TE WHARE WANANGA O TE UPOKO O TE IKA A MAUI

ﬁsVICTORIA

UNIVERSITY OF WELLINGTON

EXAMINATIONS - 2013
TRIMESTER 2

SWEN 222

Software Design

Time Allowed: THREE HOURS
Instructions:
e Closed Book.
e Total marks are 180.
e Answer all questions in the boxes provided.
e Every box requires an answer.
o If additional space is required you may use a separate answer booklet.
e No calculators are permitted.

e Non-electronic Foreign language dictionaries are allowed.

Question Topic Marks
1. Design patterns 1 30
2. Design patterns 2 30
3. Contracts 30
4. Functional design 30
5. Design Quality 30
6. Software Evolution 30

Total 180

Question 1. Design Patterns 1 [30 marks]

(a) [8 marks] Provide a class diagram which describes the Observer pattern.

Observer <—concrete observer
|update(...)

*
|
|
|
%

Subject <— concrete subject
|notify(...)//update all the observers
|addObservert...)
|removeObservert...)

(b) Write a Java implementation of the Observer pattern. Provide code for an observer interface and
a subject abstract class.

(i) [3 marks] Write the Observer interface here.

interface Observer{void update (Subject o, Object arg);}

(Question 1 continued on next page)
SWEN 222 Page 2 of 25 continued...

(Question 1 continued)

(ii) [7 marks] Write the Sub ject abstract class here.

abstract class Subject{
private Collection<Observer> obs=new ...;
public synchronized void addObserver (Observer o) {

if (o == null){ throw new NullPointerException();}

obs.add (o) ;
}

public synchronized void removeObserver (Observer o) {
if (o == null){ throw new NullPointerException();}
obs.remove (0) ;

}
private synchronized Collection<Observer> copyObs () {

return new ArraylList<Observer> (obs);}
public void notifyObservers (Object arg) {
for (Observer o: copyObs()) {o.update (this, arg);}

b}

(Question 1 continued on next page)
SWEN 222 Page 3 of 25 continued...

(Question 1 continued)

(c¢) Design patterns often have implementation variants.

(i) [4 marks] Discuss the different choices about how to store the observers in the subject.

handling the duplications in addObserver; otherwise I would use an HashSet.

(ii) [4 marks] Discuss the different choices about how the subject notifies its observers, mentioning
the kind of information that is transferred.

Object as in java.util.Observer or defining an event hierarchy as fi
Jjava.awt.event.ActionListener and java.awt.event.ActionEvent

(iii) [4 marks] What if, in response to an update, some observer decides to stop observing the
subject? Discuss how an implementation has to take care of this possibility.

AnArraylist guarantee a predictable order for the update cycle, while a Set guarantee the absende
of duplication of the observer. Usually an observer should not be able to observe twice the samje
subject. If the order of the update cycle is important, then I would use an ArrayList manually

In the Java standard libraries two strategies are used: Simply passing 4gn

T

Before starting the update cycle the observer list should be cloned, and the iteration should refer {
the cloned version.

SWEN 222 Page 4 of 25 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 222 Page 5 of 25 continued...

Question 2. Design Patterns 2 [30 marks]

(a) [5 marks] Factory pattern. The Factory Method Pattern is an object-oriented creational design
pattern to allow the creation of objects (products) without specifying the exact class of object that will
be created.

Explain at least one advantage of the Factory Method Pattern in software development.

The factory pattern can be used in the testing process to inject mock objects.

(b) [8 marks] Provide a class diagram which describes the Adapter pattern.

< <interface>>Target <—offers— Client
|targetMethod()
/\

|
implements

|
Adapter *—-1 Adaptee
|targetMethod()//calls adapteeMethod()

(Question 2 continued on next page)
SWEN 222 Page 6 of 25 continued...

(Question 2 continued)

(¢) [5 marks] In general, when providing a class/object diagram, would you include instances of the
adapter pattern? Justify your answer.

No, they should be part of the implementation detail, they are simply a way to establish
communication between otherwise incompatible parts of the system.

(Question 2 continued on next page)
SWEN 222 Page 7 of 25 continued...

(Question 2 continued)

(d) [8 marks] Provide a concrete example of when/how you would use the adapter pattern. Provide
some Java code to illustrate your example; feel free to use dots (...) in the non-relevant parts.

final JTextField textField = new JTextField();
JButton button = new JButton ("Say Hello");
button.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent ae) {
textField.setText ("Hello, ,World");
PE) g

(Question 2 continued on next page)
SWEN 222 Page 8 of 25 continued...

(Question 2 continued)

(e) [4 marks] Identify where and how the adapter pattern is used in your example and what plays the
different roles of the adapter pattern in your code.

the button is the client,
the anonymous nested class is the adapter
and the text field is the adaptee

SWEN 222 Page 9 of 25 continued...

Question 3. Contracts [30 marks]

Consider the following code:

//@requires list!=null && elem!=null
//Qensures list.get (\result) .equals (elem)
int find(ArrayList<String>list,String elem) {

for (int i=0;i<list.size(); 1i++){

if (array.get (i) .equals(elem)) return i;

}

array.add(elem);

return array.size()-1;

(a) [6 marks] Describe in natural language the meaning of the above requires and ensures
clauses.

The method semantic is well defined if list and the element are not null, and guarantee that
the resulting index refers to a position in the list where there is e lem.

(Question 3 continued on next page)
SWEN 222 Page 10 of 25 continued...

(Question 3 continued)

(b) [8 marks] It is possible to use assertions to check pre and post conditions. Rewrite the method
find so thatits pre and post conditions are checked. Try to make your solution as concise as possible.

int find(ArrayList<String>list,String elem) {
assert list!=null;
assert elem!=null;
int result=0;try{
for (int i=0;i<list.size(); 1i++){
if (array.get (i) .equals(elem)) return result=i;
}
array.add(elem);
return result=array.size()-1;
}finally{assert list.get (result) .equals(elem); }

(Question 3 continued on next page)
SWEN 222 Page 11 of 25 continued...

(Question 3 continued)

(c¢) [8 marks] Consider now this new, more expressive, ensures clause:

//@ensures list.get (\result) .equals (elem)
// && \forall i in 0..\old(list.size()) |
/7 \old(list.get (i))==1ist.get (i)

Describe in natural language the meaning of this new ensure clause.

In addition to what was stated before, it ensures that all the elements that was present before callin
the method, are still present and still in the same position

(d) [8 marks] Discuss how to adapt the code you wrote in point (b) to check this new ensures
clause. What are the main difficulties?

Since the method need to modify the content of the list, it is needed to clone the list to preserve the
old state and compare it with the new one.

SWEN 222 Page 12 of 25 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 222 Page 13 of 25 continued...

Question 4. Functional design [30 marks]

Briefly discuss each of the following questions:

(a) [4 marks] Why does functional design make reasoning easier?

Semantic of complex object graphs does not depend on aliasing relationship.

(b) [4 marks] Why does functional design make testing easier?

Is easier to create a testing environment to test the single parts in isolation; as an example defining
mock objects becomes easier.
Functional design also prevent static mutable variables, that could potentially make the order of the
tests relevant.

(c) [4 marks] Why does functional design make parallelism easier?

Synchronization can be reduced or eliminated; in many cases order of evaluation will be irrelevant.

(Question 4 continued on next page)
SWEN 222 Page 14 of 25 continued...

(Question 4 continued)

(d) Consider the flyweight pattern.
(i) [5 marks] Briefly, explain the flyweight pattern.

The main idea is that objects are created using a factory and a cache: if an object with the desirg
characteristics is already in the cache, that cached object is returned; otherwise a new object is create
cached and returned.

(ii) [5 marks] Discuss why the flyweight pattern requires flyweight objects to be immutable.

Flyweight is based on factory and caching; it is based on the assumption that
two “equals” objects could be conceptually unified.

(Question 4 continued on next page)
SWEN 222 Page 15 of 25 continued...

=

(Question 4 continued)

(e) [8 marks] Discuss why functional design can lead to an increase in the memory space required,
compared to an imperative approach. Use examples to illustrate.

Naive implementations of data-structures in functional design clone
the whole data structure to perform some core operations.

SWEN 222 Page 16 of 25 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 222 Page 17 of 25 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 222 Page 18 of 25 continued...

Question 5. Design Quality [30 marks]

(a) [5 marks] Discuss why simplicity is an important characteristic of good software design.

(b) [5 marks] What is meant by the term coupling in the context of software design? Is it true that a
well-designed system should have low coupling? Justify your answer.

(c) [5 marks] What is meant by the term cohesion in the context of software design? Is it true that a
well-designed system should have high cohesion? Justify your answer.

(Question 5 continued on next page)
SWEN 222 Page 19 of 25 continued...

(Question 5 continued)

(d) [5 marks] Is it true that whenever we increase the cohesion of different modules in our design,
coupling between these modules automatically decreases? Justify your answer. You may use exam-
ples to illustrate as necessary.

(e) [5 marks] Discuss the purposes of using CRC cards in the process of software design.

(f) [5 marks] Code review is one of the important techniques for ensuring quality of software systems.
Discuss the advantages of conducting code reviews in the process of software development.

SWEN 222 Page 20 of 25 continued...

Question 6. Software Evolution [30 marks]

Jenny has developed a library for modelling financial transactions that is used (including via inheri-
tance) by many developers in their own projects. The following class is part of her library.

public class Money {
protected int cents;

public Money (int cents) { this.cents = cents; }

public int getCents() { return cents; }

}

(a) Jenny likes to continually improve her library. For each of the following “improvements”, briefly
discuss how developers using her library might be affected.

(i) [3 marks] Jenny would like to rename her class from Money to Cents.

(ii) [4 marks] Jenny would like to add a method setCents () to her class, which allows users to
mutate a Money object.

(iii) [5 marks] Jenny would like to add a new protected field, dol1lars, and modify her class
to ensure the invariant dollars == cents/100 is always true.

(Question 6 continued on next page)
SWEN 222 Page 21 of 25 continued...

(Question 6 continued)

(b) A common problem during development arises when software becomes a big ball of mud.

(i) [3 marks] Briefly, describe what a “big ball of mud” is.

(ii) [5 marks] Briefly, discuss why a “big ball of mud” is considered undesirable.

(iii) [5 marks] One recommendation is to refactor relentlessly. Briefly, discuss what this means.

(Question 6 continued on next page)
SWEN 222 Page 22 of 25 continued...

(Question 6 continued)

(iv) [5 marks] A common approach to dealing with a “big ball of mud” is to keep it working at all
costs. Briefly, discuss why this can be preferable to rewriting it from scratch.

kosk ok sk ok sk ok sk ok ok sk ok ok sk ok

SWEN 222 Page 23 of 25

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 222 Page 24 of 25 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 222 Page 25 of 25 continued...

