Pipelined Datapaths

The single-cycle datapath has some problems

* Mainly comprised of combinatorial logic
* This means each element has a propagation delay.
* The addition of propagation delays reduces the clock rate possible.

* The clock rate is determined by the worst case delay.

* This means the single-cycle datapath violates the rule
“Make the common case fast”

* Can we improve the throughput of the datapath?
* Can we increase the clock rate possible at the same time?
* Can we make the common cast fast?

A pipeline

A

* The single cycle datapath o e e e e B anm e o
Must complete each task before | » l%..%'
. B @ -
another begins! i Bo=l
' §0=l
. A pipelined datapath T —— T

L]
Task

order —s
As soon as one element.of the . B0
four datapath elements is 5 #5=0
complete we canreuseiton a c §5=M
new instruction. 0 S0=Ml

A LEGvVS pipelined datapath

LEGVS8 instructions we have looked at previously take 5 steps.
* Fetch instructions from memory.

* Read registers and decode the instruction

* Execute the operation or calculate an address

* Access an operand in data memory

* Write the result into a register

Let’s split up the single-cycle datapath into five stages to speed up

execution. . 200 400 600 800 1000
Time : : : —

ADD X1, X2, X3 IF 4_'_ D ~EX MEM WE

[
S

What does this gain us?

Program

execution Time 200 400 600 800 1000 1200 1400 1600 1800

order T T T T T T T T T

(in instructions)

Instruction Data
LDUR X1, [X4 #100] foton |Reg| ALU access | N9
Instruction Data

LDUR X2, [X4 #200] 800 ps fotch | 7e9| ALY | gopese | RO
Instruction

LDUR X3, [X4 #400] 800 ps fetch
800 ps

Program

execution . 200 400 600 800 1000 1200 1400

Time T 1 1 1 T T 1
order
(in instructions)
Instruction Data
LDUR X1, [X4#100] | “faion Reg| ALU access |9
i Dat
LDUR X2, [x4#200] 200 ps | "pec®" Reg| ALU | 5% |Reg
Instruction Data
LDUR X3, [X4,#400] 200 ps | reton Reg| ALU | lress |REO

200 ps 200 ps 200 ps 200 ps 200 ps

Pipelining improves
performance by increasing
Instruction throughput

A program can execute billions
of instructions; therefore,
throughput is an important
metric.

What are the disadvantages (trade-offs)

Pipeline Hazards

e Structural Hazard

The datapath design doesn’t allow simultaneous execution of
different instructions.

e Data Hazard

The pipeline must stall(wait) for a step in the previous instruction
to complete (It requires that data).

e Control Hazard

The pipeline must decide what instruction to execute based on a
previous instruction (A conditional branch).

Resolving data hazards

Forwarding
Without intervention if a register is required in the subsequent
Instruction we must wait for the previous instruction to complete.

Program

execution _ 200 400 600 800 1000
order Time . .

(in instructions)
o *:

ADD X1, X2, X3 = i 1D o—MEM Eai
SUB X4, X1, X5 IF 5 1D EExi MEM WB |
|

Forwarding is the addition of extra hardware allowing us to bypass
some stages and access the interim result.

Resolving data hazards

Forwarding
Forwarding isn’t perfect, sometimes even the interim result occurs after

the subsequent instruction requires it.

Program

execution 200 400 600 800 1000 1200 1400
order Time i ! T T

(in instructions)
LDUR X1, [X2,#0] | IF o 1D B*MEM +— WB

SUB X4, X1, X5 IF 4D %MEM WBE

Here we must insert a stall, to allow X1 to be used in the SUB instruction.

Resolving control hazards

There are two solutions to control hazards.
1) Stall on Branch

As we don’t know what the next instruction will be after a branch, we
could just stall until we determine the outcome of the branch.

Program

execution) 200 400 600 200 1000 1200 1400
Time I I I I I I I
order

{in instructions)

Instruction _ Data
ADD X4, X5, X8 | it Reg| ALU | oo, |Res
O WA A Instruction - Data .
e m fetch Reg) ALU 8CCEss Reg
IBR X7 Instruction Data
L 4 fetich Reg| ALY —

This however introduces additional delay into the pipeline.

Resolving control hazards

2) Branch Prediction
Another method of resolving control hazards is to predict which branch

will be taken. One method is to just predict that conditional branches
will always be ignored. erogam

execution Time E'F'E' 4¢II"I> EI?III E-IEIIII mlﬂlil 1EIIIIEI MIEICI

order
(In instructions)

nstruction Data

ADD X4, X5, X6 | iion Reg| ALU scoess | 2D
CBZ X1.4("—"EI:":I e Irﬁ_.t;:;lim Reg| ALU :3525125 Reg

; <+—| Instruction Dats
LDUR X3, X0#400] 500 oo | "ot Reg| AU | D |Reg

gtllwe branch isn’t taken, then we just continue with our pipeline with no
elay.

Resolving control hazards

2) Branch Prediction
However, If the branch is taken...

Program
execution 200 400 600 8OO 1000 1200 1400
.:mjer 1 I I I 1 I
(in instructions)
nistruction Data

ADD X4, X5, X6 | “pn Reg| AU | -*% |Reg

——r s 4 Instnuction Diata

CEBS X1 .40 m‘- fatch Heg AL P Raq

= ORR X7 X8, X9 . I;'rs.t'uc;in:nn -:Iaha_
400 ps fatch Reg ALl BCCESS Reg

We now need to abort the predicted instruction anc
the branched instruction.

begin executing

Summary

Pipelining exploits parallelism between instructions to improve the
throughput of a sequential instruction stream.

For each code sequence below, will they stall? Can we avoid
stalling using forwarding?

LDUR X0, [X0,#0] ADD X1, X0, XC ADDI X1, XD, #1
ADD X1, X0, XO ADDI X2, X0, #5 ADDI X2, X0, #2
ADDI X4, X1, #5 ADDI X3, X0, {3

ADDI X4, X0, {4
ADDI X5, X0, #5

The pipelined datapath

Let’s split the single cycle datapath into five stages and give each
stage a name.

1. IF: Instruction Fetch

2. ID: Instruction Decode (and register file read)
3. EX: Execution (or address calculation

4. MEM: data Memory access

5. WB: Write Back

The pipelined datapath

WE: Writa back

EX: Exacuia/
sddress calculation

F: Instruction fetch

Inestruction
Instruction
MBIy

A ddrean

Add

The pipelined datapath

To split up each stage we insert a sequential array of Flip-Flops (A
register) in between each pipeline stage.

2 ICVEX; EXMEM
———
- N
§ —= Ir/“‘-. Aid "":'i
Sttt | red

I
M =
u = P dddrass =] Foaad .
. E par -ta:d1 . [
= { E g -
W = Fraad —
gl
Instruction = Boatshers ALYy .
MEmory . - { o resull
irle dalg " e
rogs u L Cata
Wi J mamary
[} -
Ly
¥irllo
b -]

The pipeline for LDUR!

| LOUR |
! shruction fetch !

ET DEX EXIMEM

* g

i

1

I
8
\ik

Irestrscon

ey Tee=

&
M
?
i
=
[
l
/
!

& T OE
Mo #
| |
ok
Py
a
|
¥
L] =%
LoER
=
E
T

The pipeline for LDUR!

¥
]
)

LOUR |
gl l
| H DEX EXTRER!
—
£ naa M0 -
f Bhe =
CLE
e 11
L]
u =L A —E Fiaai
I:l E ragistar 1 ﬂ:mj1 - ._-‘\\\
= R Fon — .
Instnaciion regedar 2 ALY)
F.&igisiors
mancry o Read | | T Y S | Boidnass

L diln 2

ragistor :

Wl K

dais - _.-II

Wrils
- 1T de=
n
I.I —

The pipeline for LDUR!

i
|

| LW |
oy a) EX MR
— =
Mad — - - e
-
. Mdmﬁj

Shid i e

o) s

A

|0 Y
L]
u — 8 Address Haad
—r i
x ﬁ regstar 1 Fimad . -
wJ 5 . data
O — Fora -
instruction = st 2 PIY Pl
memary = 1 i Fhillﬂﬁ”l-._m'd - a resel [Middress dats
—
ey e daia 2 : izt
—— i] 'II LT Oy
data
Wi
II/- -H"-,I = daia
i kg
i Shgn- "
| ot

o
L

The pipeline for LDUR!

=

_ﬁI.J

=E E

g —

FAD

Iestruction
namony

IVEX

=
B Fmad
 J—— Raad
g sar 1
s o Y|
£ Fmad
.igﬂ“é:q-g:
e R
Wrts o
ragistar
| #rta
HE

EX/HEM

EMAYE

AT S

Wirim
dals

B

The pipeline for LDUR!

s

=e B

i

FaD

IINEX

A e

Imstructicn

| udon

EXMEM

}ﬂ|
.'-r ._._:._ - .. 5

EMYYE

Wiria

	Slide 1: Pipelined Datapaths
	Slide 2: The single-cycle datapath has some problems
	Slide 3: A pipeline
	Slide 4: A LEGv8 pipelined datapath
	Slide 5: What does this gain us?
	Slide 6: What are the disadvantages (trade-offs)
	Slide 7: Resolving data hazards
	Slide 8: Resolving data hazards
	Slide 9: Resolving control hazards
	Slide 10: Resolving control hazards
	Slide 11: Resolving control hazards
	Slide 12: Summary
	Slide 13: The pipelined datapath
	Slide 14: The pipelined datapath
	Slide 15: The pipelined datapath
	Slide 16: The pipeline for LDUR!
	Slide 17: The pipeline for LDUR!
	Slide 18: The pipeline for LDUR!
	Slide 19: The pipeline for LDUR!
	Slide 20: The pipeline for LDUR!

