
Pipelined Datapaths



The single-cycle datapath has some problems

• Mainly comprised of combinatorial logic
• This means each element has a propagation delay.
• The addition of propagation delays reduces the clock rate possible.

• The clock rate is determined by the worst case delay.
• This means the single-cycle datapath violates the rule

“Make the common case fast”

• Can we improve the throughput of the datapath?
• Can we increase the clock rate possible at the same time?
• Can we make the common cast fast?



A pipeline

• The single cycle datapath
Must complete each task before 
another begins!

• A pipelined datapath
As soon as one element of the 
four datapath elements is 
complete we can reuse it on a
new instruction.



A LEGv8 pipelined datapath

LEGv8 instructions we have looked at previously take 5 steps.
• Fetch instructions from memory.
• Read registers and decode the instruction
• Execute the operation or calculate an address
• Access an operand in data memory
• Write the result into a register
Let’s split up the single-cycle datapath into five stages to speed up 
execution.



What does this gain us?

Pipelining improves
performance by increasing 
instruction throughput

A program can execute billions 
of instructions; therefore, 
throughput is an important 
metric.



What are the disadvantages (trade-offs)

Pipeline Hazards
• Structural Hazard

The datapath design doesn’t allow simultaneous execution of 
different instructions. 

• Data Hazard
The pipeline must stall(wait) for a step in the previous instruction 
to complete (It requires that data). 

• Control Hazard
The pipeline must decide what instruction to execute based on a 
previous instruction (A conditional branch).



Resolving data hazards

Forwarding
Without intervention if a register is required in the subsequent 
instruction we must wait for the previous instruction to complete.

Forwarding is the addition of extra hardware allowing us to bypass 
some stages and access the interim result.



Resolving data hazards

Forwarding
Forwarding isn’t perfect, sometimes even the interim result occurs after 
the subsequent instruction requires it.

Here we must insert a stall, to allow X1 to be used in the SUB instruction.



There are two solutions to control hazards.
1) Stall on Branch
As we don’t know what the next instruction will be after a branch, we 
could just stall until we determine the outcome of the branch.

This however introduces additional delay into the pipeline.

Resolving control hazards



2) Branch Prediction
Another method of resolving control hazards is to predict which branch 
will be taken. One method is to just predict that conditional branches 
will always be ignored.

If the branch isn’t taken, then we just continue with our pipeline with no 
delay.

Resolving control hazards



2) Branch Prediction
However, if the branch is taken…

We now need to abort the predicted instruction and begin executing
the branched instruction.

Resolving control hazards



Summary

Pipelining exploits parallelism between instructions to improve the 
throughput of a sequential instruction stream.

For each code sequence below, will they stall? Can we avoid 
stalling using forwarding?



The pipelined datapath

Let’s split the single cycle datapath into five stages and give each 
stage a name.
1. IF: Instruction Fetch
2. ID: Instruction Decode (and register file read)
3. EX: Execution (or address calculation
4. MEM: data Memory access
5. WB: Write Back



The pipelined datapath



The pipelined datapath

To split up each stage we insert a sequential array of Flip-Flops (A 
register) in between each pipeline stage.



The pipeline for LDUR!



The pipeline for LDUR!



The pipeline for LDUR!



The pipeline for LDUR!



The pipeline for LDUR!


	Slide 1: Pipelined Datapaths
	Slide 2: The single-cycle datapath has some problems
	Slide 3: A pipeline
	Slide 4: A LEGv8 pipelined datapath
	Slide 5: What does this gain us?
	Slide 6: What are the disadvantages (trade-offs)
	Slide 7: Resolving data hazards
	Slide 8: Resolving data hazards
	Slide 9: Resolving control hazards
	Slide 10: Resolving control hazards
	Slide 11: Resolving control hazards
	Slide 12: Summary
	Slide 13: The pipelined datapath
	Slide 14: The pipelined datapath
	Slide 15: The pipelined datapath
	Slide 16: The pipeline for LDUR!
	Slide 17: The pipeline for LDUR!
	Slide 18: The pipeline for LDUR!
	Slide 19: The pipeline for LDUR!
	Slide 20: The pipeline for LDUR!

