
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U IVUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2008

MID-YEAR

COMP 426

Formal Software Development

Time Allowed: 3 Hours

Instructions: Candidates should attempt all SIX questions.

This exam will be marked out of 100.

Foreign language translation dictionaries are allowed.

A summary of Z mathematical notation is provided at the end of this
paper.

COMP 426 continued...

Question 1. Formal specification in Z [16 marks]

Below is an initial specification for a computerised Dating Agency which keeps a list of
people seeking partners, and attempts to find potential partners on the basis of profiles
which people provide. The state records the people on the “list” and their profiles; initially
the list is empty. The system provides operations to add a new person, remove a person,
and propose a match between two people based on a “compatibility” function f .

[Person, Profile]

f : Profile × Profile"�
DatingAgency
list : �Person
profile : Person� Profile

dom profile = list

AddPerson
∆DatingAgency
p? : Person
a? : Profile

p? /∈ list
profile′ = profile ⊕ {p? 7→ a?}

InitDatingAgency
DatingAgency′

list′ = �
RemPerson
∆DatingAgency
p? : Person

p? ∈ list
profile′ = {p?}� profile

Match
ΞDatingAgency
p!, q! : Person

{p!, q!} ⊆ list
f (profile(p!), profile(q!)) > 0

(a) [2 marks] Explain why profile is defined as a partial function. What would be the effect
on the specification if profile was defined to be a total function?

(b) [4 marks] The above version of Match proposes a potential match by selecting an arbi-
trary pair of people from the list with a positive compatibility rating. Define a new version
of Match which attempts to find the two people on the list with the best possible match.
Explain your answer.

(c) [10 marks] Extend the system so that when a match is proposed, both people are
recorded as being “matched” and thus not considered in future applications of the Match
operation, and add a new Reject operation allowing either of the parties in a match to reject
the match. Once a proposed match has been rejected, both parties should again be consid-
ered by Match, but Match should not propose a match that has previously been proposed
and rejected. Show, and explain, any changes required to the state or to other operations in
the system.

COMP 426 2 continued...

Question 2. Data refinement in Z [20 marks]

The following is an implementation of the initial Dating Agency system in Question 1 (note
that iseq defines a set of injective sequences, i.e. sequences of unique elements):

DatingAgency1
names : iseq Person
data : seq Profile

#data = #names

InitDatingAgency1
DatingAgency1′

names′ = �
AddPerson1
∆DatingAgency1
p? : Person
a? : Profile

p? /∈ ran names
names′ = names� 〈p?〉
data′ = data� 〈a?〉

RemPerson1
∆DatingAgency1
p? : Person

∃ n1, n2 : iseq Person ; d1, d2 : seq Profile •
#n1 = #d1 ∧
names = n1 � 〈p?〉 � n2 ∧
data = d1� d2 ∧
names′ = n1 � n2 ∧
data′ = d1� tail(d2)

Match1
ΞDatingAgency1
p!, q! : Person

∃ i, j : dom names •
f (data(i), data(j)) > 0 ∧
p! = names(i) ∧ q! = names(j)

(a) [8 marks] Give an abstraction relation showing the relationship between DatingAgency
and DatingAgency1, and explain briefly how it is used to prove that DatingAgency1 is a data
refinement of DatingAgency.

(b) [6 marks] Show how you would extend the state of DatingAgency1 to accomodate the
change described in part (c) of Question 1, and modify your abstraction relation from part
(a) to reflect this change.

(c) [6 marks] Define a concrete version of Reject that operates on your extended state for
DatingAgency1, and give a brief justification that it is a correct data refinement of your
version of Reject from Question 1.

COMP 426 3 continued...

Question 3. Object-Z and CSP [24 marks]

Consider a ticket machine for a public transport system that allows either single or return
tickets to be dispensed to a number of destinations. The user can select the type of ticket
(single or return) and a destination. If enough coins have been inserted, the machine re-
turns a ticket.

(a) [8 marks]

Specify the ticket machine using an Object-Z class. The class should have operations for
accepting several types of coins, selecting the type of ticket, selecting a destination, and
dispensing a ticket. The order of the operations for selecting type and destination and
inserting coins should not be restricted. Also make sure that a ticket is only dispensed
when enough money has been inserted.

You can assume that price and ticket functions are given as follows. For a given destination
and ticket type, price returns the correct fare and ticket returns a ticket

[TICKET, DESTINATION]

TYPE ::= single | return

price : DESTINATION × TYPE"

ticket : DESTINATION × TYPE" TICKET

(b) [4 marks] Calculate the preconditions of all operations.

(c) [4 marks] How are preconditions in Object-Z and Z interpreted? What influence does
this have on refinement?

(d) [4 marks] Combine the above Object-Z class with a CSP process to obtain a ticket ma-
chine with the following behaviour: The machine requires the user to first select the desti-
nation and then select the ticket type. It then accepts coins. When the ticket price is reached,
a ticket is given out.

(e) [4 marks] Combine the above Object-Z class with CSP processes to obtain a ticket ma-
chine with the following behaviour: The machine requires insertion of the coins first, fol-
lowed by selection of ticket type, followed by selection of destination. If sufficient money
has been given, a ticket is given out. Make sure the machine does not deadlock, that is,
there is always an operation enabled.

COMP 426 4 continued...

Question 4. Semantics [12 marks]

(a) [2 marks] What are the main differences between operational and denotational seman-
tics?

(b) [4 marks] Explain how the properties of a programming/specification language affect
the kind of mathematical model used in defining denotational semantics. Illustrate your
answer using suitable examples.

(c) [6 marks] We say that two programs, S and T are:

• operationally equivalent, written S =op R, if for any initial state, S and T produce the
same computation (i.e. perform the same sequence of atomic steps, and pass through
the same sequence of states) when executed starting in any give initial state.

• Hoare equivalent, written S =H T, if for any precondition P and postcondition R,
either P { S } R and P {T } R both hold or neither of them holds.

(i) EITHER: Show that if S and T are operationally equivalent, then they are also
Hoare-equivalent.
OR: Give a counter-example to show that this is not the case.

(ii) EITHER: Show that if S and T are Hoare equivalent, then they are also opera-
tionally equivalent.
OR: Give a counter-example to show that this is not the case.

COMP 426 5 continued...

Question 5. Weakest preconditions and refinement [16 marks]

(a) [6 marks] Define the following properties of a statement S, in terms of its weakest
precondition semantics:

(i) monotonic (with respect to implication)

(ii) feasible (or strict)

(iii) terminating

(iv) disjunctive

(v) conjunctive

(vi) continuous

(b) [4 marks] Which of Dijkstra’s healthiness conditions are not required in the refine-
ment calculus? In each such case, explain why that property is not appropriate in a wide-
spectrum language, and give an example of a construct in the refinement calculus which
does not have that property.

(c) [3 marks] Define the weakest precondition for a specification statement, and show that
specification statements are conjunctive.

(d) [3 marks] Define the weakest precondition for sequential composition, and show that
sequential composition is monotonic with respect to refinement.

Question 6. Essay [12 marks]

Select a paper (or group of papers) you have read as part of COMP426. Give a brief sum-
mary of the paper(s), state the key ideas presented in the paper(s), illustrating them with
examples as appropriate, and discuss the significance and/or limitations of the results pre-
sented.

(You will not get credit for repeating material used in answers to other questions.)

COMP 426 6

