
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2015
TRIMESTER 2

SWEN222

Software Design

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions
All questions are of equal value

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

Question Topic Marks

1. Software Design 30

2. Design by Contract 30

3. Software Design Qualities 30

4. Design Patterns 30

Total 120

SWEN222 Page 1 of 22

Student ID: .

Question 1. Software Design [30 marks]

Consider the following (incomplete) description for a simple board game called Land and Water.

“The game board is made up of 37 hexagonal territories. Each territory is adjacent to at
most six other territories. Each territory either represents land or water. Land territories
are further classified as plains, forests or mountainous regions. Forests contain a certain
number of trees and, when all trees are chopped down, automatically become plains.

Up to six players can play the game. Each player owns one or more territories and can
harvest resources of gold or wood by mining them or logging them. Players can spend
their resources by building houses or castles on territories they own.”

(a) [9 marks] Provide a class diagram covering those aspects of the game outlined in the description
above. Your diagram should contain at most eight classes.

SWEN222 Page 2 of 22

Student ID: .

(b) [9 marks] Provide suitable Class-Responsibility-Collaborator (CRC) cards describing three
classes from the game.

Territory
Responsibility Collaborators

Identifies adjacent territories Territory

Can hold houses/castles

Allows resources to be harvested

Player
Responsibility Collaborators

Identifies owned territories Territory

Stores accumulated resources

Allows harvesting territories

Forrest
Responsibility Collaborators

Stores remaining number of trees

SWEN222 Page 3 of 22

Student ID: .

(c) [12 marks] Provide a straightforward Java implementation for each of the three classes identified
in part (b). You need only consider those aspects of the game described on Page 2.

1 class Player {
2 private List<Territory> owned = new ArrayList<Territory>();
3 private int amountOfGold = 0;
4 private int amountOfWood = 0;
5

6 public List<Territory> getTerritories() { return owned; }
7 public int getAmountOfGold() { return amountOfGold; }
8 public int getAmountOfWood() { return amountOfWood; }
9

10 public void harvest() {
11 for(Territory t : owned) {
12 amountOfWood += t.logWood();
13 amountOfGold += t.mindGold;
14 }
15 }
16 }

1 abstract class Territory {
2 private List<Territory> adjacents = new ArrayList<Territory>();
3 private List<Building> builds = new ArrayList<Building>();
4

5 public abstract int logWood();
6 public abstract int mineGold();
7

8 public List<Territory> getAdjacents() { return adjacents; }
9 public List<Building> getBuildings() { return buildings; }

10 }

1 class Forest extends Territory {
2 private int numberOfTrees;
3

4 public Forest(int trees) { numberOfTress = trees; }
5

6 public int logWood() {
7 if(numberOfTrees > 0) {
8 trees = trees - 1;
9 return 1;

10 } else { return 0; }
11 }
12

13 public int mineGold() { return 0; }
14 }

SWEN222 Page 4 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 5 of 22

Student ID: .

Question 2. Design by Contract [30 marks]

Consider the following implementation of a Character Buffer, which compiles without error:

1 public class CharBuffer {
2 private char[] buffer;
3 private int length = 0;
4

5 public CharBuffer(int max) { buffer = new char[max]; }
6

7 public CharBuffer(char[] buffer) {
8 this.buffer = buffer;
9 this.length = buffer.length;

10 }
11

12 public void append(char c) {
13 if(length == buffer.length) {
14 // not enough space in buffer!

15 char[] nbuffer = new char[buffer.length * 2];
16 // copy elements from old buffer to new buffer

17 System.arraycopy(buffer,0,nbuffer,0,buffer.length);
18 // activate new buffer

19 buffer = nbuffer;
20 }
21 buffer[length] = c;
22 length = length + 1;
23 }
24

25 public char charAt(int index) {
26 return buffer[index];
27 }
28

29 // set the character at a given index

30 public void set(int index, char c) {
31 buffer[index] = c;
32 }
33

34 // Return size of buffer’s active portion

35 public int length() { return length; }
36 }

SWEN222 Page 6 of 22

Student ID: .

(a) For each method listed below, provide appropriate preconditions and postconditions:

(i) [2 marks] CharBuffer(int max)

REQUIRES:

ENSURES:
requires: max >= 0
ensures: length() == 0

(ii) [2 marks] CharBuffer(char[] buffer)

REQUIRES:

ENSURES:
requires: buffer != null
ensures: length() == buffer.length
ensures: all [i in 0..buffer.length | buffer[i] == charAt(i)]

(iii) [2 marks] set(int index, char c)

REQUIRES:

ENSURES:
requires: 0 <= index < length()
ensures: charAt(index) == c
ensures: all other items in this remain unchanged

(iv) [2 marks] length()

REQUIRES:

ENSURES:
ensures: \result >= 0
ensures: all items in this remain unchanged

SWEN222 Page 7 of 22

Student ID: .

(b) [4 marks] Method contracts can help establish who is to blame when an error occurs. Briefly,
discuss what this means.

Method contracts provide a contract between the client and implementer. The client must ensure
the pre-conditions of the method are met and, if not, is to blame for any resulting fault. Likewise,
assuming the preconditions are met, the implementer must ensure the post-condition is met and, if
not, is to blame for any resulting fault.

(c) [5 marks] An important aspect of the functional programming paradigm is that methods are
side-effect free. Briefly, state what this means.

A function is side-effect free if it:

1. Does not modify any state that existed before the function was called.

2. Does not call any methods which are not themselves side-effect free.

3. Does not perform any I/O (e.g. printing to the console, etc).

(d) [5 marks] The precondition/postcondition of a method often itself includes calls to other meth-
ods. Briefly, discuss why it is helpful for such methods to be side-effect free.

If a precondition or postcondition has side-effects, then the meaning of these remains unclear. For
example, when reasoning about a pre-condition should one take into consideration any side-effects
which occur within the pre-condition itself? Likewise, if pre- or post-conditions are evaluated at
runtime, should their side-effects propagate into the method itself?

SWEN222 Page 8 of 22

Student ID: .

(e) [8 marks] Rewrite the CharBuffer class to use a functional design.

1 public class CharBuffer {
2 private char[] buffer;
3

4 public CharBuffer(int max) { buffer = new char[max]; }
5

6 public CharBuffer(char[] buffer) {
7 this.buffer = Arrays.copyOf(buffer,buffer.length);
8 }
9

10 public CharBuffer append(char c) {
11 char[] nbuf = Arrays.copyOf(buffer,buffer.length+1);
12 nbuf[buffer.length] = c;
13 return new CharBuffer(nbuf);
14 }
15

16 public char charAt(int index) {
17 return buffer[index];
18 }
19

20 // set the character at a given index

21 public CharBuffer set(int index, char c) {
22 char[] nbuf = Arrays.copyOf(buffer,buffer.length);
23 nbuf[index] = c;
24 return new CharBuffer(nbuf);
25 }
26

27 // Return size of buffer

28 public int length() { return buffer.length; }
29 }

SWEN222 Page 9 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 10 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 11 of 22

Student ID: .

Question 3. Software Design Qualities [30 marks]

(a) [4 marks] Define what is meant by the term coupling in software design.

Coupling is an indication of the strength of the interconnections between the components in a design.
Highly coupled systems have strong interconnections, with program units dependent on each other

(b) [5 marks] Describe the positive implications of strongly coupled object oriented designs.

• Performance

• Efficient integration of strongly related activities

• Simpler to implement initially

• Greater coordination between classes

(c) [5 marks] Describe the negative implications of strongly coupled object oriented designs.

Maintenance, unpredictable changes may propagate through design Potential loss of reuse opportu-
nity for individual classes Complex designs

SWEN222 Page 12 of 22

Student ID: .

(d) [6 marks] Describe three benefits of inheritance in Java software designs.

Code reuse Models domains efficiently Simplifies modification of current classes Compilers can
enforce static type checking

(e) [6 marks] Provide a UML class diagram of the key features of the COMPOSITE pattern.

(f) [4 marks] Explain the role that inheritance plays in the COMPOSITE design pattern.

SWEN222 Page 13 of 22

Student ID: .

Question 4. Design Patterns [30 marks]

(a) [10 marks] Explain what is meant by the phrase “We need SMART Models, THIN Controllers,
and DUMB Views.”

Controller is more like a coordinator, lightweight functions collecting input without processing for
meaning, most information passed through to Model

Views should be consistent with the expected behaviour for the operating system, they should not
store information or embody logic

Model should manage all information about the game state and programme behaviour and drive any
necessary changes to the controller and view

SWEN222 Page 14 of 22

Student ID: .

The code sample provided below provides an implementation of a Controller for a piece of software.

1 public class GameController implements KeyListener {
2 private GameBoard board;
3 private GameView view;
4 private Point currentLocation;
5 private GameObject objectInHand;
6

7 // *** Setup code omitted for clarity ***
8

9 public void keyPressed(KeyEvent e) {
10 switch (e.getKeyChar()) {
11 // Move up command

12 case ’w’:
13 Point newLocation = new Point(currentLocation);
14 newLocation.y += 1;
15 GameSquare newSquare = board.getSquare(newLocation);
16 if (checkSquareCanBeEntered(newSquare) == true) {
17 Point oldLocation = new Point(currentLocation);
18 currentLocation = newLocation;
19 view.drawPlayerMovingToSquare(oldLocation, newLocation);
20 } else {
21 view.playInvalidMoveSound();
22 view.drawPlayerStandingInSquare(currentLocation);
23 }
24 break;
25 // Pick up object command

26 case ’q’: {
27 GameSquare square = board.getSquare(currentLocation);
28 GameObject squareObject = square.getObject();
29 if (squareObject == null) {
30 view.playInvalidCommandSound();
31 } else {
32 square.removeObject();
33 objectInHand = squareObject;
34 }
35 view.drawPlayerStandingInSquare(currentLocation);
36 break;
37 }
38 // Drop current object command

39 case ’e’: {
40 GameSquare square = board.getSquare(currentLocation);
41 square.addObject(objectInHand);
42 objectInHand = null;
43 view.drawPlayerStandingInSquare(currentLocation);
44 break;
45 }
46 default:
47 view.playInvalidCommandSound();
48 view.drawPlayerLookingBored(currentLocation);
49 } }

SWEN222 Page 15 of 22

Student ID: .

50

51 public boolean checkSquareCanBeEntered(GameSquare theSquare) {
52 if (theSquare == null) {
53 // Trying to move off the board

54 return false;
55 } else if (theSquare.type == GameBoard.WALL_SQAURE) {
56 // Trying to into a wall

57 return false;
58 } else if (theSquare.content != null) {
59 // Square is already occupied

60 return false;
61 }
62 return true;
63 }
64 }

(b) [20 marks] Refactor this code to improve the GameController implementation in line with the
statement made in part (a). Please clearly indicate any consequential changes to the GameBoard and
GameView classes by providing the relevant code.

A good answer to this question demonstrates clearly that you understand how to design code ac-
cording to the Model View Controller Design Pattern. In simple terms this means that the Model
should contain the State of the system and any logic involved in changing that state. The Controller
should act as an interface between the various user interface controls (mouse, keyboard) and the
Model using an API that is exposed by the Model using a range of public functions. Finally the
view should be able to render the state without acting upon it. Ideally, no logic should be present in
the Controller or the View.
Specifically in this case the following problems should be addressed:

• the currentPlayerLocation and objectInHand variables have no place in the Controller

• the logic for each of the actions in the Controller needs to be moved elsewhere, mostly to the
Model, but some aspects should be in the View

• the checkSquareCanBeEntered function needs to be moved out into the Model as well

A good answer for the question would look like the code below. Note that the Model is broken
up into GamePlayer, GameBoard and GameState classes, this allows a tidier implementation of the
View and also opens the possibility that the code might support multiple players. This is not intended
to be a complete implementation but would be sufficient to earn full marks marks were not removed
for syntax errors, naming issues or similar irrelevancies, the focus was on the MVC Design.

SWEN222 Page 16 of 22

Student ID: .

1 public class GamePlayer {
2 // Setup code omitted for clarity
3 private Point currentPlayerLocation;
4 private GameObject objectInHand;
5

6 // Getters and Setters omitted for clarity
7

8 public void DrawPlayer() {
9 // Assumption is that drawing context established by

GameView
10 }
11 }

1 public class GameBoard {
2 // Setup code omitted for clarity
3 private[][] gameSquares;
4

5 public boolean checkSquareCanBeEntered (GameSquare theSquare){
6 if (theSquare == null) {
7 // Trying to move off the board
8 return false;
9 } else if (theSquare.type == GameBoard.WALL_SQAURE) {

10 // Trying to into a wall
11 return false;
12 } else if (theSquare.content != null) {
13 // Square is already occupied
14 return false;
15 }
16 return true;
17 }
18 }

1 public class GameView {
2 // Setup code omitted for clarity
3 private GameState gameState;
4

5 public void Update() {
6 // Draw the UI
7 // Call the draw function of the Board, and thus the Squares
8 // Call the draw function of the player(s)
9 GamePlayer aPlayer = GameState.getCurrentPlayer();

10 aPlayer.DrawPlayer();
11 }
12 }

SWEN222 Page 17 of 22

Student ID: .

1 public class GameState {
2 private GameBoard gameBoard;
3 private GameView gameView;
4 private GamePlayer currentPlayer;
5

6 public void MoveUp() {
7 Point newLocation = currentPlayer.getCurrentPlayerLocation();
8 newLocation.y += 1;
9 GameSquare newSquare = gameBoard.getSquare(newLocation);

10 if (checkSquareCanBeEntered(newSquare) == true) {
11 currentPlayer.setCurrentPlayerLocation(newLocation);
12 } else {
13 gameView.playInvalidMoveSound();
14 }
15 gameView.update();
16 }
17

18 public void PickUp() {
19 GameSquare currentSquare = gameBoard.getSquare(currentPlayer.getCurrentPlayerLocation());
20 GameObject squareObject = currentSquare.getObject();
21 if (squareObject == null) {
22 gameView.playInvalidCommandSound();
23 } else {
24 currentSquare.removeObject();
25 currentPlayer.pickup(squareObject);
26 }
27 gameView.update();
28 }
29 public void Drop() {
30 GameSquare currentSquare = gameBoard.getSquare(currentPlayer.getCurrentPlayerLocation());
31 GameObject squareObject = currentPlayer.drop();
32 if (squareObject == null) {
33 gameView.playInvalidCommandSound();
34 } else {
35 currentSquare.addObject(squareObject);
36 }
37 gameView.update();
38 }
39 public void InvalidCommand() { gameView.playInvalidCommandSound(); }
40 }

1 public class GameController implements KeyListener {
2 // Setup code omitted for clarity
3 private GameState gameState;
4

5 public void keyPressed(KeyEvent e) {
6 switch (e.character) {
7 // Move up command
8 case "w":
9 gameState.MoveUp();

10 break;
11 // Other move commands omitted for clarity
12 // Pick up object command
13 case "q":
14 gameState.PickUp();
15 break;
16 // Drop current object command
17 case "e":
18 gameState.Drop();
19 break;
20 default:
21 gameState.InvalidCommand();
22 }
23 }
24 }

* * * * * * * * * * * * * * *

SWEN222 Page 18 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 19 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 20 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 21 of 22

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 Page 22 of 22

