
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW VICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2016

TRIMESTER 2

SWEN222

Software Design

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

Question Topic Marks

1. Object-Oriented Design 30

2. Functional Design & Contracts 30

3. Design Patterns I 30

4. Design Patterns II 30

Total 120

SWEN222 Page 1 of 20

Student ID: .

Question 1. Object-Oriented Design [30 marks]

Consider the following (incomplete) description for a simple board game called Dungeon.

“The game board is made up of twenty locations. Each location is adjacent to one or
more other locations. Each location is itself made up from one or more tiles which are
arranged into a grid where each tile has a specific position. Each location is either a
room, a corridor or an outside area. Rooms and corridors are either lit or unlit. An item
can be stored in a location on one or more tiles. Every item has a name and description.
Some items represent furniture and cannot be moved. All other items can be picked up
by one of the players.”

(a) [9 marks] Provide a class diagram covering those aspects of the game outlined in the description
above. Your diagram should contain at most nine classes.

SWEN222 Page 2 of 20

Student ID: .

(b) [9 marks] Provide suitable Class-Responsibility-Collaborator (CRC) cards describing the fol-
lowing classes from the game.

Board:

Player:

Location:

SWEN222 Page 3 of 20

Student ID: .

(c) [12 marks] Provide a straightforward Java implementation for each of the three classes in
part (b). You need only consider those aspects of the game described on Page 2. For exam-
ple, you do not need to implement player movement, the rules for game over, player input, or other
aspects not described. Your classes should include constructors and methods as necessary.

SWEN222 Page 4 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 5 of 20

Student ID: .

Question 2. Functional Design & Contracts [30 marks]

Consider the following class for representing a simple FIFO buffer:

1 class QueueBuffer {
2 private int[] items;
3 private int writePos;
4 private int readPos;
5

6 public QueueBuffer(int len) {
7 items = new int[len];
8 }
9

10 public boolean isFull() {
11 return writePos == items.length;
12 }
13

14 public boolean isEmpty() {
15 return readPos == writePos;
16 }
17

18 public void write(int item) {
19 items[writePos] = item;
20 writePos = writePos + 1;
21 }
22

23 public int read() {
24 int item = items[readPos];
25 readPos = readPos + 1;
26 return item;
27 }
28 }

(a) [4 marks] An important aspect of the functional programming paradigm is immutability. Briefly,
discuss what immutability means and whether or not QueueBuffer is immutable.

SWEN222 Page 6 of 20

Student ID: .

(b) This question is concerned with method side-effects.

(i) [4 marks] Briefly, discuss what is meant by the term side-effect free.

For each of the following methods, briefly discuss whether or not it is side-effect free.

(ii) [2 marks] QueueBuffer.isFull()

(iii) [2 marks] QueueBuffer.write(int)

(iv) [2 marks] QueueBuffer.read()

SWEN222 Page 7 of 20

Student ID: .

(c) [8 marks] Rewrite the QueueBuffer class to use a functional design.

SWEN222 Page 8 of 20

Student ID: .

(d) The question concerns the original implementation of QueueBuffer on page 6. For each
method below, provide appropriate preconditions and postconditions:

(i) [2 marks] QueueBuffer(int len)

REQUIRES:

ENSURES:

(ii) [2 marks] write(int item)

REQUIRES:

ENSURES:

(e) [4 marks] Give an appropriate class invariant that you would enforce for the QueueBuffer
class, and discuss how you would enforce the invariant.

SWEN222 Page 9 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 10 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 11 of 20

Student ID: .

Question 3. Design Patterns I [30 marks]

(a) This question is concerned with the OBSERVER pattern.

(i) [4 marks] Briefly, describe the problem being solved by the OBSERVER pattern.

(ii) [5 marks] Provide an appropriate class diagram which describes the OBSERVER pattern in an
abstract sense.

(Question 3 continued on next page)
SWEN222 Page 12 of 20

Student ID: .

(Question 3 continued)

(iii) [6 marks] A listener can be added to certain items that produce events. For example, alarms
may produce activation and deactivation events. Different kinds of listener can respond to these
events in different ways.

Sketch an implementation of these classes which uses the OBSERVER pattern.

(Question 3 continued on next page)
SWEN222 Page 13 of 20

Student ID: .

(Question 3 continued)

(b) This question is concerned with the COMPOSITE pattern.

(i) [4 marks] Briefly, describe the problem being solved by the COMPOSITE pattern.

(ii) [5 marks] Provide an appropriate class diagram which describes the COMPOSITE pattern in
an abstract sense.

(Question 3 continued on next page)
SWEN222 Page 14 of 20

Student ID: .

(Question 3 continued)

(iii) [6 marks] An XML Object has the form “<tag attrs>...</tag>”, where tag is the
object name, and attrs a sequence of zero or more attributes. Each attribute has the form
“attr=str”, where attr is the attribute name and str a string constant. An XML Object
may contain zero or more XML Objects within it. The following illustrates a simple example:

1 <project name="wyc">
2 <target name="compile">
3 </target>
4 <target name="test" depends="compile">
5 </target>
6 </project>

Sketch a Java implementation for representing XML Objects which uses the COMPOSITE pattern.

SWEN222 Page 15 of 20

Student ID: .

Question 4. Design Patterns II [30 marks]

You have been asked to design an implementation of the popular game Sokoban which uses a Graphi-
cal User Interface (GUI). In the game, the player uses the keyboard to move his/her character around
the board. The goal is to push crates into storage locations and, when every crate is placed in a
storage location, the game is over. The player’s character cannot move through crates or walls and
cannot push more than one crate at a time. The following illustrates how the game might look:

You intend to use the Model/View/Controller design pattern in your implementation:

SWEN222 Page 16 of 20

Student ID: .

(a) [5 marks] Briefly, discuss the features of the game that the Model component would be respon-
sible for.

(b) [5 marks] Briefly, discuss the features of the game that the View component would be responsible
for.

(c) [5 marks] Briefly, discuss the features of the game that the Controller component would be
responsible for.

SWEN222 Page 17 of 20

Student ID: .

(d) [5 marks] The DECORATOR pattern is often used when implementing a graphical user interface.
Briefly, outline how this pattern might be used in the Sokoban game.

(e) Someone suggested implementing a command-line version of the Sokoban game. This would
draw the board using a simple text-based user interface, rather than a graphical user interface.

(i) [5 marks] Briefly, discuss how the Model/View/Controller pattern makes it easier to add a
text-based user interface.

(ii) [5 marks] Briefly, discuss how implementing both command-line and GUI versions of Sokoban
might uncover issues with the separation of Model and View.

* * * * * * * * * * * * * * *

SWEN222 Page 18 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 19 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 20 of 20

