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1 Device Overview

1

1.1 Features
1

• Up to 1-GHz Sitara™ ARM® Cortex®-A8 32‑Bit
RISC Processor
– NEON™ SIMD Coprocessor
– 32KB of L1 Instruction and 32KB of Data Cache
With Single-Error Detection (Parity)

– 256KB of L2 Cache With Error Correcting Code
(ECC)

– 176KB of On-Chip Boot ROM
– 64KB of Dedicated RAM
– Emulation and Debug - JTAG
– Interrupt Controller (up to 128 Interrupt
Requests)

• On-Chip Memory (Shared L3 RAM)
– 64KB of General-Purpose On-Chip Memory
Controller (OCMC) RAM

– Accessible to All Masters
– Supports Retention for Fast Wakeup

• External Memory Interfaces (EMIF)
– mDDR(LPDDR), DDR2, DDR3, DDR3L
Controller:
– mDDR: 200-MHz Clock (400-MHz Data Rate)
– DDR2: 266-MHz Clock (532-MHz Data Rate)
– DDR3: 400-MHz Clock (800-MHz Data Rate)
– DDR3L: 400-MHz Clock (800-MHz Data
Rate)

– 16-Bit Data Bus
– 1GB of Total Addressable Space
– Supports One x16 or Two x8 Memory Device
Configurations

– General-Purpose Memory Controller (GPMC)
– Flexible 8-Bit and 16-Bit Asynchronous
Memory Interface With up to Seven Chip
Selects (NAND, NOR, Muxed-NOR, SRAM)

– Uses BCH Code to Support 4-, 8-, or 16-Bit
ECC

– Uses Hamming Code to Support 1-Bit ECC
– Error Locator Module (ELM)
– Used in Conjunction With the GPMC to
Locate Addresses of Data Errors from
Syndrome Polynomials Generated Using a
BCH Algorithm

– Supports 4-, 8-, and 16-Bit per 512-Byte
Block Error Location Based on BCH
Algorithms

• Programmable Real-Time Unit Subsystem and
Industrial Communication Subsystem (PRU-ICSS)
– Supports Protocols such as EtherCAT®,

PROFIBUS, PROFINET, EtherNet/IP™, and
More

– Two Programmable Real-Time Units (PRUs)
– 32-Bit Load/Store RISC Processor Capable
of Running at 200 MHz

– 8KB of Instruction RAM With Single-Error
Detection (Parity)

– 8KB of Data RAM With Single-Error Detection
(Parity)

– Single-Cycle 32-Bit Multiplier With 64-Bit
Accumulator

– Enhanced GPIO Module Provides Shift-
In/Out Support and Parallel Latch on External
Signal

– 12KB of Shared RAM With Single-Error
Detection (Parity)

– Three 120-Byte Register Banks Accessible by
Each PRU

– Interrupt Controller (INTC) for Handling System
Input Events

– Local Interconnect Bus for Connecting Internal
and External Masters to the Resources Inside
the PRU-ICSS

– Peripherals Inside the PRU-ICSS:
– One UART Port With Flow Control Pins,
Supports up to 12 Mbps

– One Enhanced Capture (eCAP) Module
– Two MII Ethernet Ports that Support Industrial
Ethernet, such as EtherCAT

– One MDIO Port
• Power, Reset, and Clock Management (PRCM)
Module
– Controls the Entry and Exit of Stand-By and
Deep-Sleep Modes

– Responsible for Sleep Sequencing, Power
Domain Switch-Off Sequencing, Wake-Up
Sequencing, and Power Domain Switch-On
Sequencing

– Clocks
– Integrated 15- to 35-MHz High-Frequency
Oscillator Used to Generate a Reference
Clock for Various System and Peripheral
Clocks

– Supports Individual Clock Enable and Disable
Control for Subsystems and Peripherals to
Facilitate Reduced Power Consumption

– Five ADPLLs to Generate System Clocks
(MPU Subsystem, DDR Interface, USB and
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Cache
A Cache is a small block of fast memory that is placed between the CPU and the main 
memory. Cache memory is often static RAM, is located close to the processor or even on 
the same chip. Therefore it has significantly faster access times than the main DRAM 
system memory.

The cache memory is used to reduce the average memory access times. This is done by 
storing a local copy of data/instructions that are expected or are frequently accessed in 
main memory addresses therefore allowing the CPU to access the data faster. 

There are different types of cache usually defined in a hierarchical manor (e.g. L1,L2 and 
L3). The main system memory itself can be considered as a cache as it stores a copy of the 
program/data that resides on the hard-drive.

The steps to access the data from cache memory are:
1. A data or instruction request is made by the CPU. (addressed)
2. The data/instruction is retrieved from cache if it is stored there. (called a cache hit)
3. If the required data/instruction is not in the cache (cache miss) then the 
data/instruction will need to accessed from the main memory. The cache controller will 
then start copying from the main memory. 
This method relies on the fact that program data or instructions typically reside in adjacent 
memory locations and are accessed in increasing address order.



JTAG   Joint Test Action Group
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JTAG Technical Primer 

Introduction 
This primer provides a brief overview of JTAG devices--basic chip architecture, essential capabilities, and common system 
configurations. 

JTAG Chip Architecture 
The IEEE-1149.1 JTAG standard defines how IC scan logic must 
behave to achieve interoperability among components, systems, 
and test tools. ICs consist of logic cells, or boundary-scan cells, 
between the system logic and the signal pins or balls that 
connect the IC to the PCB. Each cell provides specific test 
capabilities—some cells can be used as input, others as output, 
and some are bidirectional. 

The boundary-scan cells within a device are connected together 
to form a shift register, which is accessed through a serial test 
data input (TDI) and test data output (TDO) interface. The Test 
Access Port (TAP), consisting of 4 required signals and an 
optional reset signal, is the primary interface to the test 
controller which provides access to the logic. 

JTAG Instructions 
IEEE-1149.1 specifies mandatory instructions—to be fully JTAG 
compliant, devices must utilize these instructions. 

EXTEST 

The EXTEST instruction is used to perform interconnect testing. 
When the EXTEST instruction is used, the mandatory boundary-
scan register is connected between TDI and TDO and the device 
is placed in an “external” test mode. In this mode, boundary-scan 
output cells will drive test data onto the device pins and input 
cells will capture data from device pins—this is the main instruction used for boundary-scan testing. 

SAMPLE/PRELOAD 

The SAMPLE/PRELOAD instruction is similar to EXTEST, but allows the boundary-scan device to remain in mission/functional 
mode while still connecting the boundary-scan register to TDI and TDO. When the SAMPLE/PRELOAD instruction is used, the 
boundary-scan register is accessible through data scans while the device remains functional. This is also useful for preloading 
data into the boundary-scan register without interrupting the device’s functional behavior, prior to executing the EXTEST 
instruction. 

BYPASS 

When the BYPASS instruction is used, TDI and TDO are connected to a single-bit register that bypasses the longer boundary-
scan register of the device—hence the name. BYPASS is very useful for reducing the overall length of a boundary-scan chain 
by eliminating devices that do not need to be involved in the current action. Devices that are given the BYPASS instruction 
remain in mission/functional mode while allowing serial data to flow through to the next device in the chain. 

TAP Controller 
The TAP controller as defined by the IEEE-1149.1 standard uses a 16-state finite state machine controlled by a test clock (TCK) 
and test mode select (TMS) signals. Transitions are determined by the state of TMS on the rising edge of TCK. 

Two analogous paths through the state machine are used to capture and/or update data by scanning through the instruction 
register (IR) or through a data register (DR). The JTAG state machine is depicted in Figure 10 below. 
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Figure 9. Diagram of basic JTAG IC architecture. 
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Figure 10. JTAG state machine diagram. 

JTAG Interface 
The physical JTAG interface, or test access port (TAP) consists of four mandatory signals and one optional asynchronous reset 
signal. Table 1 below summarizes the JTAG TAP signals. 

Abbreviation Signal Description 

TCK Test Clock Synchronizes the internal state machine operations. 

TMS Test Mode Select Sampled at the rising edge of TCK to determine the next state. 

TDI Test Data In Represents the data shifted into the device's test or programming logic. It is 
sampled at the rising edge of TCK when the internal state machine is in the 
correct state. 

TDO Test Data Out Represents the data shifted out of the device's test or programming logic and is 
valid on the falling edge of TCK when the internal state machine is in the correct 
state. 

TRST Test Reset An optional pin which, when available, can reset the TAP controller's state 
machine. 

Table 1. TAP signal descriptions. 

Many TAP interfaces will employ signals in addition to those required by the JTAG standard. For example, on-chip debugging 
applications may include signals for asynchronous halt and reset, while in-system-programming applications may increase 
programming speed by taking advantage of additional pins for time-critical functions such as toggling the write enable signal 
or polling a ready/busy signal. 
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11

Originally developed for boundary scan 
testing of VLSI devices. Later expanded 
to include debug and in system 
programming capabilities.

A special JTAG port and extra logic is 
included in the manufactured VLSI 
device, microprocessor or FPGA.

A JTAG connector is then placed on the 
circuit board to allow factory testing or 
programming. Most hardware 
development environments include a 
JTAG connect or in system programming 
and debugging. JTAG is a synchronous 
serial interface like SPI.
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JTAG Connectors 
There is no single standard JTAG interface connector or JTAG pinout—
physical characteristics such as pin spacing, interface voltage, and pin 
order vary among devices. Some TAP implementations may include 
additional signals such as a reference voltage, general purpose 
input/output (GPIO), or even serial bus signals, such as the example 
shown in Figure 11. 

BSDL Files 
Boundary-Scan Description Language (BSDL) files are used to describe 
the boundary-scan behavior and capabilities of a given device. 
Originally designed as a subset of VHDL, the BSDL format has been 
extended to add additional features and is not strictly VHDL compliant. 
The BSDL describes important properties of a given device’s boundary-
scan functions, including: 

x Which JTAG standards are supported by the device. 

x Signal mapping and package information. 

x Available instructions, and which registers those instructions access. 

x The type of boundary-scan cell available for each signal. 

x Information about signals that affect compliance to the standard. 

x Design warnings and notes. 

Over time, the BSDL format has also been extended to include additional information; BSDL files may include descriptions of 
AC (IEEE-1149.6) testing capabilities, sequences in procedural description language (PDL) format, information about an 
electronic chip identifier (ECID), and more. BSDLs include statements that specify which standards are supported to allow 
automated tools to utilize supported features. 

Scan Chain 
JTAG devices may be daisy-chained within a system and controlled simultaneously. Boundary-scan test software can utilize 
one component to drive signals that will be sensed on a second component, verifying continuity from pin-to-pin. Devices can 
be placed in BYPASS mode to shorten the overall length of the chain to reduce test time. More complex designs may utilize 
additional circuitry or a dedicated JTAG bridge to selectively configure a scan chain that contains multiple devices, or even 
multiple sub-assemblies. 

 

Figure 12. Example JTAG chain with multiple devices. 
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Figure 11. Typical JTAG connector diagram. 
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JTAG Embedded Test 
Many modern processors use JTAG as the main interface for on-chip debugging (OCD), allowing the processor to be 
controlled over the JTAG port within an embedded system. Using this same interface, the JTAG port can be used to initialize a 
processor, download and run a test program, and then obtain results; this test technique is a fast, convenient method for 
developing and executing peripheral tests and in-system-programming operations in embedded systems. Because these 
tests run at the system processor speed, defects that may not be identified during low-speed execution can be detected. 

In-System-Programming 
In addition to test applications, JTAG is also frequently used as the primary method to program devices such as flash memory 
and CPLDs. To program flash devices, the pins of a connected boundary-scan-compatible component can be used to control 
the memory and erase, program, and verify the component using the boundary-scan chain. FPGA and CPLD devices that 
support IEEE-1532 standard instructions can be accessed and programmed directly using the JTAG port. 

Faster performance can be achieved using a CPU or FPGA to program the flash. In these cases, a small flash programming 
application is downloaded to the controlling device over the JTAG port, which is then used to interface between the test 
system and the flash programming application running on the embedded system. This configuration is depicted in Figure 8. 
This embedded JTAG programmer can run at much higher speeds than boundary-scan, increasing production throughput 
and rivaling or surpassing the speeds of USB and Ethernet-based programming solutions, without requiring an operating 
system or high-level software be present on the 
embedded system. 

The IEEE-1149.1 JTAG team had the foresight to design 
an extensible standard—one that could employ 
additional data registers for many different applications. 
As a result, JTAG has grown from its original roots for 
board testing into a ubiquitous port that can be used for 
diverse applications such as in-system-programming, 
on-chip debugging, and more recently control of 
instruments embedded within ICs. 
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Figure 8. A CPU or FPGA under JTAG control can be used to program 
flash memory. 
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Chapter 1

Introducing AXI for Vivado 

Overview
Xilinx adopted the Advanced eXtensible Interface (AXI) protocol for Intellectual Property 

(IP) cores beginning with the Xilinx® Spartan®-6 and Virtex®-6 devices. Xilinx continues 

the use of the AXI protocol for IP targeting the UltraScale™ architecture, 7 series, and 

Zynq®-7000 All Programmable (AP) SoC devices.

This document is intended to: Introduce key concepts of the AXI protocol.

• Give an overview of what Xilinx tools you can use to create AXI-based IP.

• Explain what features of AXI that have been adopted by Xilinx.

• Provide guidance on how to migrate your existing design to AXI.

Note: This document is not intended to replace the advanced micro controller bus architecture 

(AMBA®) ARM® AXI4 specifications. Before beginning an AXI design, you need to download, read, 

and understand the AMBA AXI and ACE Protocol Specification, along with the AMBA4 AXI4-Stream 
Protocol. You might need to fill out a brief registration before downloading the documents. See the 

AMBA website [Ref 1]. 

Note: The ACE portion of the AMBA specification is generally not used, except in special cases such 

as the connection between a MicroBlaze™ processor and its associated system cache block.

What is AXI?
AXI is part of ARM AMBA, a family of micro controller buses first introduced in 1996. The 

first version of AXI was first included in AMBA 3.0, released in 2003. AMBA 4.0, released in 

2010, includes the second major version of AXI, AXI4. 

There are three types of AXI4 interfaces:

• AXI4: For high-performance memory-mapped requirements. 

• AXI4-Lite: For simple, low-throughput memory-mapped communication (for example, 

to and from control and status registers).

• AXI4-Stream: For high-speed streaming data.
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Xilinx introduced these interfaces in the ISE® Design Suite, release 12.3. Xilinx continues to 
use and support AXI and AXI4 interfaces in the Vivado® Design Suite.

Summary of AXI4 Benefits
AXI4 is widely adopted in Xilinx product offerings, providing benefits to Productivity, 
Flexibility, and Availability:

• Productivity: By standardizing on the AXI interface, developers need to learn only a 
single protocol for IP. 

• Flexibility: Providing the right protocol for the application:

° AXI4 is for memory-mapped interfaces and allows high throughput bursts of up to 
256 data transfer cycles with just a single address phase.

° AXI4-Lite is a light-weight, single transaction memory-mapped interface. It has a 
small logic footprint and is a simple interface to work with both in design and 
usage. 

° AXI4-Stream removes the requirement for an address phase altogether and allows 
unlimited data burst size. AXI4-Stream interfaces and transfers do not have address 
phases and are therefore not considered to be memory-mapped.

• Availability: By moving to an industry-standard, you have access not only to the 
Vivado IP Catalog, but also to a worldwide community of ARM partners.

° Many IP providers support the AXI protocol. 

° A robust collection of third-party AXI tool vendors is available that provide many 
verification, system development, and performance characterization tools. As you 
begin developing higher performance AXI-based systems, the availability of these 
tools is essential.

How AXI Works
This section provides a brief overview of how the AXI interface works. Consult the AMBA AXI 
specifications [Ref 1] for the complete details on AXI operation.

The AXI specifications describe an interface between a single AXI master and AXI slave, 
representing IP cores that exchange information with each other. Multiple memory-mapped 
AXI masters and slaves can be connected together using AXI infrastructure IP blocks. The 
Xilinx AXI Interconnect IP and the newer AXI SmartConnect IP contain a configurable 
number of AXI-compliant master and slave interfaces, and can be used to route transactions 
between one or more AXI masters and slaves. 
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X-Ref Target - Figure 1-2

As shown in the preceding figures, AXI4:

• Provides separate data and address connections for reads and writes, which allows 

simultaneous, bidirectional data transfer. 

• Requires a single address and then bursts up to 256 words of data. 

The AXI4 protocol describes options that allow AXI4-compliant systems to achieve very 

high data throughput. Some of these features, in addition to bursting, are: data upsizing 

and downsizing, multiple outstanding addresses, and out-of-order transaction processing. 

At a hardware level, AXI4 allows systems to be built with a different clock for each AXI 

master-slave pair. In addition, the AXI4 protocol allows the insertion of register slices (often 

called pipeline stages) to aid in timing closure. 

AXI4-Lite is similar to AXI4 with some exceptions: The most notable exception is that 

bursting is not supported. The AXI4-Lite chapter of the ARM AMBA AXI Protocol 
Specification [Ref 1] describes the AXI4-Lite protocol in more detail.

The AXI4-Stream protocol defines a single channel for transmission of streaming data. The 

AXI4-Stream channel models the write data channel of AXI4. Unlike AXI4, AXI4-Stream 

interfaces can burst an unlimited amount of data. There are additional, optional capabilities 

described in the AMBA4 AXI4-Stream Protocol Specification [Ref 1]. The specification 

describes how you can split, merge, interleave, upsize, and downsize AXI4-Stream 

compliant interfaces. 

IMPORTANT: Unlike AXI4, you cannot reorder AXI4-Stream transfers.

Figure 1-2: Channel Architecture of Writes
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The AXI Interconnect is architected using a traditional, monolithic crossbar approach; 
described in AXI Infrastructure IP Cores in Chapter 3. The newer SmartConnect IP, which was 
production released in 2017.1, contains a more scalable and flexible Network-on-Chip 
(NoC) architecture and is described in Xilinx AXI SmartConnect and AXI Interconnect IP in 
Chapter 3. 

Both AXI4 and AXI4-Lite interfaces consist of five different channels:

• Read Address Channel

• Write Address Channel

• Read Data Channel

• Write Data Channel

• Write Response Channel

Data can move in both directions between the master and slave simultaneously, and data 
transfer sizes can vary. The limit in AXI4 is a burst transaction of up to 256 data transfers. 
AXI4-Lite allows only one data transfer per transaction. 

The following figure shows how an AXI4 read transaction uses the read address and read 
data channels.

X-Ref Target - Figure 1-1

Figure 1-2 shows how a write transaction uses the write address, write data, and write 
response channels.

Figure 1-1: Channel Architecture of Reads 
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AM335x Sitara™ Processors

1 Device Overview

1

1.1 Features
1

• Up to 1-GHz Sitara™ ARM® Cortex®-A8 32‑Bit
RISC Processor
– NEON™ SIMD Coprocessor
– 32KB of L1 Instruction and 32KB of Data Cache
With Single-Error Detection (Parity)

– 256KB of L2 Cache With Error Correcting Code
(ECC)

– 176KB of On-Chip Boot ROM
– 64KB of Dedicated RAM
– Emulation and Debug - JTAG
– Interrupt Controller (up to 128 Interrupt
Requests)

• On-Chip Memory (Shared L3 RAM)
– 64KB of General-Purpose On-Chip Memory
Controller (OCMC) RAM

– Accessible to All Masters
– Supports Retention for Fast Wakeup

• External Memory Interfaces (EMIF)
– mDDR(LPDDR), DDR2, DDR3, DDR3L
Controller:
– mDDR: 200-MHz Clock (400-MHz Data Rate)
– DDR2: 266-MHz Clock (532-MHz Data Rate)
– DDR3: 400-MHz Clock (800-MHz Data Rate)
– DDR3L: 400-MHz Clock (800-MHz Data
Rate)

– 16-Bit Data Bus
– 1GB of Total Addressable Space
– Supports One x16 or Two x8 Memory Device
Configurations

– General-Purpose Memory Controller (GPMC)
– Flexible 8-Bit and 16-Bit Asynchronous
Memory Interface With up to Seven Chip
Selects (NAND, NOR, Muxed-NOR, SRAM)

– Uses BCH Code to Support 4-, 8-, or 16-Bit
ECC

– Uses Hamming Code to Support 1-Bit ECC
– Error Locator Module (ELM)
– Used in Conjunction With the GPMC to
Locate Addresses of Data Errors from
Syndrome Polynomials Generated Using a
BCH Algorithm

– Supports 4-, 8-, and 16-Bit per 512-Byte
Block Error Location Based on BCH
Algorithms

• Programmable Real-Time Unit Subsystem and
Industrial Communication Subsystem (PRU-ICSS)
– Supports Protocols such as EtherCAT®,

PROFIBUS, PROFINET, EtherNet/IP™, and
More

– Two Programmable Real-Time Units (PRUs)
– 32-Bit Load/Store RISC Processor Capable
of Running at 200 MHz

– 8KB of Instruction RAM With Single-Error
Detection (Parity)

– 8KB of Data RAM With Single-Error Detection
(Parity)

– Single-Cycle 32-Bit Multiplier With 64-Bit
Accumulator

– Enhanced GPIO Module Provides Shift-
In/Out Support and Parallel Latch on External
Signal

– 12KB of Shared RAM With Single-Error
Detection (Parity)

– Three 120-Byte Register Banks Accessible by
Each PRU

– Interrupt Controller (INTC) for Handling System
Input Events

– Local Interconnect Bus for Connecting Internal
and External Masters to the Resources Inside
the PRU-ICSS

– Peripherals Inside the PRU-ICSS:
– One UART Port With Flow Control Pins,
Supports up to 12 Mbps

– One Enhanced Capture (eCAP) Module
– Two MII Ethernet Ports that Support Industrial
Ethernet, such as EtherCAT

– One MDIO Port
• Power, Reset, and Clock Management (PRCM)
Module
– Controls the Entry and Exit of Stand-By and
Deep-Sleep Modes

– Responsible for Sleep Sequencing, Power
Domain Switch-Off Sequencing, Wake-Up
Sequencing, and Power Domain Switch-On
Sequencing

– Clocks
– Integrated 15- to 35-MHz High-Frequency
Oscillator Used to Generate a Reference
Clock for Various System and Peripheral
Clocks

– Supports Individual Clock Enable and Disable
Control for Subsystems and Peripherals to
Facilitate Reduced Power Consumption

– Five ADPLLs to Generate System Clocks
(MPU Subsystem, DDR Interface, USB and

Copyright © 2011 – 2013 ARM. All rights reserved.
ARM DEN0013D (ID012214)

ARM® Cortex™-A Series
Version: 4.0

Programmer’s Guide

Back to the start
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Cortex-A8 Block Diagram

AXI Level 3 Memory Interface

L2 Memory System

Instruction
Fetch
Unit

Instruction
Decode
Unit

Instruction
Execute &
Load/Store

NEON Media Processor

Cortex-A8

L1 I Cache L1 D Cache



12

ARM Cortex-A Architecture

Cortex A Base Architecture
� Thumb-2 technology for power efficient

execution
� TrustZoneTM for secure applications
� v6 SIMD for compatibility with ARM11
� media acceleration applications

Cortex-A8 Extensions
� Jazelle-RCT for efficient acceleration

of execution environments such as
Java and Microsoft .NET

� NEON technology accelerating
multimedia gaming and signal
processing applications

� VFPv3 supports full IEEE 754
specification and has been expanded
to support 32 registers
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Data Sizes and Instruction Sets
� The ARM is a 32-bit architecture.

� When used in relation to the ARM:
� Byte means 8 bits
� Halfword means 16 bits (two bytes)
� Word means 32 bits (four bytes)

� Most ARM’s implement two instruction sets
� 32-bit ARM Instruction Set

� 16-bit Thumb Instruction Set

� Jazelle cores can also execute Java bytecode
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The Thumb-2 instruction set
� Variable-length instructions
� ARM instructions are a fixed length of 32 bits
� Thumb instructions are a fixed length of 16
bits

� Thumb-2 instructions can be either 16-bit or
32-bit

� Thumb-2 gives approximately 26%
improvement in code density over ARM

� Thumb-2 gives approximately 25%
improvement in performance over
Thumb
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Cortex-A8 Processor Modes
� User - used for executing most application programs

� FIQ - used for handling fast interrupts

� IRQ - used for general-purpose interrupt handling

� Supervisor - a protected mode for the Operating System

� Undefined - entered upon Undefined Instruction exceptions

� Abort - entered after Data or Pre-fetch Aborts

� System - privileged user mode for the Operating System

� Monitor - a secure mode for TrustZone
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Cortex-A8 Register File

User
mode
r0-r7

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr

FIQ

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

r0
r1
r2
r3
r4
r5
r6
r7

User/Sys

r13 (sp)
r14 (lr)

spsr

IRQ

User
mode
r0-r12

r13 (sp)
r14 (lr)

spsr

Undef

User
mode
r0-r12

r13 (sp)
r14 (lr)

spsr

SVC

User
mode
r0-r12

r13 (sp)
r14 (lr)

spsr

Abort

User
mode
r0-r12

Note: System mode uses the User mode register set

r13 (sp)
r14 (lr)

spsr

Mon

User
mode
r0-r12

r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc)

cpsr
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Vector Table

Cortex-A8 Exception Handling

� When an exception occurs, the ARM:
� Copies CPSR into SPSR_<mode>
� Sets appropriate CPSR bits
� Change to ARM state

� Change to exception mode
� Disable interrupts (if appropriate)

� Stores the return address in LR_<mode>
� Sets PC to vector address

� To return, exception handler needs to:
� Restore CPSR from SPSR_<mode>
� Restore PC from LR_<mode>

This can only be done in ARM state.
* Represents an offset, as vector
table can moved to different base

addresses

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort
SVC or SMC

Undefined Instruction

Reset

0x1C*

0x18*

0x14*

0x10*

0x0C*

0x08*

0x04*

0x00*
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Cortex-A8 Program Status Register

31 27 26 25 24 23 20 19 16 15 10 9 5 4 0

IT7:2Flags ReservedJIT1:0 GE3:0 M4:0E A I F T

� New IT field in Program Status Registers
� Bits 7:5 indicate base condition
� Bits 4:0 indicate the number of instructions and condition/inverse condition
� Updated by

� IT, BX, BLX, BXJ instructions
� Loads to PC (except in User mode)

� New execution state (CPSR/SPSR)
J bit T bit State
0 0 ARM
0 1 Thumb
1 0 Jazelle-DBX
1 1 Thumb2-EE

� EnterX / LeaveX instructions


