
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2015
TRIMESTER 2

SWEN222

Software Design

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions
All questions are of equal value

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

Question Topic Marks

1. Software Design 30

2. Design by Contract 30

3. Software Design Qualities 30

4. Design Patterns 30

Total 120

SWEN222 Page 1 of 22

Student ID: .

Question 1. Software Design [30 marks]

Consider the following (incomplete) description for a simple board game called Land and Water.

“The game board is made up of 37 hexagonal territories. Each territory is adjacent to at
most six other territories. Each territory either represents land or water. Land territories
are further classified as plains, forests or mountainous regions. Forests contain a certain
number of trees and, when all trees are chopped down, automatically become plains.

Up to six players can play the game. Each player owns one or more territories and can
harvest resources of gold or wood by mining them or logging them. Players can spend
their resources by building houses or castles on territories they own.”

(a) [9 marks] Provide a class diagram covering those aspects of the game outlined in the description
above. Your diagram should contain at most eight classes.

SWEN222 Page 2 of 22

Student ID: .

(b) [9 marks] Provide suitable Class-Responsibility-Collaborator (CRC) cards describing three
classes from the game.

SWEN222 Page 3 of 22

Student ID: .

(c) [12 marks] Provide a straightforward Java implementation for each of the three classes identified
in part (b). You need only consider those aspects of the game described on Page 2.

SWEN222 Page 4 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 5 of 22

Student ID: .

Question 2. Design by Contract [30 marks]

Consider the following implementation of a Character Buffer, which compiles without error:

1 public class CharBuffer {
2 private char[] buffer;
3 private int length = 0;
4

5 public CharBuffer(int max) { buffer = new char[max]; }
6

7 public CharBuffer(char[] buffer) {
8 this.buffer = buffer;
9 this.length = buffer.length;

10 }
11

12 public void append(char c) {
13 if(length == buffer.length) {
14 // not enough space in buffer!

15 char[] nbuffer = new char[buffer.length * 2];
16 // copy elements from old buffer to new buffer

17 System.arraycopy(buffer,0,nbuffer,0,buffer.length);
18 // activate new buffer

19 buffer = nbuffer;
20 }
21 buffer[length] = c;
22 length = length + 1;
23 }
24

25 public char charAt(int index) {
26 return buffer[index];
27 }
28

29 // set the character at a given index

30 public void set(int index, char c) {
31 buffer[index] = c;
32 }
33

34 // Return size of buffer’s active portion

35 public int length() { return length; }
36 }

SWEN222 Page 6 of 22

Student ID: .

(a) For each method listed below, provide appropriate preconditions and postconditions:

(i) [2 marks] CharBuffer(int max)

REQUIRES:

ENSURES:

(ii) [2 marks] CharBuffer(char[] buffer)

REQUIRES:

ENSURES:

(iii) [2 marks] set(int index, char c)

REQUIRES:

ENSURES:

(iv) [2 marks] length()

REQUIRES:

ENSURES:

SWEN222 Page 7 of 22

Student ID: .

(b) [4 marks] Method contracts can help establish who is to blame when an error occurs. Briefly,
discuss what this means.

(c) [5 marks] An important aspect of the functional programming paradigm is that methods are
side-effect free. Briefly, state what this means.

(d) [5 marks] The precondition/postcondition of a method often itself includes calls to other meth-
ods. Briefly, discuss why it is helpful for such methods to be side-effect free.

SWEN222 Page 8 of 22

Student ID: .

(e) [8 marks] Rewrite the CharBuffer class to use a functional design.

SWEN222 Page 9 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 10 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 11 of 22

Student ID: .

Question 3. Software Design Qualities [30 marks]

(a) [4 marks] Define what is meant by the term coupling in software design.

(b) [5 marks] Describe the positive implications of strongly coupled object oriented designs.

(c) [5 marks] Describe the negative implications of strongly coupled object oriented designs.

SWEN222 Page 12 of 22

Student ID: .

(d) [6 marks] Describe three benefits of inheritance in Java software designs.

(e) [6 marks] Provide a UML class diagram of the key features of the COMPOSITE pattern.

(f) [4 marks] Explain the role that inheritance plays in the COMPOSITE design pattern.

SWEN222 Page 13 of 22

Student ID: .

Question 4. Design Patterns [30 marks]

(a) [10 marks] Explain what is meant by the phrase “We need SMART Models, THIN Controllers,
and DUMB Views.”

SWEN222 Page 14 of 22

Student ID: .

The code sample provided below provides an implementation of a Controller for a piece of software.

1 public class GameController implements KeyListener {
2 private GameBoard board;
3 private GameView view;
4 private Point currentLocation;
5 private GameObject objectInHand;
6

7 // *** Setup code omitted for clarity ***
8

9 public void keyPressed(KeyEvent e) {
10 switch (e.getKeyChar()) {
11 // Move up command

12 case ’w’:
13 Point newLocation = new Point(currentLocation);
14 newLocation.y += 1;
15 GameSquare newSquare = board.getSquare(newLocation);
16 if (checkSquareCanBeEntered(newSquare) == true) {
17 Point oldLocation = new Point(currentLocation);
18 currentLocation = newLocation;
19 view.drawPlayerMovingToSquare(oldLocation, newLocation);
20 } else {
21 view.playInvalidMoveSound();
22 view.drawPlayerStandingInSquare(currentLocation);
23 }
24 break;
25 // Pick up object command

26 case ’q’: {
27 GameSquare square = board.getSquare(currentLocation);
28 GameObject squareObject = square.getObject();
29 if (squareObject == null) {
30 view.playInvalidCommandSound();
31 } else {
32 square.removeObject();
33 objectInHand = squareObject;
34 }
35 view.drawPlayerStandingInSquare(currentLocation);
36 break;
37 }
38 // Drop current object command

39 case ’e’: {
40 GameSquare square = board.getSquare(currentLocation);
41 square.addObject(objectInHand);
42 objectInHand = null;
43 view.drawPlayerStandingInSquare(currentLocation);
44 break;
45 }
46 default:
47 view.playInvalidCommandSound();
48 view.drawPlayerLookingBored(currentLocation);
49 } }

SWEN222 Page 15 of 22

Student ID: .

50

51 public boolean checkSquareCanBeEntered(GameSquare theSquare) {
52 if (theSquare == null) {
53 // Trying to move off the board

54 return false;
55 } else if (theSquare.type == GameBoard.WALL_SQAURE) {
56 // Trying to into a wall

57 return false;
58 } else if (theSquare.content != null) {
59 // Square is already occupied

60 return false;
61 }
62 return true;
63 }
64 }

(b) [20 marks] Refactor this code to improve the GameController implementation in line with the
statement made in part (a). Please clearly indicate any consequential changes to the GameBoard and
GameView classes by providing the relevant code.

SWEN222 Page 16 of 22

Student ID: .

SWEN222 Page 17 of 22

Student ID: .

* * * * * * * * * * * * * * *

SWEN222 Page 18 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 19 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 20 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 21 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 22 of 22

