
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U IVUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2006

MID-YEAR

COMP 426

Formal Software Development

Time Allowed: 3 Hours

Instructions: Candidates should attempt all THREE questions.

This exam will be marked out of 100.

Foreign language translation dictionaries are allowed.

COMP 426 continued...

Question 1. Program Verification [38 marks]

Consider the following program, which sets r to the number of locations in the array seg-
ment a[1..n] whose value occurs again later in a[1..n]:

{pre: n ≥ 0}
r := 0;
i := 1;

while i ≤ n do {inv: 1 ≤ i ≤ n + 1 ∧ r = dups(a[1 . . n], i−1)}
j := i + 1;
s := r;
while j ≤ n ∧ s = r do

if a[i] = a[j] then
r := r + 1

fi;
j := j + 1

od;
i := i + 1

od

{post: r = dups(a[1 . . n], n)}

The loop invariant and postcondition are stated in terms of the function dups defined as:

dups(a[1 . . n], k) = # { p : 1 . . k | ∃ q : p+1 . . n • a[p] = a[q] }

where #s denotes the size of the set s.

Note that if a value occurs more than twice, then all but one occurrence is counted; for
example, if a is a four element array with a[1] = a[2] = a[3] = a[4], then dups(a[1 . . 4], 4) = 3.

(a) [6 marks] Show that the given loop invariant (inv) holds on entry to the outer loop, and
guarantees the given postcondition (post) on exit from the outer loop.

(b) [12 marks] Give a loop invariant that could be used to verify the inner loop. Explain
what your invariant says about the program variables, and give a brief justification for the
correctness of the loop in terms of this invariant.

This justification should give an informal argument to show that your invariant holds on
entry to the inner loop, that it is preserved by the body of the inner loop, and that it guar-
antees the appropriate postcondition on exit from the inner loop.

(c) [10 marks] Explain briefly how you would construct a formal verification of this pro-
gram using (i) Floyd’s inductive assertions method, and (ii) Hoare logic.

In answering this question, you should emphasise the main differences between the two
approaches and how this affects the structure of the proof. You are not required to construct
the proofs, except as needed to illustrate your answer, and you are not required to address
termination.

COMP 426 2 continued...

(d) [10 marks] The variable s was introduced solely to allow the program to be expressed
using the simple nested control structures available in the language of while programs. If
we added an exit statement to the language, which caused the program to exit from the
closest enclosing loop (like break in Java), we could express the program more simply as
follows:

{pre: n ≥ 0}
r := 0;
i := 1;
while i ≤ n do {inv: 1 ≤ i ≤ n + 1 ∧ r = dups(a[1..i − 1])}

j := i + 1;
while j ≤ n do

if a[i] = a[j] then
r := r + 1;
exit

fi;
j := j + 1

od;
i := i + 1

od

{post: r = dups(a[1..n])}

Discuss the effect that this modification would have on the verification of the program.

In answering this question, you should:

• Show the effect that this modification has on the invariant for the inner loop and your
informal justification of the correctness of the inner loop (as given in part (b));

• Explain the effect that the modification would have on a verification constructed us-
ing Floyd’s method (as described in part (c)); and

• Explain the effect that the modification would have on a verification constructed us-
ing Hoare logic (as described in part (c)).

COMP 426 3 continued...

Question 2. Semantics [34 marks]

In this course, we have seen a number of mathematical structures that can be used to repre-
sent the semantics of programs and specifications, including functions, relations and predi-
cate transformers, where functions and relations may be partial or total and may or may not
include special error values, and predicate transformers may be subject to various healthi-
ness conditions.

(a) [10 marks] Explain briefly the kinds of behaviour that can be represented (and distin-
guished) (i) using functions and (ii) using relations, and how this is affected by assump-
tions about totality and the existence of special error values.

(b) [8 marks] Explain briefly the healthiness conditions that Dijkstra imposed on the weak-
est precondition predicate transformers used to represent the semantics of programs in his
guarded commands language, and why he claimed that each was necessary.

(c) [8 marks] Most of Dijkstra’s healthiness conditions are dropped in the refinement cal-
culus. For each of Dijkstra’s healthiness conditions, either explain why it is retained in the
refinement calculus, or explain what behaviours are admitted by dropping the condition
and why it is desirable to allow such behaviours in a wide-spectrum language.

(d) [8 marks] Dijkstra defines wp for a do statement DO = do G → S od as:

wp(DO)(R) = ∃ k ∈ • Hk(R)

where Hk is defined inductively as:

H0(R) = ¬ G ∧ R
Hk+1(R) = G ∧ wp(S)(Hk(R)) ∨ H0(R)

Show that do statements preserve monotonicity (i.e. show that if S is monotonic, then so is
DO).

COMP 426 4 continued...

Question 3. Program Refinement and Equivalence [28 marks]

The refinement relation used in the refinement calculus is defined, for programs S and T in
the wide spectrum language, as follows:

S ⊑ T =̂ wp(S)(R) ⇒ wp(T)(R), for all postconditions R

(a) [5 marks] Show that refinement is transitive, and explain why this property is important.

(b) [5 marks] Show that if statements are monotonic with respect to refinement (i.e. show
that if S ⊑ S′, then if G → S [] H → T fi ⊑ if G → S′ [] H → T fi.

(c) [6 marks] Prove that the following law holds for all specification statements w :
[

P
/

Q
]

and guards G and H such that P ⇒ G ∨ H:

w :
[

P
/

Q
]
⊑ if G → w :

[
G ∧ P

/
Q

]
[] H → w :

[
H ∧ P

/
Q

]
fi

(d) [4 marks] Prove that the following law holds for all S, T and U:

if G → S ; U [] H → T ; U fi ≡ if G → S [] H → T fi ; U

You may answer this question either using relational semantics, or using weakest precon-
dition semantics and assuming that X ≡ Y means X ⊑ Y and Y ⊑ X. You do not need to
state the semantic definitions used, as long as the definitions you are using are clear from
your answer.

(e) [8 marks] Consider the following proposed law, where [] is interpreted as demonic
choice:

S ; (T [] U) ≡ (S ; T) [] (S ; U)

(i) Prove that this law holds in a relational semantic model.

(ii) Explain why the law does not hold in the weakest precondition semantic model used
in the refinement calculus, and provide a counter-example.

COMP 426 5

