 0.914 0.882 0.912 0.900 0.818 0.785 0.805 0.824 0.782 0.762 0.797 0.838
Mean 3 0.897 0.904 0.922 0.914 0.841 0.877 0.827 0.747 0.633 0.764 0.703 0.681 0.766 0.690 0.796
P Value 0.090 0.009 0.000 0.000 0.071 0.005 0.019 0.014 0.026 0.003 0.014 0.001 0.070 0.154 0.002
1 Mean 1: mean value of prediction accuracies of the mitosis approach for 30 trials.
2 Mean 2: mean value of prediction accuracies of the standard approach for 30 trials.
3 Mean 3: mean value of prediction accuracies of the standard one-hidden-layer neural network for 30 trials.
4 P value: P-value of prediction accuracies the mitosis and standard approach by the two-tailed T-test among 30 trials.
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Figure 6: Two Types of Discovered IR Patterns - Scenario No.7, Mitosis Approach
Global Perception Map: a; Local Zoom Map: b (targeted area shown with the green grid); TP pattern: yellow

cuboids, TN pattern: purple cuboids; plan view: c, e; diagonal view: d, f.

obstacles.

Table 2: Confusion Matrix of IR Patterns

True Occupancy
Open Spaces Obstacles

(True) (False)
Open Spaces TP Pattern FP Pattern

Classifier (Positive) (True Positive) (False Positive)
Prediction Obstacles FN Pattern TN Pattern

(Negative) (False Negative) (True Negative)

Experiments show that the proposed cognitive archi-
tecture was capable of being applied to various territo-
ries. The 31 navigation scenarios contained various ter-
ritories, such as wide-open areas, long narrow corridors,
door-way areas and irregular territories. Four naviga-
tion scenarios are selected as examples for three typical
territories in Figure 6 and Figure 7. Navigation scenario
No.7 was for a long corridor with 45-degree orientation
(see Figure 6.a, and green grid in Figure 6.b.). Scenario
No.28 was for an irregular territory (see Figure 7.b). Sce-
nario No.4 (see Figure 7.h) and No.24 (see Figure 7.n)
were for door-way areas.

Experiments show that the mitosis approach per-
formed better than the standard approach to learn valid
IR patterns in terms of pattern robustness and pat-
tern accuracy. Firstly, patterns were more frequently
achieved by the mitosis approach than the standard ap-
proach. The pattern robustness refers to the frequency
of valid IR patterns which can be harvested at the end
of a learning process. An example is their performance
comparison in navigation scenario No.7 (see Figure 6).
Patterns aim to cover the corridor without a gap. The
45-degree orientation of the corridor creates a challenge
for two approaches to generate accurate patterns, which
will have an accurate coverage. The coverage require-
ment is similar to filling a trapezoidal space with cubes
that can be skewed to align the axes. Thus, gaps be-
tween the cubes are difficult to avoid, and connected
patterns without a gap are more accurate than patterns
with gaps. Based on the performances of TP pattern in
the total 30 trials repetition, the mitosis approach over-
came this challenge 15 times, and the standard approach
made it 7 times.

Secondly, patterns that were achieved by the mitosis

approach are more accurate than that of the standard
approach. Pattern accuracy can be judged by how accu-
rately a pattern covers the targeted area in the percep-
tion map, hence a global optimum solution is patterns
that can accurately cover the targeted area. The mitosis
approach was able to achieve a global optimum solution
in complex territories, e.g. Scenario No.4, No.24 and
No.28, where the standard approach failed (see discus-
sions in the next two paragraphs). This suggests that
the mitosis approach overcame two problems caused by
the overgeneralization tendency of the standard XCS al-
gorithm (see Section 3.5):

1 Mitosis approach provides an accuracy pressure that
keeps accurate classifiers in their accurate states;

2 This accuracy pressure drives the evolutionary
methods toward maximally general and accurate
classifiers.

The first point was shown in irregular territories, such
as Scenario No.28. In Scenario No.28, TN patterns of
the mitosis approach reached the global optimum solu-
tion because of their accurate, full coverage (see Figure
7.c). In contrast, TN patterns of the standard approach
only reached local optimum solutions because of their
partial coverage (see TN patterns learned by the stan-
dard approach in three different trials in Figure 7.d, 7.e,
and 7.f respectively). It is worth noticing that the com-
bination of three local optimum solutions of the standard
approach could provide the global optimum solution as
in the mitosis approach. This also suggests that the
standard approach has the potential to generate all the
accurate rules that are necessary to represent a globally
optimum solution. But, the standard approach failed to
maintain some of these accurate rules in the later learn-
ing processes (see Section 3.4), hence this approach only
achieved the local optimum solutions in this scenario.
In contrast, the mitosis approach was able to maintain
accurate classifiers because of the introduction of the ac-
curacy pressure.

The second point was highlighted in doorway areas,
such as Scenario No.4 and No.24. Again, the mitosis
approach reached the global optimum solution and the
standard approach failed (see (i-l and o-r) in Figure 7).
Specifically, TN patterns of the mitosis approach con-
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(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 7: Discovered IR Patterns - Scenarios No.28, No.4 and No.24 per row respectively.
Note: unresolved gaps in paths learned by the standard approach compared with the novel approach, e.g. k vs i.
Mitosis: white background; Standard: grey background. Row 1 shows single optimal path vs three local paths.

Global Perception Map: Col. 1; Local Zoom Map: Col. 2; All columns plan views, except diagonal view: j, l, p, r.

tained the narrow doorways that the standard approach
was less likely to identify them (see comparisons between
(i) and (k), (j) and (l), (o) and (q), and (p) and (r) in
Figure 7). These suggest that the generalized pressure
in the standard approach is insufficient to learn accu-
rate classifiers from such territories. These also suggest
that the accurate pressure introduced by the mitosis ap-
proach can drive classifiers evolving toward maximally
general and accurate classifiers.

Patterns also highlighted a complementary relation-
ship. TP and TN patterns approach to the same ground
truth pattern in open scenarios in opposite directions. A
TP pattern approaches the ground truth pattern from its
“upper boundary”, because it tends to include neighbour
spaces, which belong to boundaries of two types of spaces
(see Figure 6.c and 6.d). Therefore, a TP pattern can
be considered as a maximally general, accurate pattern.
In contrast, a TN pattern becomes a “lower boundary”
of the ground truth pattern, because it tends to exclude
such neighbour spaces (see Figure 6.e and 6.f). There-
fore, a TN pattern can be considered as a minimally
specific, accurate pattern. Both of a maximally general,
accurate pattern and a minimally specific, accurate pat-
tern can be represented as the robot’s perceptions of the
environment.

However, both the mitosis approach and the standard
approach did not generate robust FP and FN patterns,
which predict space that is occupied by obstacles. FP

and FN patterns were relatively rarely generated in all
the 31 navigation scenarios. This is because of inaccu-
rate instances within scenarios. In these scenarios, the
obstacle-occupied space contains a high proportion of in-
accurate instances that advocate the open space. Due to
the lack of a sufficient amount of the accurate instances,
FP and FN patterns are much less frequently generated
compared with TP and TN patterns.

A success real-world application of this work depends
on the noise and uncertainty in the world. If the noise
has the same or less magnitude and the similar distri-
bution as in the simulations, the system can function
well. If the noise has larger magnitude or different dis-
tributions, then as long as the number of inaccurate in-
stances that are caused by the noise is under a known
accuracy limit, the system can still function because of
PAOC pattern robustness. Once the known accuracy
limit is exceeded, further experiments will be needed to
investigate the effects of the noise.

6 Conclusion

This paper proposed an emotion inspired cognitive ar-
chitecture for robotic adaptive path-planning without
hand-coded prior knowledge. Firstly, PAOC knowl-
edge is the basis of the proposed cognitive architecture,
which is beneficial to navigation adaptation. Experi-
ments showed that the architecture was able to generate
valid paths in all the 31 navigation scenarios. Secondly,



the PAOC patterns were automatically learned by the
novel algorithm, the mitosis approach, instead of hand-
coded hyperparameters for targeted scenarios as prior
knowledge. Learned PAOC patterns (IR patterns) are
plain and interpretable for humans. The visualisations
of TP pattern and FP pattern showed that these pat-
terns accurately describe open space within the naviga-
tion scenarios. Finally, our mitosis approach performed
better than the standard approach in terms of predic-
tion accuracy, pattern robustness and pattern accuracy
as the novel accuracy pressure amended the overgener-
alized tendency of the standard XCS algorithm.
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