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Abstract Border Gateway Protocol (BGP) anomalies, such as hijacking, is cur-
rently growing in trend due to limited detection capabilities. BGP hijacking mali-
ciously reroutes Internet traffic, causing Denial of Service (DoS) to major Internet
Service Providers (ISPs) or redirection attacks to Internet users. While it has been
shown that BGP anomalies can be detected using machine learning (ML) meth-
ods, the features used to train these ML models are not comprehensive. This is
because node level features, such as the number of BGP announcements, average
Autonomous System (AS) path length and average edit distance do not consider the
structure or relationships present in the network graph. In this paper, an approach to
extract information from BGP updates to build a network graph is proposed. Then,
centrality information is used as features to model the graphical structure of the
network to build an early detection tool for BGP anomalies using ML. The pro-
posed method has been validated on real world data from the CenturyLink outage
and shows promising results for anomaly detection (as early as one hour before the
event was reported) in both individual and a defined group of networks. Further-
more, the anomaly source can be determined using the proposed method.

Keywords: Anomaly detection, Border Gateway Protocol, Graph Centrality, Au-
toencoders, Gaussian Mixture Model.

1 Introduction

Operating as the backbone of the Internet, Border Gateway Protocol (BGP) is the
routing protocol used for transferring information across different networks or Au-
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tonomous Systems (ASes) on the Internet. The presence of BGP routers are known
through BGP update messages transmitted from router to router across the Internet.
Over the years, there have been many incidents caused by anomalous BGP updates.
BGP anomalies are caused by events such as hijacking or misconfigurations which
have been shown to cause severe outages and redirection attacks [8], proving to
be an important consideration for securing Internet traffic. The disconnectivity of
panix.com in United States of America (USA) is an example showcasing the in-
tentional redirection of BGP routes [23]. Another BGP anomaly example is the
global BGP CenturyLink Outage that was a consequence of the misconfiguration of
BGP routes [19]. BGP anomalies have caused severe outages for Internet users and
revenue loss for many businesses across the globe, making the detection of BGP
anomalies very crucial.

All BGP anomalies historically have shown changes in the network structure and
thus provides the ability to capture the BGP anomalies. This has motivated the use
of graphical network features that are fed to graph neural networks (GNN) [10] and
shown to be highly effective [11]. However, the process requires the collection of
datasets, which can be tedious and resource intensive [9], and more importantly,
only suitable for offline detection like most ML-based anomaly detection methods.
Methods that are designed for realtime detection (e.g. [7], [17], [20]) have been
shown to detect the anomalies as they occur which leaves little to no time for net-
work operators to react.

The main contribution of this paper is a technique to identify (even predict) net-
work anomalies in realtime (as they develop, even before these anomalies become
full-blown events) and determine the source of the anomaly by extracting infor-
mation from BGP update messages; hereafter, also referred to simply as “BGP
updates”. Instead of using node features, a network structure is built using BGP
updates. From the graph generated, centrality features are extracted to model the
structure of the network. This information is then passed into two machine learning
(ML) algorithms to detect anomalies, viz., an autoencoder to detect anomalies in
the entire network, and a Gaussian Mixture Model (GMM) to detect anomalies in
individual networks.

The rest of this paper is structured as follows. Section 2 describes the current
methods used to detect BGP anomalies and Section 3 outlines the design of the
proposed anomaly detection method. Section 4 then discusses the validation and
experimental results. Finally, Section 5 ends with concluding remarks and research
directions recommended to be examined in the future.

2 Related Work

Current BGP anomaly detection methods include time series, statistical pattern
recognition, using historical data, reachability check and ML [2]. In this section,
we review representative methods for BGP anomaly detection.

The earliest method used to detect BGP anomalies is time series [18, 1] which
gained popularity initially as it could find characteristics of abnormal behaviour in a
set of BGP updates collected within a time period. However, only a limited number



Realtime BGP Anomaly Detection using Graph Centrality Features 3

of incidents can be detected in data collected over two years using statistical features
such as the number of announcements and message volume. Such features have a
distinct behaviour for a specific type of anomaly, thus limiting the ability of using
statistical features to detect a wide range and new types of BGP anomalies.

Building upon the time series method, statistical pattern recognition has been
shown to be successful in determining existing BGP anomalies as it can find rela-
tionships amongst BGP updates, e.g. [26], using features such as AS-path and edit
distance [4] to determine the behaviour of the network topology. On the contrary,
new types of BGP anomalies are still undetected because the features do not con-
sider the entire network topology as they are examined independently in an instance.
Furthermore, without constructing of a topology, relationships amongst AS-path and
edit distance features cannot be accurately described. Thus, this motivates the use
of network topology built using BGP updates to accurately describe the inherent
relationships.

To overcome the limitation of identifying new BGP anomalies, a whitelisting
approach that uses historical BGP data to determine the abnormality of new BGP
updates has been proposed [8, 22]. This method utilises a BGP attribute of prefix
origin change but only specific types of anomalies, such as prefix hijacking, can be
detected. Other anomalies such as link failures and sub-prefix hijacks remain unde-
tected as the feature used is not comprehensive to reflect all changes in the network
topology. Thus, reinforcing those features which model the network topology must
be utilised.

In contrast to methods discussed above, the reachability check method gained
popularity as it is less computationally expensive as only a single hop count cal-
culation is required for each BGP update [25, 29]. But such a method only con-
siders reachability changes and does not identify relationships amongst multiple
reachability checks. Thus, identification of all and new BGP anomalies is not possi-
ble [25, 29], thereby corroborating that a network topology must be built to extract
a more comprehensive set of features.

All methods presented above have not proven to allow the capability for a method
to automatically learn from experience and improve its performance over time.
To counter this limitation, machine learning (ML) methods can be used where an
ML model is trained using existing BGP updates to detect anomalies within a net-
work [27, 3, 15]. This method is sought-after as the objective function for mod-
elling abnormal and normal behaviour can be found and optimized automatically.
However, ML methods typically rely on statistical features such as the number of an-
nouncements, withdrawals or the average AS path length which are not sufficiently
comprehensive to model the entire network [17]. Only direct and indirect anomalies
are detectable while other or new (not previously known) types of anomalies can-
not be detected [27, 3]. This reinforces the notion that graph-level features must be
extracted to capture all and new BGP anomalies [10, 24] as well as the potential of
graph neural networks [12, 11].

While training ML models with graphical network features and the use of GNN
have been shown to be effective, they require the collection and analysis of large
datasets, which are time and resource intensive, making them primarily suitable for
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offline detection and forensic analysis. Hence, this research proposes a method to
use BGP updates to build the network structure and extract graph-level features for
determining anomalies in realtime. ML will be used as a detection tool to enable
automatic identification of normal and abnormal features. As the network topology
is complex and high dimensional, a method like ML that can automatically detect
correlations in such data is suitable in time and accuracy.

3 Design

The design of the anomaly detection method focuses on graphical feature extraction
from BGP updates. This process includes the construction of the network graph
and the selection of graph-level features, as shown in Figure 1. Subsequently, this
information is used to train an ML model to detect anomalies.

Fig. 1: Workflow of Proposed Anomaly Detection Method

3.1 BGP Updates

Fig. 2: BGP Update Message Example

To formulate the graphical view of the net-
work, appropriate BGP update attributes
must be selected. BGP updates are used to
inform BGP routers of paths to ASes in
the Internet. This enables BGP routers to
select the best path when forwarding traf-
fic to destinations. An example of a BGP
update is shown in Figure 2. According to
RFC4271 [21], the AS PATH attribute can be used where each node present in the
path represents a direct connection to the next node in the path. The source (FROM)
and destination (TO) nodes within each update can also be included as a node in
the graph. Each node can have connections added or removed within each BGP up-
date. Therefore, the ANNOUNCEMENT and WITHDRAWAL attributes should be
used to ensure that connections are added or removed appropriately from the cor-
responding nodes. Therefore, these five attributes are used to construct the network
graph.
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3.2 Data Structures
After constructing the network, the graph must then be represented in a form suitable
for training an ML model. The representation must model the graph structure and
the node relationships to capture a graph-like form of the network. Hence, adjacency
lists are used to store a list of nodes in the network and their connected immediate
neighbours.

Fig. 3: Example of a Computed Trie Structure for
172.168.2.1, 173.168.2.1 and 172.168.3.1

During announcements and
withdrawals of BGP routes, a
BGP router will add or remove
routes respectively. Therefore,
the IP addresses of an AS must
be present in each node to find
withdrawn or announced routes.
Each node stores a dictionary of
IP addresses as an AS may com-
pose of multiple IP addresses. Our system uses a trie structure to store all IP ad-
dresses with their associated nodes. E.g., when storing an IP address of 172.168.2.1,
173.168.2.1 and 172.168.3.1, the trie structure will compute the tree as shown in
Figure 3. Using a trie structure yields better efficiency, O(1). The pseudo code for
building the graph using BGP updates is shown in Algorithm 1.

Fig. 4: Graph on 2020-08-30 at
9:04 (before anomaly event)

Fig. 5: Graph on 2020-08-30 at
at 10:05 (during anomaly event)
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3.3 Features
Centrality features are extracted from the constructed network graph and used in the
ML algorithm to determine whether the BGP updates are abnormal. In this paper,
we propose using the features of node centrality as it is computable and can reflect a
node’s presence in relation to the entire network. Other features such as storing the
connectivity of nodes are not feasible due to over 60,000 nodes in the network. The
feature of clustering coefficients can also be used, but individual network informa-
tion is lost as aggregations of neighbourhoods is required.

Node centrality measures how central a node’s position is within a network. BG-
Play visualisations [6] of the CenturyLink outage in Figures 4 and 5 show that the
node centralities changed significantly. This is because a large portion of the traffic
was rerouted, leading to several nodes having more or fewer paths routing through
them, thereby changing its centrality. Therefore, node centrality can be used as a
feature in the ML algorithm to detect anomalies because a large difference in the
centrality of a node can indicate abnormal behaviour [5]. We used centrality metrics
that are feasible to compute, namely:

(i) Degree Centrality (DC) – Number of immediate neighbours of a node and is
calculated, as follows [5]:

DC(u) =
n

N −1
(1)

(ii) Closeness Centrality (CC) – Inverse distance to all the reachable neighbours of a
node; the CC formula proposed by Wasserman et al. [28], as shown in Eqn. (2),
is used as it scales each node’s CC separately by the size of the corresponding
node and its neighbours,

CC(u) =
{

n−1/∑
n−1
v=1distance(u,v)

} n−1
N −1

(2)

where n denotes the number of reachable neighbours of a node u and N denotes
the total number of nodes in the graph [28].

The pseudo code for extracting centrality features is shown in Algorithm 2. DC is
inexpensive to compute as it only requires enumerating the number of immediate
neighbours of each node. CC is also computationally inexpensive as enumerating
the distance to all reachable neighbours of a node is only required. The distance to
all reachable neighbours is calculated using Dijkstra’s algorithm to allow efficient
computation of distances. Although the A* algorithm can instead be used for greater
efficiency [13], the generation of a heuristic is dependent on the geolocation of the
nodes, which is unobtainable due to insufficient information in BGP updates.

Other centralities such as betweenness and eigenvector [5] are not used as they
are computationally infeasible for realtime detection. Betweenness centrality re-
quires all possible paths to be computed, which is infeasible due to the presence
of over 60,000 nodes in the network. Calculating the eigenvector centrality requires
the computation of the adjacency matrix which is infeasible due to the computa-
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tional resource constraints, viz., extensive memory needed to create a large matrix
size for over 60,000 nodes present in the BGP updates.

3.4 Machine Learning Models
The ML model must identify the main patterns in normal data (extracted from the
normal non-anomalous BGP updates) as such patterns can reveal outliers or anoma-
lies. ML models as suggested by literature [2] such as autoencoder and GMM are
selected. To detect anomalies in the entire network, an autoencoder is used as it can
find the complex relationships amongst normal centralities and thereby determine
the anomalous centralities. An antoencoder is a NN with an encoder, hidden and
decoder layers. Each input in the encoder layer is reduced in dimensionality within
the hidden layer to 1 +

√
n, where n represents the number of nodes in the net-

work graph, using the Relu activation function [16]. This removes the noise in the
data and preserves the important variations. Subsequently, the features are recon-
structed in the decoder layer which enables the model to identify complex relation-
ships amongst the inputs and reconstruct the input. By training the weights within
each layer using centralities during normal operation, this enables the model to learn
the definition of normal centralities. Hence, anomalous centralities would return a
large reconstruction error as the model cannot reconstruct the centrality using the
learnt normal relationships.

The main disadvantage of Autoencoders is that the detection of anomalies for a
specific AS is not addressed. Identification of problematic ASes is useful for net-
work administrators to avoid routing to such ASes in an abnormal event. To de-
tect individual network anomalies, a white-box method such as GMM is used [16].
GMM uses normal centralities to compute a Gaussian distribution for each AS. Each
new centrality has a probability fitting into the trained distribution. Hence, it is as-
sumed that a low probability of a centrality value fitting into the trained normal
distribution would indicate anomalies for the AS. The training parameter indicating
the number of components within each GMM is 1, as there was one cluster present
in the normal distribution of every AS, essentially a univariate Gaussian (UG).

To train the ML models, BGP updates that are gathered during known normal
network operations, such as two weeks before the anomaly incident (excluding two

Algorithm 2 Centrality Feature Extraction
1: f = Read BGP Update
2: g = Get graph from f ▷ Contains each node with its immediate neighbours
3: N = Enumerate number of nodes in g

4: for n = 1, . . . ,N do
5: node = get n in graph
6: Calculate paths as the shortest path length from each node to its reachable neighbours
7: Calculate CC as in Eqn. (2) using number of paths, N and total length of paths
8: Calculate DC as in Eqn. (1) using number of immediate neighbours of node in g and N
9: end for
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days before the anomaly incident.) Using less than 2 weeks of data is inadequate, as
there is insufficient training data provided for the ML models to find correlations or
define a correct distribution for detecting anomalies.

4 Evaluation

Our proposed method is evaluated against the detection of abnormal behaviour dur-
ing the BGP CenturyLink outage from 08-30-2020 10:04 (UTC). This helps to deter-
mine whether the learnt model can correctly classify anomaly incidents. The BGP
CenturyLink outage was detected by ISPs through Twitter feeds by CenturyLink
[19]. This reinforces the fact that an earlier and more reliable detection method is
required to alert BGP anomalies. Anomaly detection for the entire network and spe-
cific ASes from the New Zealand (NZ), Japan (WIDE) and Serbia (SOXRS) core
routers on the day of the BGP CenturyLink outage will be evaluated using autoen-
coders and GMM respectively. Experiments included an evaluation of the CC and
DC features used for determining the anomaly score. The detection of an anomaly
incident is based on the autoencoder reconstruction error (anomaly score) breach-
ing a “threshold” that is determined (viz., maximum reconstruction error) using a
validation set which consists of a small subset of normal data, two days before the
anomaly incident.

4.1 Entire Network Detection
Determination of whether an entire network is anomalous allows ISPs to have a gen-
eralised view of a network’s stability. This allows faster determination of anomalous
behaviour in comparison to monitoring multiple individual networks. Hence, an ex-
periment using the degree and closeness centralities from the BGP updates of the
NZ and WIDE core routers are used to determine the anomaly score in the BGP
CenturyLink Outage. For the NZ core router, both the closeness and degree central-
ity (Figures 6 and 7) show an increase in the anomaly score before the estimated
time breach.

We observe a similar increase in anomaly score for the WIDE core router, as
shown in Figures 8 and 9. This indicates that the proposed method can detect the
anomaly incident earlier, thus increasing the time for remediating the incident. A rise
in the anomaly score is observed as the BGP CenturyLink Outage caused network
instability where many nodes in the network needed to redirect traffic to compensate
the loss of a Tier 1 ISP. This caused the number of connected neighbours for each
node to change significantly. E.g., AS174 (Cogent Communications) had an increase
of 200 immediate neighbours [19], further validating that our method is able to
detect the anomalous activity in the network during the BGP CenturyLink Outage.

However, the detection time of anomalies can be significantly impacted by the
geographic position of the observing router. E.g., a 3-hour delay of detection for the
BGP CenturyLink Outage is observed for the SOXRS router as shown in Figures 10
and 11. BGP updates are transferred router to router and routers like SOXRS which
are located further away from the source of the incident will receive the anomalous
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Fig. 6: NZ CC

Fig. 7: NZ DC

Fig. 8: WIDE CC

Fig. 9: WIDE DC

Fig. 10: SOXRS CC

Fig. 11: SOXRS DC

updates later. This suggests that multiple core routers located at different positions
around the world should be used to monitor anomalies.

4.2 Individual Network Detection
If the entire network is deemed anomalous, specific ASes should be checked to
determine whether they are affected or is the source of the BGP incident. This helps
to ensure that ISPs can update their routing tables to prevent traffic from being
routed to such ASes, thus minimizing the chance of Denial of Service (DoS). The
evaluations of individual networks will focus on AS3561 and AS38022 that are
involved in the BGP CenturyLink Outage. AS3561 is the BGP CenturyLink AS
which caused the outage through a misconfiguration and AS38022 (Research and
Education Advanced Network New Zealand) is a peer of AS3561 that had to redirect
its traffic to compensate for the disconnectivity of AS3561.

Using UG to compute (cf: Section 3.4) the anomaly score of an AS (e.g. AS3561)
from the BGP updates received by the other (NZ, WIDE and SOXRS) ASes’ core
routers can be used to determine the anomaly source. Depending on the source of
the anomaly, different core routers will detect anomalies at different times. E.g.,
NZ detected abnormal behaviour at least 1 hour before the anomaly event because
AS3561 is an immediate neighbour of NZ, hence it can detect abnormal behaviour
before WIDE (further away) and SOXRS (furthest away.) As SOXRS is geographi-
cally further away from AS3561 than WIDE, the detection of the anomalous activity
is 2 hours after the anomaly event.

Figures 12 and 13 show the CC and DC anomaly scores of AS38022, respec-
tively, from the NZ core router (itself) while Figures 14 and 15 show the CC and
DC anomaly scores of AS38022, respectively from the WIDE core router. Figures
13, 14 and 15 show a rise in the anomaly score before the estimated time breach
as the network was unstable. A later time breach is predicted for NZ (by itself) as
shown in Figure 12 as the anomaly event did not originate from AS38022. The dis-
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Fig. 12: NZ AS38022 CC

Fig. 13: NZ AS38022 DC

Fig. 14: WIDE AS38022 CC Fig. 15: WIDE AS38022 DC

Network Earliest Detection Time (UTC)
Entire Network 09:30

AS3561 Network 08:30 (detected by NZ)
AS38022 Network 10:00 (detected by WIDE)

Table 1: Earliest Anomaly Detection Time during BGP
CenturyLink Outage on 08-30-2020 with an estimated time
breach at 10:04 UTC based on Twitter feeds.

tance from AS38022 to its reachable neighbours did not change until the error from
the source of the anomaly, AS3561, propagated through the Internet. As AS3561 is a
trusted network peer of AS38022, the error that is propagated by AS3561 is deemed
normal when transferred to AS38022. However, an earlier time breach is predicted
from the WIDE core router as it can view the anomalous activity between AS38022
and AS3561 from an outsider’s point of view. The earliest detection times of the
anomalies occurring in the entire network as well as individual networks are sum-
marized in Table 1. The NZ router detected an anomaly in AS3561 about 1hr 30min
before it was reported while the WIDE router detected an anomaly in AS38022 (NZ)
a few minutes before the event was report.

No anomaly score is generated from SOXRS for AS38022 as it does not have
AS38022 within its routing table during the detection period. This is because
SOXRS is geographically further away from AS38022 and did not have any traf-
fic that travelled to AS38022 within the detection period. This suggests that multi-
ple core routers should be used for detection to allow anomalies to be discovered
throughout the Internet.

4.3 Results Analysis and Findings
The key objective of our approach is early detection of anomalous events using the
BGP update messages. This is achieved by comparing the anomaly scores (recon-
struction errors) during anomalous events with those during normal operations. Our
aim is not the analysis of ML models through typical performance metrics of accu-
racy, precision, recall, F1, etc. [14, 17].

Both the closeness and degree centralities show similar results, with a similar
time of anomaly detection. However, DC is cheaper to compute than CC as it only
requires calculation of nodes’ immediate neighbours instead of reachable neigh-
bours. DC yields a complexity of O(n) and CC yields a complexity of O(ne) where n
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represents the number of nodes and e represents the number of edges in the network.
This suggests that DC should be used to alert abnormalities in the entire network.
CC, however, performs better than DC in determining the severity of an incident
where a large number of ASes can be indicated as anomalous as demonstrated in
the BGP CenturyLink Outage. This is because CC takes into account the reachable
neighbours of each node, meaning a major ISP outage will be reflected in more ASes
in comparison to DC which only considers the immediate neighbours of nodes.

5 Conclusion and Future Work

In this paper, we have proposed a network anomaly detection method that extracts
graph-like features from BGP updates on-the-fly for realtime anomaly detection.
Construction of the network graph using BGP update attributes is conducted, and
degree and closeness centrality features are extracted for anomaly detection using
ML models, viz., autoencoders and GMM. The detection method is successful in
detecting anomalous BGP incidents such as misconfiguration events.

An immediate future work item would be the study of different ML models and
their effectiveness, as well as, other network centrality measures. Other future work
items include distributed processing to enhance the computational speed of feature
extraction and network neighbourhood aggregation to enable Internet-wide anomaly
detection. Using traffic link analysis to increase the confidence of the proposed
method also needs further study.
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