
EEEN301 Embedded systems

Lecture 3 2023

Computer organization

Language of the computer

Reference book

David A. Patterson and John L. Hennessy, Computer
Organization and Design, ARM edition, Morgan Kaufmann
Publishers.

2

The Cortex-A9 processor used in the Beaglebone
implements the ARMv7-A architecture and instruction set.

Newer and larger ‘Arm Cortex’ processors now use the
ARMv8-A architecture and instruction set. The set text
book also covers the ARMv8-A so we will examine that
instruction set.

The new Apple ’M1” processor is a 64bit ARM processor
that uses the ARMv8.4-A instruction set.

COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

ARM
Edition

Chapter 2
Instructions: Language
of the Computer

Chapter 2 — Instructions: Language of the Computer — 5

Instruction Set
n The repertoire of instructions of a

computer
n Different computers have different

instruction sets
n But with many aspects in common

n Early computers had very simple
instruction sets
n Simplified implementation

n Many modern computers also have simple
instruction sets

§2.1 Introduction

Chapter 2 — Instructions: Language of the Computer — 6

The ARMv8 Instruction Set
n A subset, called LEGv8, used as the example

throughout the book
n Commercialized by ARM Holdings

(www.arm.com)
n Large share of embedded core market

n Applications in consumer electronics, network/storage
equipment, cameras, printers, …

n Typical of many modern ISAs
n See ARM Reference Data tear-out card

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 7

Arithmetic Operations
n Add and subtract, three operands

n Two sources and one destination
ADD a, b, c // a gets b + c

n All arithmetic operations have this form
n Design Principle 1: Simplicity favours

regularity
n Regularity makes implementation simpler
n Simplicity enables higher performance at

lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 8

Register Operands
n Arithmetic instructions use register

operands

n LEGv8 has a 32 × 64-bit register file
n Use for frequently accessed data
n 64-bit data is called a “doubleword”

n 31 x 64-bit general purpose registers X0 to X30
n 32-bit data called a “word”

n 31 x 32-bit general purpose sub-registers W0 to W30

n Design Principle 2: Smaller is faster
n c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

LEGv8 Registers
n X0 – X7: procedure arguments/results
n X8: indirect result location register
n X9 – X15: temporaries
n X16 – X17 (IP0 – IP1): may be used by linker as a

scratch register, other times as temporary register
n X18: platform register for platform independent code;

otherwise a temporary register
n X19 – X27: saved
n X28 (SP): stack pointer
n X29 (FP): frame pointer
n X30 (LR): link register (return address)
n XZR (register 31): the constant value 0

Chapter 2 — Instructions: Language of the Computer — 9

Chapter 2 — Instructions: Language of the Computer — 10

Register Operand Example
n C code:
f = (g + h) - (i + j);

n f, …, j in X19, X20, …, X23

n Compiled LEGv8 code:
ADD X9, X20, X21
ADD X10, X22, X23
SUB X19, X9, X10

Chapter 2 — Instructions: Language of the Computer — 11

Memory Operands
n Main memory used for composite data

n Arrays, structures, dynamic data

n To apply arithmetic operations
n Load values from memory into registers
n Store result from register to memory

n Memory is byte addressed
n Each address identifies an 8-bit byte

n LEGv8 does not require words to be aligned in
memory, except for instructions and the stack

Chapter 2 — Instructions: Language of the Computer — 12

Memory Operand Example
n C code:
A[12] = h + A[8];

n h in X21, base address of A in X22
n Compiled LEGv8 code:

n Index 8 requires offset of 64
LDUR X9,[X22,#64] // U for “unscaled”

ADD X9,X21,X9

STUR X9,[X22,#96]

Chapter 2 — Instructions: Language of the Computer — 13

Registers vs. Memory
n Registers are faster to access than

memory
n Operating on memory data requires loads

and stores
n More instructions to be executed

n Compiler must use registers for variables
as much as possible
n Only spill to memory for less frequently used

variables
n Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 14

Immediate Operands
n Constant data specified in an instruction
ADDI X22, X22, #4

n Design Principle 3: Make the common
case fast
n Small constants are common
n Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 15

Unsigned Binary Integers
n Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++= -

-
-

-

n Range: 0 to +2n – 1
n Example

n 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

n Using 32 bits
n 0 to +4,294,967,295

§2.4 Signed and U
nsigned N

um
bers

Chapter 2 — Instructions: Language of the Computer — 16

2s-Complement Signed Integers
n Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++-= -

-
-

-

n Range: –2n – 1 to +2n – 1 – 1
n Example

n 1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

n Using 32 bits
n –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 17

2s-Complement Signed Integers
n Bit 31 is sign bit

n 1 for negative numbers
n 0 for non-negative numbers

n –(–2n – 1) can’t be represented
n Non-negative numbers have the same unsigned

and 2s-complement representation
n Some specific numbers

n 0: 0000 0000 … 0000
n –1: 1111 1111 … 1111
n Most-negative: 1000 0000 … 0000
n Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 18

Signed Negation
n Complement and add 1

n Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

-=+

-==+

n Example: negate +2
n +2 = 0000 0000 … 0010two

n –2 = 1111 1111 … 1101two + 1
= 1111 1111 … 1110two

Chapter 2 — Instructions: Language of the Computer — 19

Sign Extension
n Representing a number using more bits

n Preserve the numeric value
n Replicate the sign bit to the left

n c.f. unsigned values: extend with 0s
n Examples: 8-bit to 16-bit

n +2: 0000 0010 => 0000 0000 0000 0010
n –2: 1111 1110 => 1111 1111 1111 1110

n In LEGv8 instruction set
n LDURSB: sign-extend loaded byte
n LDURB: zero-extend loaded byte

Chapter 2 — Instructions: Language of the Computer — 20

Representing Instructions
n Instructions are encoded in binary

n Called machine code

n LEGv8 instructions
n Encoded as 32-bit instruction words
n Small number of formats encoding operation code

(opcode), register numbers, …
n Regularity!

§2.5 R
epresenting Instructions in the C

om
puter

Chapter 2 — Instructions: Language of the Computer — 21

Hexadecimal
n Base 16

n Compact representation of bit strings
n 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

n Example: eca8 6420
n 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 22

LEGv8 R-format Instructions

n Instruction fields
n opcode: operation code
n Rm: the second register source operand
n shamt: shift amount (00000 for now)
n Rn: the first register source operand
n Rd: the register destination

opcode Rm shamt Rn Rd
11 bits 5 bits 6 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 23

R-format Example

ADD X9,X20,X21

1112ten 21ten 0ten 20ten 9ten

10001011000two 10101two 000000two 10100two 01001two

1000 1011 0001 0101 0000 0010 1000 1001two =

8B15028916

opcode Rm shamt Rn Rd
11 bits 5 bits 6 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 24

LEGv8 D-format Instructions

n Load/store instructions
n Rn: base register
n address: constant offset from contents of base register (+/- 32

doublewords)
n Rt: destination (load) or source (store) register number

n Design Principle 3: Good design demands good
compromises
n Different formats complicate decoding, but allow 32-bit

instructions uniformly
n Keep formats as similar as possible

opcode op2 Rn Rt
11 bits 9 bits 2 bits 5 bits 5 bits

address

Chapter 2 — Instructions: Language of the Computer — 25

LEGv8 I-format Instructions

n Immediate instructions
n Rn: source register
n Rd: destination register

n Immediate field is zero-extended

opcode Rn Rd
10 bits 12 bits 5 bits 5 bits

immediate

Chapter 2 — Instructions: Language of the Computer — 26

Stored Program Computers
n Instructions represented in

binary, just like data
n Instructions and data stored

in memory
n Programs can operate on

programs
n e.g., compilers, linkers, …

n Binary compatibility allows
compiled programs to work
on different computers
n Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 27

Logical Operations
n Instructions for bitwise manipulation

Operation C Java LEGv8
Shift left << << LSL

Shift right >> >>> LSR

Bit-by-bit AND & & AND, ANDI

Bit-by-bit OR | | OR, ORI

Bit-by-bit NOT ~ ~ EOR, EORI

n Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations

Chapter 2 — Instructions: Language of the Computer — 28

Shift Operations

n shamt: how many positions to shift
n Shift left logical

n Shift left and fill with 0 bits
n LSL by i bits multiplies by 2i

n Shift right logical
n Shift right and fill with 0 bits
n LSR by i bits divides by 2i (unsigned only)

opcode Rm shamt Rn Rd
11 bits 5 bits 6 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 29

AND Operations
n Useful to mask bits in a word

n Select some bits, clear others to 0

AND X9,X10,X11

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000X10

X11

X9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00001100 00000000

Chapter 2 — Instructions: Language of the Computer — 30

OR Operations
n Useful to include bits in a word

n Set some bits to 1, leave others unchanged

OR X9,X10,X11

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000X10

X11

X9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00111101 11000000

Chapter 2 — Instructions: Language of the Computer — 31

EOR Operations
n Differencing operation

n Set some bits to 1, leave others unchanged

EOR X9,X10,X12 // NOT operation

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000X10

X12

X9

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

11111111 11111111 11111111 11111111 11111111 11111111 11110010 00111111

Chapter 2 — Instructions: Language of the Computer — 32

Conditional Operations
n Branch to a labeled instruction if a condition is

true
n Otherwise, continue sequentially

n CBZ register, L1
n if (register == 0) branch to instruction labeled L1;

n CBNZ register, L1
n if (register != 0) branch to instruction labeled L1;

n B L1
n branch unconditionally to instruction labeled L1;

§2.7 Instructions for M
aking D

ecisions

Chapter 2 — Instructions: Language of the Computer — 33

Compiling If Statements
n C code:
if (i==j) f = g+h;
else f = g-h;

n f, g, … in X19, X20, …
n Compiled LEGv8 code:

SUB X9,X22,X23
CBNZ X9,Else
ADD X19,X20,X21
B Exit

Else: SUB X19,X20,x21
Exit: … Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 34

Compiling Loop Statements
n C code:
while (save[i] == k) i += 1;

n i in x22, k in x24, address of save in x25
n Compiled LEGv8 code:
Loop: LSL X10,X22,#3

ADD X10,X10,X25
LDUR X9,[X10,#0]
SUB X11,X9,X24
CBNZ X11,Exit
ADDI X22,X22,#1
B Loop

Exit: …

Chapter 2 — Instructions: Language of the Computer — 35

Basic Blocks
n A basic block is a sequence of instructions

with
n No embedded branches (except at end)
n No branch targets (except at beginning)

n A compiler identifies basic
blocks for optimization

n An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 36

More Conditional Operations
n Condition codes, set from arithmetic instruction with S-

suffix (ADDS, ADDIS, ANDS, ANDIS, SUBS, SUBIS)
n negative (N): result had 1 in MSB
n zero (Z): result was 0
n overlow (V): result overflowed
n carry (C): result had carryout from MSB

n Use subtract to set flags, then conditionally branch:
n B.EQ
n B.NE
n B.LT (less than, signed), B.LO (less than, unsigned)
n B.LE (less than or equal, signed), B.LS (less than or equal, unsigned)
n B.GT (greater than, signed), B.HI (greater than, unsigned)
n B.GE (greater than or equal, signed),
n B.HS (greater than or equal, unsigned)

Conditional Example
n if (a > b) a += 1;

n a in X22, b in X23

SUBS X9,X22,X23 // use subtract to make comparison
B.LTE Exit // conditional branch
ADDI X22,X22,#1

Exit:

Chapter 2 — Instructions: Language of the Computer — 37

Chapter 2 — Instructions: Language of the Computer — 38

Signed vs. Unsigned
n Signed comparison
n Unsigned comparison
n Example

n X22 = 1111 1111 1111 1111 1111 1111 1111 1111
n X23 = 0000 0000 0000 0000 0000 0000 0000 0001
n X22 < X23 # signed

n –1 < +1
n X22 > X23 # unsigned

n +4,294,967,295 > +1

