Pipelined Datapaths



The single-cycle datapath has some problems

* Mainly comprised of combinatorial logic
* This means each element has a propagation delay.
* The addition of propagation delays reduces the clock rate possible.

* The clock rate is determined by the worst case delay.

* This means the single-cycle datapath violates the rule
“Make the common case fast”

* Can we improve the throughput of the datapath?
* Can we increase the clock rate possible at the same time?
* Can we make the common cast fast?
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A LEGvVS pipelined datapath

LEGVS8 instructions we have looked at previously take 5 steps.
* Fetch instructions from memory.

* Read registers and decode the instruction

* Execute the operation or calculate an address

* Access an operand in data memory

* Write the result into a register

Let’s split up the single-cycle datapath into five stages to speed up
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What does this gain us?
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Pipelining improves
performance by increasing
Instruction throughput

A program can execute billions
of instructions; therefore,
throughput is an important
metric.



What are the disadvantages (trade-offs)

Pipeline Hazards

e Structural Hazard

The datapath design doesn’t allow simultaneous execution of
different instructions.

e Data Hazard

The pipeline must stall(wait) for a step in the previous instruction
to complete (It requires that data).

e Control Hazard

The pipeline must decide what instruction to execute based on a
previous instruction (A conditional branch).



Resolving data hazards

Forwarding
Without intervention if a register is required in the subsequent
Instruction we must wait for the previous instruction to complete.
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Forwarding is the addition of extra hardware allowing us to bypass
some stages and access the interim result.




Resolving data hazards

Forwarding
Forwarding isn’t perfect, sometimes even the interim result occurs after

the subsequent instruction requires it.
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Here we must insert a stall, to allow X1 to be used in the SUB instruction.




Resolving control hazards

There are two solutions to control hazards.
1) Stall on Branch

As we don’t know what the next instruction will be after a branch, we
could just stall until we determine the outcome of the branch.
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This however introduces additional delay into the pipeline.



Resolving control hazards

2) Branch Prediction
Another method of resolving control hazards is to predict which branch

will be taken. One method is to just predict that conditional branches
will always be ignored. erogam
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Resolving control hazards

2) Branch Prediction
However, If the branch is taken...
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Summary

Pipelining exploits parallelism between instructions to improve the
throughput of a sequential instruction stream.

For each code sequence below, will they stall? Can we avoid
stalling using forwarding?

LDUR X0, [X0,#0] ADD X1, X0, XC ADDI X1, XD, #1
ADD X1, X0, XO ADDI X2, X0, #5 ADDI X2, X0, #2
ADDI X4, X1, #5 ADDI X3, X0, {3

ADDI X4, X0, {4
ADDI X5, X0, #5




The pipelined datapath

Let’s split the single cycle datapath into five stages and give each
stage a name.

1. IF: Instruction Fetch

2. ID: Instruction Decode (and register file read)
3. EX: Execution (or address calculation

4. MEM: data Memory access

5. WB: Write Back



The pipelined datapath
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The pipelined datapath

To split up each stage we insert a sequential array of Flip-Flops (A
register) in between each pipeline stage.
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The pipeline for LDUR!
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The pipeline for LDUR!
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The pipeline for LDUR!
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The pipeline for LDUR!
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The pipeline for LDUR!
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