
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2011

END-OF-YEAR

SWEN222

Software Design

Time Allowed: 2 Hours

Instructions: There are 120 possible marks on the exam.
Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.
Non-electronic Foreign language dictionaries are allowed.
Calculators ARE NOT ALLOWED.
No reference material is allowed.

Question Topic Marks
1. Design Patterns 30

2. Design Quality 30

3. Design By Contract 30

4. Class Design 30

Total 120

SWEN222 continued...

Student ID:

Question 1. Design Patterns [30 marks]

(a) [4 marks] Provide an appropriate class diagram which describes the COMPOSITE pattern.

(b) [6 marks] An XML Object consists of a name String, zero or more attribute Strings and
zero or more children. Each child of an XML Object is an XML Object and, hence, may also have
children.

Sketch an implementation of XML Objects which uses the COMPOSITE pattern.

class XMLObject {
private List<XMLObject> children;
private List<String> attributes;
private String name;

...

List<XMLObject> getChildren() { return children; }
List<String> getAttributes() { return attributes; }
String getName() { return name; }

}

(Question 1 continued on next page)
SWEN222 2 continued...

Student ID:

(Question 1 continued)

(c) You have been asked to develop a multi-player chess program using the Model-View-Controller
(MVC) pattern. The program has the following requirements:

• Players play the chess game through a graphical user interface. This shows the current state
of the chess board using images to represent the pieces in the game.

• The program must check every move made by a player is valid under the rules of chess.

• A client-server architecture should be used. Players are clients who connect to the chess
server. When a move is made, the client notifies the server which then notifies the other client.

(i) [12 marks] Briefly, discuss each of the three components in the MVC pattern. For each, you
should identify which aspects of the chess program it is responsible for.

Model:
The model is responsible for storing the state of the chess game, including the position of pieces on
the board, time remaining, etc. The model also implements the rules of chess, and provides methods
for checking that a move is valid and updating the board in such case.

View:
The view provides a graphical user interface which shows the current state of the model. The model
must be queried to determine the location of pieces on the board, etc. The view also intercepts input
from the user using observers and passes this information onto the controller.

Controller:
The controller is responsible for interpreting evens from the view and converting them into com-
mands understandable by the model. In this case, the controller is also responsible for handling the
client-server architecture and will co-ordinate the movement of information between clients and the
server.

(Question 1 continued on next page)
SWEN222 3 continued...

Student ID:

(Question 1 continued)

Someone suggested implementing a command-line version of the chess program. This would draw
the chess board using a simple text-based user interface, rather than a graphical user interface.

(ii) [4 marks] Briefly, discuss how implementing a command-line version of the program might lead
to a better separation between Model and View.

When implementing the MVC pattern, it is often easy to mix up code for the model or controller with
the GUI. Implementing an alternative user interface will force the programmer to properly separate
the model from the view. For example, in the original implementation, the programmer might have
stored images in the model to represent the individual pieces. However, this information is not
appropriate in the model. When implementing the text interface, the programmer would realise that
this information was redundant and, hence, not part of the model.

(iii) [4 marks] The Subject-Observer pattern is often used when implementing a Graphical User
Interface. Briefly, outline how this pattern might be used in the chess program.

In the game, we might identify the GUI as being a subject which received events from the user (e.g.
key presses or mouse clicks). The GUI would employ observers to intercept these events and pass
them onto the controller. In Java, this is implemented using listeners. One registers a listener on a
component of interest, and it will be called when certain events are triggered.

SWEN222 4 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 5 continued...

Student ID:

Question 2. Design Quality [30 marks]

(a) Consider the following code fragment:

class Block {
private ArrayList<Stmt> body = ...;
...
public Set<String> usedVariables() {

HashSet<String> uses = new HashSet<String>();
for(Stmt s : body) { s.addUsedVariables(uses); }
return uses;

} }

class LoopBlock {
private ArrayList<Stmt> body = ...;
private Expression condition = ...;
...
public Set<String> usedVariables() {

HashSet<String> uses = new HashSet<String>();
for(Stmt s : body) { s.addUsedVariables(uses); }
condition.addUseddVariables(uses);
return uses;

} }

(i) [5 marks] Briefly, discuss how you might improve the above code by refactoring it.

There is a certain amount of code duplication between the two classes, and I would remove this by
making LoopBlock extend Block. Then, the userVariables() method would override that
in Block, like so:

public Set<String> usedVariables() {
HashSet<String> uses = super.usedVariables();
condition.addUseddVariables(uses);
return uses

}

(Question 2 continued on next page)
SWEN222 6 continued...

Student ID:

(Question 2 continued)

(ii) [5 marks] Code Smells are often an indication that a program should be refactored. Briefly,
discuss what this means. You should use examples to aid your discussion where appropriate.

A code smell is a seemingly minor issue with the code which may indicate a more serious problem.
For example, methods or classes which are overly long, or poorly named. This indicates the pro-
grammer has been sloppy and may have made some more serious errors. Generally, code smells do
not prevent the program from working, but do constitute bad style.

(b) [5 marks] In the context of API Design, Josh Bloch made the following comment:

“You can always add, but you can never remove.”

Briefly, discuss the pros and cons of following this rule.

This is a sensible rule for an API that has been published, and is used by others. This is because
removing functionality from the API may causes others’ code to break. The disadvantage, however,
is that one cannot remove functionality which was a mistake to include in the first place. The large
number of @deprecated methods in the Java standard library is a testament to this. Furthermore,
this rule can promote bloat in the API making it harder to use and understand.

(Question 2 continued on next page)
SWEN222 7 continued...

Student ID:

(Question 2 continued)

(c) Briefly discuss each of the following statements. In each case, explain what the key concept is
and justify why you believe the statement is (or is not) true.

(i) [5 marks] “Well-designed systems have low coupling”.

Coupling measures how many interconnections there are between modules in a program. High
coupling indicates that modules have a high number of interconnections. Generally speaking, low
coupling is preferred, so the above statement is true. Low coupling means that changes to a module
are less likely to affect other modules, meaning they are easier to do. Furthermore, low coupling
means that code can be reused more easily, since it does not depend on as many other things.

(ii) [5 marks] “Well-designed systems have low cohesion.”

Cohesion is a measure of how tightly related the functionality within a module is. Systems with
high cohesion are small modules which are focused on a smaller number of tasks. Systems with
low cohesion have large modules which do numerous unrelated tasks. Therefore, high cohesion is
preferably as this makes the system easier to understand and maintain.

(Question 2 continued on next page)
SWEN222 8 continued...

Student ID:

(Question 2 continued)

(iii) [5 marks] “Well-designed systems follow the principle of least astonishment.”

Well-designed systems should follow the principle of least astonishment. We do not want methods
that behave in unexpected ways. The name and types of the method should strongly relate to what it
does. For example, an add() method should add things to an object, not remove them!
Following the POLA principle helps to produce software that is easier to understand and debug.

SWEN222 9 continued...

Student ID:

Question 3. Design By Contract [30 marks]

Consider the following implementation which compiles without error.

public class Train {
private List<Carriage> carriages = null;
private int capacity;
public void createTrain(){ carriages=new LinkedList<Carriage>(); }

public void add(Carriage newCarriage) {
carriages.add(newCarriage);
capacity += newCarriage.capacity; }

public void remove(Carriage oldCarriage) {
carriages.remove(oldCarriage);
capacity -= oldCarriage.capacity; }

public int numberOfFullCarriages() {
int count = 0;
for (Carriage c: carriages) { if (c.isFull()) { count++; } }
return count; }

}

public class Carriage {
public int capacity;
public int passengers;

public boolean isFull() {
return capacity == passengers; }

public int addPassengers(int num) {
passengers += num;
if (passengers > capacity) {
int added = num - (passengers - capacity);
passengers = capacity;
return added;
}
return num; }

}

public class GuardedCarriage extends Carriage {
private int guards;

public GuardedCarriage(int numGuards) {
guards = numGuards; }

public boolean isFull() {
return capacity == (passengers + guards); }

}

SWEN222 10 continued...

Student ID:

(a) [2 marks] What happens if the following piece of code is run?

Train train1 = new Train();
Carriage carriage1 = new Carriage();
carriage1.capacity = 50;
train1.addCarriage(carriage1);

(b) [6 marks] The code clearly has design problems, and seems to be an example of Throwaway
Code. Describe two other related software evolution patterns. Your description should include a
brief outline of the problem the pattern addresses, and the solution the pattern proposes.

(c) [6 marks] Write suitable pre- and post-conditions for each of the following methods.

public void Train.remove(Carriage oldCarriage);

public int Carriage.addPassengers(int num);

SWEN222 11 continued...

Student ID:

(d) [4 marks] Give suitable class invariants for the Carriage class. You may use written English
if you prefer.

(e) [6 marks] Ideas from the functional programming paradigm are commonly used to reduce the
complexity of object-oriented software. Functional programming emphasises the use of methods
which are side-effect free. State which methods in Train and Carriage are side-effect free, and
which are not. For those which are not, briefly state why.

(f) [6 marks] In the context of the Fragile Base Class problem, how can the Carriage and Guarded-
Carriage classes be improved?

SWEN222 12 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 13 continued...

Student ID:

Question 4. Software Design [30 marks]

This question deals with the design of a simplified software system for managing University degrees.

• A university degree consists of a schedule of courses that can be used in that degree, and a list
of majors. A degree requires 360 points to complete, and all courses are worth 15 points.

• A major may appear in multiple degrees and consists of one or more courses that a student
must do to satisfy that major. A student who wishes to graduate with a particular degree must
satisfy at least one major in that degree.

• A course may appear in the schedules of multiple degrees or majors, and includes a set of
prerequisites (which are the names of courses a student must complete first).

• A student may only enroll in a course listed in the schedule of a degree they are attempting
to complete. A student may not do more than one degree, although they may do more than
one major in the same degree. Once they have completed a degree, they cannot do any more
courses. The system maintains the set of courses they have already passed to enforce this.

(a) [12 marks] The four classes listed below form the core of the design for the University degree
system. For each class, identify the collaborators and responsibilities it has.

Degree:

Major:

(Question 4 continued on next page)
SWEN222 14 continued...

Student ID:

(Question 4 continued)

Course:

Student:

(Question 4 continued on next page)
SWEN222 15 continued...

Student ID:

(Question 4 continued)

(b) [10 marks] Pick two classes from the four identified above and sketch their API. In particular,
you should list the methods they contain, and provide appropriate documentation for them. You do
not need to give other implementation details.

(Question 4 continued on next page)
SWEN222 16 continued...

Student ID:

(Question 4 continued)

The Flyweight pattern is a solution to the problem of having too many very similar objects that
consume memory resources. The pattern involves separating intrinsic (context-independent) state
and extrinsic (context-dependent) state.

(c) [6 marks] There may be thousands of objects created to represent students and courses in the
university degree system. Discuss how you would incorporate the Flyweight Pattern into your design
to reduce memory consumption.

(d) [2 marks] Imagine the case where courses may instead be worth either 12, 15, 18, 20, 24 or 30
points. Does your answer to question (b) change? If so, why? If not, why not?

SWEN222 17 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 18 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 19

