EEEN301 Lecture 2
Caching, JTAG, AMBA, AXI and ARM architecture

System on a chip (SOC)

ARM Graphics

Display

24-bit LCD Ctrl (WXGA)

Cortex-A8
up to 1.0") GHz PowerVR

32K/32K L1 w/SED | BBiuiaas

Touchscreen Contrloller (TSC)®
256K L2 w/ECC i) 7 ™
w 20 MTri/s | L0080l EtherCat®, PROFINET® .~ ARM CoreSight™ Debug and Trace
Ethernet/IP™ & more

NEON™
ARMv7 Data Engine
32b CPU Floating Point
Unit

ARM® Cortex®-A8

64KB
Shared RAM
L3 and L4 Interconnect

Serial Interface Parallel

MMC/SD/
SDIO x3

|
} GPIO
|
|

16-32k 16-32k
L1 Instruction Cache L1 Data Cache

-7 Integrated L2 Cache
CAN x2 (2.0B)

| 64- or 128-bit AMBA®3 Bus Interface
Memory Interface EMAC 2-port

JTAG/ETE LPDDR1/DDR2/DDR3 w/"u?t/;hG
W/sSW
ADC® (8ch) R (MI1, RMII, RGMII)
| (16-bit ECC) | | i3 Texas ARM®

INSTRUMENTS

USB 2.0 0TG
+ PHY x2

MCASP x2 (4ch)

|
|
|
|
|

AM335x

Cache

A Cache is a small block of fast memory that is placed between the CPU and the main
memory. Cache memory is often static RAM, is located close to the processor or even on
the same chip. Therefore it has significantly faster access times than the main DRAM
system memory.

The cache memory is used to reduce the average memory access times. This is done by
storing a local copy of data/instructions that are expected or are frequently accessed in
main memory addresses therefore allowing the CPU to access the data faster.

There are different types of cache usually defined in a hierarchical manor (e.g. L1,L2 and
L3). The main system memory itself can be considered as a cache as it stores a copy of the
program/data that resides on the hard-drive.

The steps to access the data from cache memory are:

1. A data or instruction request is made by the CPU. (addressed)

2. The data/instruction is retrieved from cache if it is stored there. (called a cache hit)

3. If the required data/instruction is not in the cache (cache miss) then the
data/instruction will need to accessed from the main memory. The cache controller will
then start copying from the main memory.

This method relies on the fact that program data or instructions typically reside in adjacent
memory locations and are accessed in increasing address order.

JTAG Joint Test Action Group

Originally developed for boundary scan
testing of VLSI devices. Later expanded
to include debug and in system
programming capabilities.

A special JTAG port and extra logic is
included in the manufactured VLSI
device, microprocessor or FPGA.

A JTAG connector is then placed on the
circuit board to allow factory testing or
programming. Most hardware
development environments include a
JTAG connect or in system programming
and debugging. JTAG is a synchronous
serial interface like SPI.

Device Inputs

Core Logic

syndinQ 921A9Q

|

|

|
—>(Design Specific Register
——»(Device ID Register
——>»(_Bypass Register h

A
(Instruction Decoder)
A
»(_Instruction Register ——
S S |
| | | v
TDI TMS TCK TRST* TDO

CORELSS.....

mmmmmm

JTAG Interface

The physical JTAG interface, or test access port (TAP) consists of four mandatory signals and one optional asynchronous reset
signal. Table 1 below summarizes the JTAG TAP signals.

Abbreviation | Signal Description

TCK Test Clock Synchronizes the internal state machine operations.

T™MS Test Mode Select | Sampled at the rising edge of TCK to determine the next state.

TDI Test Data In Represents the data shifted into the device's test or programming logic. It is

sampled at the rising edge of TCK when the internal state machine is in the
correct state.

TDO Test Data Out Represents the data shifted out of the device's test or programming logic and is
valid on the falling edge of TCK when the internal state machine is in the correct
state.

TRST Test Reset An optional pin which, when available, can reset the TAP controller's state
machine.

ARM 10-PIN Interface ST 14-PIN Interface OCDS 16-PIN Interface ARM 20-PIN Interface
NEN 1| O O |2 [TRST TMS 1| O O | 2 VCCloptions) VCC 1| O O | 2 VCC (optional)

GND 3| 0D O |4 NC TDO 3| 0 O |4 GND TRST 3| O O | 4 GND

vcc 1 oo 2 TMS

ono 3P oo Be Tox ™I 5| 0 O |6 TSTAT CPUCLK 5| O O | 6 GND T™OI 5| 0O O |6 GND

GND 5 00 l6 TDO vec 7] O O | & IRST DI 7| O O |8 RESET ™S 7, 0D O |8 GND

RTCK 7, o0 88 TDI TMS 9| D O | 10 GND TRST 9| O O | 10 BRKOUT TCLK 9/ O O | 10 GND

08 ©8 10 RESET TCLK 11| O O | 12 GND TCLK 11| O O 12 GND RTCK 11| o0 12 GND

TDO 13| O O | 14 /TERR BRKIN 13| O O | 14 OCDSE ™0 13| O O | 14 GND

TRAP 15| O O | 16 GND RESET 15| O O | 16 GND

NC 17| D O 18 GND

N/C 19| O O | 20 GND

CORELS.

Scan Chain

JTAG devices may be daisy-chained within a system and controlled simultaneously. Boundary-scan test software can utilize
one component to drive signals that will be sensed on a second component, verifying continuity from pin-to-pin. Devices can
be placed in BYPASS mode to shorten the overall length of the chain to reduce test time. More complex designs may utilize
additional circuitry or a dedicated JTAG bridge to selectively configure a scan chain that contains multiple devices, or even
multiple sub-assemblies.

o

—C Bypass Register)—
—Clnstruction Register)—

.
S e i

—(Bypass Register)—
—Clnstruction Register)—

T
S e i

|
v v

—(Bypass Register)—
—Clnstruction Register)—

TDI —

TCK

TMS

TDO <

CORELSS.......

In-System-Programming

In addition to test applications, JTAG is also frequently used as the primary method to program devices such as flash memory
and CPLDs. To program flash devices, the pins of a connected boundary-scan-compatible component can be used to control
the memory and erase, program, and verify the component using the boundary-scan chain. FPGA and CPLD devices that
support IEEE-1532 standard instructions can be accessed and programmed directly using the JTAG port.

CPU
or
FPGA

Debug Registers

TAP Controller

T

Figure 8. A CPU or FPGA under JTAG control can be used to program
flash memory.

| -
)
£
S
©
| -
50
o
| -
a
c
(2]
g
LL

CORELSS.......

AMBA (Advanced Microcontroller Bus Architecture) is a freely-available, open
standard for the connection and management of functional blocks in a system-
on-chip (SoC). It facilitates right-first-time development of multi-processor
designs, with large numbers of controllers and peripherals.

AMBA specifications are royalty-free, platform-independent and can be used
with any processor architecture. Due to its widespread adoption, AMBA has a
robust ecosystem of partners that ensures compatibility and scalability between
IP components from different design teams and vendors.

Key AMBA Specifications AMBA generation: AMBA 2 AMBA 3 AMBA 4 AMBA S5

CHI CHI is a credited coherency protocol,
Coherent Hub Interface layered architecture for scalability

ACE ACE is superset of AXI - brings system-wide ACE ACES
AXI coherency Extensions coherency across multicore clusters +Lite +Lite

AXI AXI supports separate A/D phases, bursts, multiple AX14
outstanding addresses, 000 responses AXI3 AXI5

CHI

Advanced eXtensible Interface

+lite, +Stream

AHB supports 64/128 bit, multi- |
master. AHB-Lite for single masters

System bus for ‘ ‘ |
low b/w peripherals

\S y
/

_ Y

P4

AarmDeveloper

What is AXI?

AXI is part of ARM AMBA, a family of micro controller buses first introduced in 1996. The
first version of AXI was first included in AMBA 3.0, released in 2003. AMBA 4.0, released in
2010, includes the second major version of AXI, AXI4.

There are three types of AXI4 interfaces:

« AXI4: For high-performance memory-mapped requirements.

« AXI4-Lite: For simple, low-throughput memory-mapped communication (for example,
to and from control and status registers).

« AXI4-Stream: For high-speed streaming data.
Both AXI4 and AXI4-Lite interfaces consist of five different channels:

* Read Address Channel
« Write Address Channel
« Read Data Channel
« Write Data Channel

« Write Response Channel

Data can move in both directions between the master and slave simultaneously, and data
transfer sizes can vary. The limit in AXI4 is a burst transaction of up to 256 data transfers.
AX14-Lite allows only one data transfer per transaction.

The AX14-Stream protocol defines a single channel for transmission of streaming data.

& XILINX

ALL PROGRAMMABLE

Back to the start

System on a chip (SOC)

ARM Graphics Display

24-bit LCD Ctrl (WXGA)

Cortex-A8
up to 1.0") GHz PowerVR

SISk ISED SGX530 Touchscreen Contrloller (TSC)@

3D GFX Security !
256K L2 w/ECC 20 MTri/s ALl
7770 | EtherCat®, PROFINET®
64K RAM

L. | Ethemet/IPT™ & more

A8

ARM® Cortex®-

;_,\,‘,U, =

L3 and L4 Interconnect
32b CPU

Parallel

MMC/SD/
SDIO x3

|
“ GPIO
|
|

USB 2.0 0TG
+ PHY x2

MCASP x2 (4ch)
eQEP X3 CAN X2 (2.0B)

eCAP x3 Memory Interface EMAC 2-port

TIRG/ET 'LPDDR1/DDR2/DDR3 m/" O?Sna
ADC® (8ch) e

12-bit SAR ’ NAND/NOR (16-bit EGC)I (Mi1, RMII, RGMII)

4 ARM
AM335x INSTRUMENTS

Cortex-A8 Block Diagram

#
#

'y

'y

NEON Media Processor

AXI Level 3 Memory Interface

Cortex-A8

ARM Cortex-A Architecture

Cortex A Base Architecture

Thumb-2 technology for power efficient
execution
* TrustZone™ for secure applications

Cortex-A8 Extensions

Jazelle-RCT for efficient acceleration
of execution environments such as
Java and Microsoft .NET

- v6 SIMD for compatibility with ARM11 N - NEON technology accelerating
= media acceleration applications multimedia gaming and signal
VFPV3 processing applications
= VFPv3 supports full IEEE 754
Lo specification and has been expanded
- to support 32 registers
Thumb®-2___ | [Thumb-2
(option) | | (mandated)
TrustZone™ } |
SIMD ll
DSP { | |
VFPv2][
Jazelle® |
nazale I Thumb-2 Only
V5 V6 V7 A&R VI M
ARMSE ARM11 Cortex A&R Cortex M

!
o §

Data Sizes and Instruction Sets
" The ARM is a 32-bit architecture.

= \When used in relation to the ARM:

D means 8 bits
o means 16 bits (two bytes)
o means 32 bits (four bytes)

= Most ARM'’s implement two instruction sets
= 32-bit ARM Instruction Set
= 16-bit Thumb Instruction Set

= Jazelle cores can also execute Java bytecode

The Architecture for the Digital World®

The Thumb-2 instruction set

= Variable-length instructions

= ARM instructions are a fixed length of 32 bits
= Thumb instructions are a fixed length of 16

bits
= Thumb-2 instructions can be either 16-bit or -
32-bit B Trumb-2
O Thumb
= Thumb-2 gives approximately 26% Vi SO G S

smaller than ARM

iImprovement in code density over ARM

= Thumb-2 gives approximately 25%

improvement in performance over
Thumb

] ARM
& Thumb-2
[Thumb

Thumb-2 Performance 25%
faster than Thumb

|
1|

Cortex-A8 Processor Modes

- used for executing most application programs

= User
= FIQ - used for handling fast interrupts
= |[RQ - used for general-purpose interrupt handling
= Supervisor - a protected mode for the Operating System
= Undefined - entered upon Undefined Instruction exceptions
= Abort - entered after Data or Pre-fetch Aborts
= System - privileged user mode for the Operating System
= Monitor - a secure mode for TrustZone

—
e

Cortex-A8 Register File

User/Sys FIQ IRQ SvC Undef Abort Mon
r0
rl
r2
r3 User
mode
rd r0-r7
rs User User User User User
mode mode
ré6 £0-r12 £0-r12 mode mode mode
ri rO-rl2 rO-rl2 rO-rl2
r8 r8
r9 r9
rlo0 rlo0
rll rll
rl2 rl2
rl3 (sp) rl3 (sp) rl3 (sp) rl3 (sp) rl3 (sp) rl3 (sp)
rl4 (1lr) rl4 (1lr) rl4 (1lr) rl4 (1lr) rl4 (1lr) rl4 (1lr)
rl5 (pc) rl5 (pc) rl5 (pc) rl5 (pc) rl5 (pc) rl5 (pc) rl5 (pc)
cpsr spsr spsr spsr - spsr spsr

Note: System mode uses the User mode register set

Cortex-A8 Exception Handling

= When an exception occurs, the ARM:
= Copies CPSR into SPSR_<mode>
= Sets appropriate CPSR bits !
= Change to ARM state Ox1C* FIQ

= Change to exception mode gxfl: &
X
= Disable interrupts (if appropriate) Ox10* Data Abort

= Stores the return address in LR_<mode> oxoc* Prefetch Abort
= Sets PC to vector address 0x08" FHC e

. 0x04* Undefined Instruction
= To return, exception handler needs to:, . Reset
= Restore CPSR from SPSR_<mode>

= Restore PC from LR_<mode> * Represents an offset, as vector
. . table can moved to different base
This can only be done in ARM state. addresses

Cortex-A8 Program Status Register

31 27 26 25 24 23 20 19 16 15 10 9 5 4 0

Flags -J Reserved GE3:0 -E AIFT M4:0

= New IT field in Program Status Registers
= Bits 7:5 indicate base condition
= Bits 4:0 indicate the number of instructions and condition/inverse condition
= Updated by
= |T, BX, BLX, BXJ instructions
= Loads to PC (except in User mode)

" NeW exeCUtlon State (CPSR/SPSR) 313029 28 27 26 25 24 23 20 19 16 15 109 8 7 6 5 4 0
J blt T blt State N|Z|C|V|Q J DNM GE[3:0] IT[7:2] E|A|I|F|T M[4:0]
0 0 ARM

I_ Greater than L Mode bits

0 1 Th um b ‘ or equal to \— Thumb state bit

1 O Jaze”e-DBX Java state bit FIQ disable
IT[1:0] IRQ disable

1 1 Th um b2' E E Sticky overflow Imprecise abort
Overflow disable bit
Carry/Bomrow/Extend Data endianness

= EnterX/ LeaveX instructions NeonivelLoss than

11

