
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2016
TRIMESTER 2

SWEN222

Software Design

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

Question Topic Marks

1. Object-Oriented Design 30

2. Functional Design & Contracts 30

3. Design Patterns I 30

4. Design Patterns II 30

Total 120

SWEN222 Page 1 of 20

Student ID: .

Question 1. Object-Oriented Design [30 marks]

Consider the following (incomplete) description for a simple board game called Dungeon.

“The game board is made up of twenty locations. Each location is adjacent to one or
more other locations. Each location is itself made up from one or more tiles which are
arranged into a grid where each tile has a specific position. Each location is either a
room, a corridor or an outside area. Rooms and corridors are either lit or unlit. An item
can be stored in a location on one or more tiles. Every item has a name and description.
Some items represent furniture and cannot be moved. All other items can be picked up
by one of the players.”

(a) [9 marks] Provide a class diagram covering those aspects of the game outlined in the description
above. Your diagram should contain at most nine classes.

SWEN222 Page 2 of 20

Student ID: .

(b) [9 marks] Provide suitable Class-Responsibility-Collaborator (CRC) cards describing the fol-
lowing classes from the game.

Board:
Class: Board Responsibilities Collaborators
Store Locations in Grid Location

Player:

Class: Player Responsibilities Collaborators
Know items in Inventory Item
Ability to pick up item
Know current location Location
Know position in room

Location:

Class: Location Responsibilities Collaborators
Know tiles in location Tile
Know items store in location Item
Know adjacent locations Location

SWEN222 Page 3 of 20

Student ID: .

(c) [12 marks] Provide a straightforward Java implementation for each of the three classes in
part (b). You need only consider those aspects of the game described on Page 2. For exam-
ple, you do not need to implement player movement, the rules for game over, player input, or other
aspects not described. Your classes should include constructors and methods as necessary.

1 public class Board {
2 private Location[] locations;
3

4 public Board(Location[] locations) {
5 this.locations = locations;
6 }
7

8 public Location getLocation(int i) { return locations[i]; }
9 public int numberOfLocations() { return locations.length; }

10 }

1 public class Player {
2 private List<Item> inventory = new ArrayList<Item>();
3 private Location location;
4 private Point position;
5

6 public void setPosition(Location loc, Position pos) {
7 this.location = loc;
8 this.position = pos;
9 }

10

11 public Location getLocation() { return location; }
12 public Point getPosition() { return position; }
13 public void remove(Item item) { inventory.remove(item); }
14 public void add(Item item) { inventory.add(item); }
15 }

1 public class Location {
2 private Location[] adjacents;
3 private Tile[][] tiles;
4 private HashMap<Point, Item> items = new HashMap<Point, Item>();
5

6 public Board(Location[] adjacents, Tile[][] tiles) {
7 this.adjacents = adjacents;
8 this.tiles = tiles;
9 }

10

11 public Location getAdjacentLocation(Direction d) {
12 return adjacents[d.ordinal()];
13 }
14

15 public Location getTile(Point p) {
16 return tiles[p.getY()][p.getX()];
17 }
18

19 public Item getItemAtPosition(Point p) {
20 return items.get(p);
21 }
22

23 public void putItemAtPosition(Point p, Item i) {
24 int endX = p.getX() + i.getWidth();
25 int endY = p.gety() + i.getHeight();
26 for (int x = p.getX(); x < endX; ++x) {
27 for (int y = p.getY(); y < endY; ++y) {
28 items.put(new Point(x, y), i);
29 }
30 }
31 }
32

33 public void removeItem(Item i) {
34 items.values().removeAll(i);
35 }
36 }

SWEN222 Page 4 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 5 of 20

Student ID: .

Question 2. Functional Design & Contracts [30 marks]

Consider the following class for representing a simple FIFO buffer:

1 class QueueBuffer {
2 private int[] items;
3 private int writePos;
4 private int readPos;
5

6 public QueueBuffer(int len) {
7 items = new int[len];
8 }
9

10 public boolean isFull() {
11 return writePos == items.length;
12 }
13

14 public boolean isEmpty() {
15 return readPos == writePos;
16 }
17

18 public void write(int item) {
19 items[writePos] = item;
20 writePos = writePos + 1;
21 }
22

23 public int read() {
24 int item = items[readPos];
25 readPos = readPos + 1;
26 return item;
27 }
28 }

(a) [4 marks] An important aspect of the functional programming paradigm is immutability. Briefly,
discuss what immutability means and whether or not QueueBuffer is immutable.

An immutable class is one whose instances cannot be mutated (i.e. changed) after being constructed.
This means its contents do not change for the life of any instance of the class. Class QueueBuffer
is not immutable because its fields can be changed via the write() and read() methods. values
are

SWEN222 Page 6 of 20

Student ID: .

(b) This question is concerned with method side-effects.

(i) [4 marks] Briefly, discuss what is meant by the term side-effect free.

A method is side-effect free if it does not modify any state which existing before it was called,
does not perform any I/O (e.g. printing to System.out) and does not call any methods which
are not side effect free.

For each of the following methods, briefly discuss whether or not it is side-effect free.

(ii) [2 marks] QueueBuffer.isFull()

This is side-effect free as it does not change state

(iii) [2 marks] QueueBuffer.write(int)

This is not side-effect free as it modifies the fields items and writePos

(iv) [2 marks] QueueBuffer.read()

This is not side-effect free as it modifies the field readPos

SWEN222 Page 7 of 20

Student ID: .

(c) [8 marks] Rewrite the QueueBuffer class to use a functional design.

1 class FunctionalQueueBuffer {
2 private int[] items;
3 private int writePos;
4 private int readPos;
5

6 public FunctionalQueueBuffer(int len) {
7 items = new int[len];
8 }
9

10 private FunctionalQueueBuffer(int[] items) {
11 this.items = Arrays.copyOf(items,items.length);
12 }
13

14 public boolean isFull() {
15 return writePos == items.length;
16 }
17

18 public boolean isEmpty() {
19 return readPos == writePos;
20 }
21

22 public FunctionalQueueBuffer write(int item) {
23 FunctionalQueueBuffer r = new FunctionalQueueBuffer(items);
24 r.items[writePos] = item;
25 r.writePos = writePos + 1;
26 return r;
27 }
28

29 public Pair<FunctionalQueueBuffer, Integer> read() {
30 FunctionalQueueBuffer r = new FunctionalQueueBuffer(items);
31 r.readPos = readPos + 1;
32 return new Pair<>(r, items[readPos]);
33 }
34 }

SWEN222 Page 8 of 20

Student ID: .

(d) The question concerns the original implementation of QueueBuffer on page 6. For each
method below, provide appropriate preconditions and postconditions:

(i) [2 marks] QueueBuffer(int len)

REQUIRES: len >= 0

ENSURES: isEmpty() && (len == 0 || !isFull())

(ii) [2 marks] write(int item)

REQUIRES: !isFull()

ENSURES: !isEmpty()

(e) [4 marks] Give an appropriate class invariant that you would enforce for the QueueBuffer
class, and discuss how you would enforce the invariant.

items != null &&
0 <= readPos && readPos <= writePos && writePos <= items.length

SWEN222 Page 9 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 10 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 11 of 20

Student ID: .

Question 3. Design Patterns I [30 marks]

(a) This question is concerned with the OBSERVER pattern.

(i) [4 marks] Briefly, describe the problem being solved by the OBSERVER pattern.

A subject object needs to notify a set of observer objects every time an event occurs, but the
subject should not be coupled with the implementation of the observer.

(ii) [5 marks] Provide an appropriate class diagram which describes the OBSERVER pattern in an
abstract sense.

<<abstract>>
Subject

+ attach(Observer)
+ detach(Observer)
notify()

<<interface>>
Observer

+ update(Event)

ConcreteSubject

. . .

ConcreteObserver
. . .

observers
*

*

(Question 3 continued on next page)
SWEN222 Page 12 of 20

Student ID: .

(Question 3 continued)

(iii) [6 marks] A listener can be added to certain items that produce events. For example, alarms
may produce activation and deactivation events. Different kinds of listener can respond to these
events in different ways.

Sketch an implementation of these classes which uses the OBSERVER pattern.

1 abstract class Item {
2 private Set<Listener> listeners;
3

4 ...
5

6 public void attach(Listener listener) {
7 listeners.add(listener);
8 }
9

10 public void detach(Listener listener) {
11 listeners.remove(listener);
12 }
13

14 protected void notify(Event event) {
15 for (Listener listener : listeners) {
16 listener.update(event);
17 }
18 }
19 }

1 interface Event { ... }

1 interface Listener {
2 public void update(Event event);
3 }

1 class Alarm extends Item {
2 public void activate() {
3 notify(new ActivationEvent());
4 }
5

6 public void deactivate() {
7 notify(new DeactivationEvent());
8 }
9

10 class ActivationEvent implements Event { ... }
11 class DeactivationEvent implements Event { ... }
12 }

(Question 3 continued on next page)
SWEN222 Page 13 of 20

Student ID: .

(Question 3 continued)

(b) This question is concerned with the COMPOSITE pattern.

(i) [4 marks] Briefly, describe the problem being solved by the COMPOSITE pattern.

A composite object needs to store both simple objects and other composite objects in a tree-like
hierarchy, but should not be coupled to the implementation of any of these objects. A common
interface describes the behaviour of all objects that can appear in the hierarchy.

(ii) [5 marks] Provide an appropriate class diagram which describes the COMPOSITE pattern in
an abstract sense.

(Question 3 continued on next page)
SWEN222 Page 14 of 20

Student ID: .

(Question 3 continued)

(iii) [6 marks] An XML Object has the form “<tag attrs>...</tag>”, where tag is the
object name, and attrs a sequence of zero or more attributes. Each attribute has the form
“attr=str”, where attr is the attribute name and str a string constant. An XML Object
may contain zero or more XML Objects within it. The following illustrates a simple example:

1 <project name="wyc">
2 <target name="compile">
3 </target>
4 <target name="test" depends="compile">
5 </target>
6 </project>

Sketch a Java implementation for representing XML Objects which uses the COMPOSITE pattern.

1 class XMLObject {
2 private String name;
3 private Map<String, String> attributes;
4 private List<XMLObject> children;
5

6 ...
7

8 // Some recursive operation

9 public boolean containsName(String search) {
10 if (name.equals(search)) { return true; }
11 for (XMLObject child : children) {
12 if (children.containsName(search)) {
13 return true;
14 }
15 }
16

17 return false;
18 }
19 }

SWEN222 Page 15 of 20

Student ID: .

Question 4. Design Patterns II [30 marks]

You have been asked to design an implementation of the popular game Sokoban which uses a Graphi-
cal User Interface (GUI). In the game, the player uses the keyboard to move his/her character around
the board. The goal is to push crates into storage locations and, when every crate is placed in a
storage location, the game is over. The player’s character cannot move through crates or walls and
cannot push more than one crate at a time. The following illustrates how the game might look:

You intend to use the Model/View/Controller design pattern in your implementation:

SWEN222 Page 16 of 20

Student ID: .

(a) [5 marks] Briefly, discuss the features of the game that the Model component would be respon-
sible for.

Stores the current state of the game, provides an interface for manipulating this state (to be used by
the Controller), and ensures that any attempts to change the state are valid moves by encoding the
rules of the game.

(b) [5 marks] Briefly, discuss the features of the game that the View component would be responsible
for.

Displays the game view to the user given the necessary information about the state in the model, and
provides an interface for notifying (the Controller) when the user interacts with the display.

(c) [5 marks] Briefly, discuss the features of the game that the Controller component would be
responsible for.

Handles communication between the View and the Model by registering for notifications from the
View, translating these user interactions into calls on the Model, and notifying the View to update
its display when the Model is changed or an invalid interaction occurs.

SWEN222 Page 17 of 20

Student ID: .

(d) [5 marks] The DECORATOR pattern is often used when implementing a graphical user interface.
Briefly, outline how this pattern might be used in the Sokoban game.

The Decorator pattern can be applied to build composable GUI features by dynamically wrapping
existing GUI components to provide the same interface with some extended behaviour. For instance,
the scrollbar around the main GUI display could be implemented with a decorator wrapped around
a simpler window component.

(e) Someone suggested implementing a command-line version of the Sokoban game. This would
draw the board using a simple text-based user interface, rather than a graphical user interface.

(i) [5 marks] Briefly, discuss how the Model/View/Controller pattern makes it easier to add a
text-based user interface.

The part of the program that is specific to the command-line can just be a different implementation
of the View with the same interface, and then the Model and Controller do not need to be changed
at all. Not only is this easier, it makes it less likely that the two versions of the game will have
accidentally different behaviour.

(ii) [5 marks] Briefly, discuss how implementing both command-line and GUI versions of Sokoban
might uncover issues with the separation of Model and View.

If the Model and the View are not sufficiently decoupled then it will be difficult to just replace the
View, since the Model will depend on behaviour that is no longer present. This will help identify
places where the implementation details of the View have leaked into the Model.

* * * * * * * * * * * * * * *

SWEN222 Page 18 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 19 of 20

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 20 of 20

