TE WHARE WANANGA O TE UPOKO O TE IKA A MAUI

ZFB VICTORIA

EXAMINATIONS — 2009
MID-YEAR

COMP 426

Formal Software Development

Time Allowed: 3 Hours

Instructions: ~ Candidates should attempt all FIVE questions.
This exam will be marked out of 180.
Foreign language translation dictionaries are allowed.

A summary of Z mathematical notation is provided at the end of this
paper.

COMP 426 continued...

Question 1. Formal Specification in Z [30 marks]

Below is an initial specification for a queue of customers. The state schema Queue records
the customers currently in the queue. Initially, the queue is empty. Two operations are
provided: Join lets a new customer join the queue, and Leave removes the next customer
waiting in the queue.

[Customer] __Join
AQueue
in? : Customer
Queue
Fcontent : iseq Customer content’ = content (in?)
__InitQueue __Leave
Queue’ AQueue

.
content' = () out! : Customer

content = (out!) content’

(a) [2 marks] Explain why an injective sequence is used in the Queue schema.
(b) [6 marks] Calculate the preconditions for all operations.
You should show the calculation used to obtain the preconditions.

(c) [6 marks] Explain what it means for an operation to be robust, and show and explain
how robust versions of the operations can be defined using the Z schema calculus.

(d) [13 marks] Consider a system simulating a shop with several checkouts. Each checkout
has a queue associated to it, and shop customers can join and leave those queues.

[Checkout]
—_InitShop
Shop Shop’
Fqueues - Checkout — Queue ran queues’ C {InitQueue ® 6Queue '}

Use promotion to define Join and Leave operations on Shop that let customers join and leave
the queue from a given checkout. Make sure that a customer cannot be in several shop
queues at once.

COMP 426 2 continued...

Question 2. Data Refinement in Z [60 marks]

(@) [5 marks] Explain the relationships between data refinement, forward simulation, and
backward simulation in Z.

(b) [5 marks] Give the formal requirements for forward simulation of Z data types.
(c) [20 marks] Prove that forward simulation is transitive.

(d) [18 marks] The queue given in Question 1 is to be implemented using a fixed-sized,
cyclic array of customers. Two array indexes are used to indicate where the next customer
that joins the queue is stored in the array and where the next customer that is leaving the
queue is stored in the array. If one of those indexes reaches the end of the array, it should
“wrap-around” to the start of the array.

Write a Z specification for this more concrete queue of customers. Provide operations that
are compatible with the Join and Leave operations given in Question 1.

(e) [12 marks] Explain whether the cyclic queue you specified in part (d) is a data refine-
ment of the queue given in Question 1, and whether the queue from Question 1 is a data
refinement of your cyclic queue. In the case(s) you believe to be data refinements, give an
abstraction relation, and explain briefly how the abstraction relation is used to prove data
refinement.

COMP 426 3 continued...

Question 3. Object Z [30 marks]

The following Object Z class describes robot cars that can move around within a fixed
region. Each car has a position, represented by the pair (x,y), and a direction, represented
by (dx, dy).

_ Car
left : Z X Z — Z xZ

left(1,0) = (0,1) A left(0,1) = (—1,0)
left(—1,0) = (0, —1) A left(0, —1) = (1,0)

x,y:IN
dx,dy: {—1,0,1}

dxxdy =0ANdx+dy #0

__ INIT
dx =1

__Move
Ax,y)

x' = x+dx
Yy =y+dy
_ TurnL
A(dx,dy)

(dx',dy") = left(dx, dy)

_ TurnR
A(dx,dy)

(dx,dy) = left(dx',dy’)

(a) [2 marks] What can you say about the initial values of x, y and dy?

(b) [3 marks] Explain the meaning of A(x, y) and A(dx, dy) in Move and TurnL, respectively.
How would you express the same thing in Z?

(c) [5 marks] Calculate the precondition of Move, and explain how the interpretation of this
precondition differs from preconditions in Z.

(d) [20 marks] Suppose you wish to describe a system in which several cars can move
around within the same fixed region, with the constraint that no two cars can occupy the
same location. Explain how you would specify this system in Object Z, using and/or mod-
ifying the given class as appropriate and writing any new Object Z required.

COMP 426 4 continued...

Question 4. Object Z and CSP [30 marks]

Suppose you wish to restrict the behaviour of robot cars, as described in Question 4, to
eliminate redundant sequences of moves; more specifically, so that:

(i) a car cannot make a sequence of more than two moves in the same direction (i.e. the
sequences TurnL, TurnL, TurnL and TurnR, TurnR, TurnR are disallowed), and

(ii) acar cannot turnin one direcetion and then immediately turn in the opposite direction
(i.e. the sequences TurnL, TurnR and TurnR, TurnL are disallowed).

(a) [6 marks] Explain how you would modify the Object Z specification of the Car class
given in Question 3 to impose these restrictions.

(b) [8 marks] Show how you can describe these restrictions in CSP, and explain how this
can be combined with the Object Z specification of Car.

(c) [8 marks] Show (and explain) how the complete behaviour of a robot car can be spec-
ified in CSP, including the behaviour specified in Question 3 and the constraints stated
above.

(d) [8 marks] Show (and explain) how your answer to part (c) can be extended to describe
the complete behaviour of a collection of robot cars (as described in Question 3 (d), along
with the constraints stated above) in CSP.

COMP 426 5 continued...

Question 5. CSP Semantics [30 marks]

(a) [6 marks] Explain briefly the difference between trace refinement and failures-divergences
refinement in CSP.

Note that the types of the functions traces, failures and divergences are:

traces : CSP — P(seq Event)
failures : CSP — P(seq Event x IP Event)
divergences : CSP — IP(seq Event)

(b) [10 marks] Explain the difference between internal choice and external choice in CSP.
Explain why these operators are distinguished by failures-divergences refinement, but not
by trace refinement.

(c) [14 marks] The set of traces for the sequential composition of processes P and Q is
defined as:

traces[P; Q[= {trp : traces[P]; trg : traces[Q] |
(V &trp Ntrg # () Virp ™ (V') € traces[P]| o trp " tro}

(i) [4 marks] Explain the meaning of the v' and its role in this definition.

(ii) [10 marks] Use this definition to prove that sequential composition is associative with
respect to traces, i.e. that traces[(P; Q); R] = traces[P; (Q; R)].

2o o e o 3 o S o S o b S S S S o o S Sk o

COMP 426 6

