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Is Moore's law over?

17 Sep 2018 | 20:09 GMT

David Patterson Says It’'s Time for New Computer
Architectures and Software Languages

Moore’s Law is over, ushering in a golden age for computer architecture,
says RISC pioneer

By Tekla S. Perry (/author/perry-tekla-s)

David Patterson—University of
California professor, Google engineer,
and RISC pioneer
(http://news.berkeley.edu/2018/03/21
/david-patterson-pioneer-of-modern-

computer-architecture-receives-turing-
award/)—says there’s no better time
than now to be a computer architect.

That’s because Moore’s Law really is
over, he says: “We are now a factor of 15
behind where we should be if Moore’s

Photo: Peg Skorpinski/UC Berkeley Law were still operative. We are in the
David Patterson post—Moore’s Law era.”



This means, Patterson told engineers attending the 2018 @Scale Conference
(https://atscaleconference.com/events/the-2018-scale-conference/)

held in San Jose, that “we’re at the end of the performance scaling that we are used
to. When performance doubled every 18 months, people would throw out their
desktop computers that were working fine because a friend’s new computer was so
much faster.” But last year, he said, “single program performance only grew 3
percent, so it’s doubling every 20 years. If you are just sitting there waiting for chips
to get faster, you are going to have to wait a long time.”

For a computer architect like Patterson, this is actually good news. It’s also good
news for innovative software engineers, he pointed out. “Revolutionary new
hardware architectures and new software languages, tailored to dealing with specific
kinds of computing problems, are just waiting to be developed,” he said. “There are
Turing Awards waiting to be picked up if people would just work on these things.”

As an example on the software side, Patterson indicated that rewriting Python into C
gets you a 50x speedup in performance. Add in various optimization techniques and
the speedup increases dramatically. It wouldn’t be too much of a stretch, he
indicated, “to make an improvement of a factor of 1,000 in Python.”

On the hardware front, Patterson thinks domain-specific architectures just run
better, saying, “It’s not magic— there are just things we can do.” For example,
applications don’t all require that computing be done at the same level of accuracy.
For some, he said, you could use lower-precision floating-point arithmetic instead of
the commonly used IEEE 754 (https://en.wikipedia.org/wiki/IEEE._754) standard.



The biggest area of opportunity right now for applying such new architectures and
languages is machine learning, Patterson said. “If you are a hardware person,” he said,
“you want friends who desperately need more computers.” And machine learning is
“ravenous for computing, which we just love.”

Today, he said, there’s a vigorous debate surrounding which type of computer
architecture is best for machine learning, with many companies placing their bets.
Google has its Tensor Processing Unit (TPU)
(https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-
tensor-processing-unit-tpu), with one core per chip and software-controlled memory
instead of caches; Nvidia (https://www.nvidia.com/en-us/)’s GPU has 80-plus cores;
and Microsoft is taking an FPGA approach. And Intel (http://www.intel.com/), he
said, “is trying to make all the bets,” marketing traditional CPUs for machine learning,
purchasing Altera (http://fortune.com/2015/08/27/why-intel-altera/) (the company
that provides FPGAs to Microsoft), and buying Nervana
(https://www.engadget.com/2017/10/17/intel-ai-deep- learning-nervana-npp/), with
its specialized neural-network processor (similar in approach to Google’s TPU).

Along with these major companies offering different architectures for machine
learning, Patterson says there are at least 45 hardware startups tackling the problem.

Ultimately, he said, the market will decide.

“This,” he says, “is a golden age for computer architecture.”



Software is hitting a wall when it comes to performance
and energy efficiency.

So we use hardware acceleration.
Graphics cards for gaming!

Consider the Iphone processor
https://en.wikipedia.org/wiki/Apple A1l

The A1l features an Apple-designed 64-bit ARMvV8-A six-
core CPU. The Al1 also integrates an Apple-designed
three-core graphics processing unit (GPU), the M11
motion coprocessor, a new image processor and a
dedicated neural network hardware engine.

So much more than just a multicore processor!!


https://en.wikipedia.org/wiki/Apple_A11

Architecture is key to performance!

Program Memory Data Memory
Space (non- - Space (volatile, Harvard Architecture

volatile, ROM) RAM)

Program memory

- S —— von Neumann
i Architecture

Harvard architecture with it's separate memory buses allows for the
simultaneous fetching of data and instructions.

ARM® Cortex®-A8 Having separate Instruction and Data caches

[0 ARM CoreSight” Debugand Trace | also allows simultaneous fetching.

NEONT™ A von Neumann architecture with the speed
advantage of the Harvard architecture!
32b CPU

Floating Point

Unit

1632k T The caches themselves provide an additional
speed advantage.

e — Plus, we have dedicated hardware accelerator
blocks — NEON, FPU




Digital Signal Processors (DSP)

A DSP is used to perform real time processing. Usually the digital filtering of
discrete time data coming from an ADC. An FIR filter performs a convolution

between the input data stream and a set of filter coefficients. This is
performed at the input data rate which is usually several times faster than
the Nyquist rate. The DSP architecture is optimized for this task.
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Figure 1-4. Mapping DSP Algorithms Into Hardware



Most DSP devices have separate Program and X, Y data memories and data
buses. Often called a "Dual Harvard Architecture”. This allows the

simultaneous fetching of an Instruction and X (data), Y (filter coefficient) data.
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Figure 2-1. DSP56303 Block Diagram



GPU and FPGA
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Inside an FPGA

A regular array of
configurable logic
blocks (CLBs),
switching matrices
and I/O blocks —

all programmable.

Each CLB is made up of gates, flipflops and multiplexers
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Also other resources: DSP blocks, multipliers, RAM, Clocking etc.

EEEN402 is a course dedicated to FPGAs




Relative performance of High Level approaches. Xeon Phi has 57 cores
and like GPUs it consumes a lot of power. Maxeler provide IP cores and
large FPGAs. Nallatech provide PCle boards with large FPGA devices.
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Breathe New Life
into Your Data Center

Xilinx, Alveo. High
performance FPGA based
hardware acceleration for
your desktop PC.

33 Terra Operations Per
second!!

12,288 DSP slices!
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Consider Amazon Web Services (AWS).

https://aws.amazon.com/ec2/instance-types/f1/

Amazon EC2 F1 is a cloud based compute instance
with field programmable gate arrays (FPGASs) that
you can program to create custom hardware

accelerations for your application.

The Agility of F1:
Accelerate Your Applications with aws

») Custom Compute Power N—

Complex workloads often need highly customizable solutions to produce useful results.
Amazon EC2 F1 Instances provide a significant increase in performance through
customizable field programmable gate arrays (FPGAs) in the AWS cloud.


https://aws.amazon.com/ec2/instance-types/f1/

