EEEN301 Embedded systems

Lecture 17 — Device drivers

& XILINX

ALL PROGRAMMABLE.-

Device Drivers, User Space |/0O,
and Loadable Kernel Modules

Zynq
Vivado 2015.4 and PetaLinux 2015.4

This material exempt per Department of Commerce license exception TSU © Copyright 2016 Xilinx

e)
Objectives

> After completing this module, you will be able to:
— Explain the concepts of the Linux device driver model
— Identify the role and usage of loadable kernel modules
— Understand the two approaches to userspace drivers

e /dev/mem

* UIO framework

Device Drivers and Modules 06- 3 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

e A
Outline

» Linux Device Driver Overview

> Loadable Modules
— Concepts
— Considerations

> User Space I/O

— Concepts
— Direct Access to /dev/mem
— User Space /O (UIO) Framework

Device Drivers and Modules 06- 4 © Copyright 2016 Xilinx 8 X”_lNX > ALL PROGRAMMABLE.

e) o
User Space vs Kernel Space

» User space is virtualized memory

> Kernel deals with absolute memory

> Kernel must be bullet proof, because it can access anything in the system
> If there is an error, system crashes

> Must follow rigid set of rules — "privileged"” mode

> How can a user application access a physical address if the kernel either protects or
virtualizes that address?

Device Drivers and Modules 06- 5 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

Linux Kernel — Kernel Space vs User Space

> Kernel Space
— Virtual and Physical memory

— CPU ‘Kernel/Supervisor Mode’ (ARM
Privileged)

Application

> User Space

— Virtual memory only (kernel handles the
mapping and page faults)
— CPU ‘User Mode’ (ARM Unprivileged)

— All hardware access via kernel syscall
interface

Kernel Space !User Space

& XILINX » ALL PROGRAMMABLE.

Linux Kernel — Kernel Space vs User Space

» Drivers

— In-built drivers and kernel modules are all
run within kernel space

— Kernel interfaces for drivers in user space

> ABI/API Compatibility

— API = Application Programmers Interface

e Source code interface, a set of functions for
the programmer.

— ABI = Application Binary Interface

 Binary code interface, a set of precompiled
modules or libraries called by the compiler.

— Kernel to User API/ABI compatibility is
stable

— Inter-Kernel API/ABI is not stable

Linux kernel-to-userspace Linux kernel-internal
W] API stability Is guaranteed, source code X API stability is not guaranteed,
is portable! source code portability is not a given

API

& XILINX » ALL PROGRAMMABLE.

e AP
The Linux Device Driver Model (1)

> Linux supports
— Thousands of different devices
— Numerous device categories
* Network, display, storage
* user interface
 sensors/clock sources
— Many bus architectures
* PCI/PCle
- USB
« SPI/12C

> Needs a very sophisticated (and complicated) device driver model

Device Drivers and Modules 06- 8 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

e AP
The Linux Device Driver Model (2)

> At the highest level

— Character
* e.g. keyboard/mouse, parallel port, Bluetooth, console, terminal, sound, video, ...
* Most custom IP drivers will be of this kind
— Block
» Hard/floppy disks, ram disks, CD/DVD
— Network
» Ethernet, CAN, Wi-Fi, ...

Device Drivers and Modules 06- 9 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

Y o
Device Nodes and Numbers

» Device numbers
— Char and block devices identified by a pair of numbers
* (major,minor)
— All devices of the same type share a major number
'S cat /proc/devices' lists all drivers and devices

» Device nodes

— Symbolic file-system handle to a device
* /dev/ttySO — serial port 0
* /dev/fb0 — frame buffer O

Device Drivers and Modules 06- 10 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

Y
Conventional Driver

» This sort of driver uses many internal
kernel functions and macros

> Must write an in-kernel driver from scratch ‘¢/nelspace

ANAAAA

> Debugging the driver will be challenging

when debugging an applicaton .= -] -

Interface /dev/abc

Userspace Application

Device Drivers and Modules 06- 11 © Copyright 2016 Xilinx 8 X”_lNX > ALL PROGRAMMABLE.

Y > o
Device Drivers for Custom Hardware

> Writing custom drivers is a deep topic
— Could easily cover over a one-week training

> Are there any shortcuts?
— There are two approaches: /dev/mem and user space I/O framework
— Direct access to device registers via /dev/mem
* Memory map /dev/mem into application address space
» Access device via pointer returned from mmap()
* Very simple, quick to prototype
« Limited functionality
»= No IRQ handling

— UserSpace 10 (UIO) framework
» Generic kernel framework for user space drivers
» Simple interface, little (or no) custom device driver code at all
» Can do basic user space IRQ handling

Device Drivers and Modules 06- 12 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

Y
Device Driver Interface

> Device driver implements standard kernel API
— Hooks or entry points for

* open/release
* read/write/ioctl/mmap

* Interrupts
> Device driver registration
— Initialise a file operations structure with pointers to handler functions
— Register driver with kernel
> At run time, kernel automatically calls the driver entry points in response to application
behavior

— open/read/write/close/...

> For details, see Linux Device Drivers, 3rd ed by Corbet, Rubini, Kroah-Hartmann,
O’Reilly Press, 2005

Device Drivers and Modules 06- 13 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

e AP
Platform Configuration

» How do we know what devices are present in the system (and their address/IRQ)?

— Some buses are self-describing, e.g. PCI/PCle/USB
» OS queries configuration space to find devices
 Assigns device addresses and IRQs
 Drivers query this data to access their device

» System-on-Chip buses are typically static
> For ARM Cortex-A9 etc, the device tree (DTS) is used

> Device tree enables configuration depending on what is loaded into the system
— Standard and custom IP drivers can be loaded

Device Drivers and Modules 06- 14 © Copyright 2016 Xilinx 8 X”_INX) A|_|_ PRO G RAM MAB I_E

The Device Tree

» DTS file
— Device Tree Source

— Textual description of system device tree

> DTB

— Device Tree Blob
— Compiled, binary representation of DTS

> DTC
— Device Tree Compiler

— Converts DTS to DTB

Device Drivers and Modules 06- 15

/A
cpus |
ps7 _cortexa9 0: cpu@O {
compatible = "xlnx,ps7-cortexad";

b
ps7 cortexa9 1: cpu@l {
compatible = "xlnx,ps7-cortexad";

b
}og
ps7 _axi interconnect 0: amba@0 {
compatible =
ranges ;
ps7 ddrc 0: ps7-ddrc@f8006000 {
compatible = "xlnx, zyng-ddrc-1.00";
reg = < 0x£f8000000 0x1000 >;

}

}og
ps7 _gspi 0: ps7-gspi@e000d000 {
compatible = "xlnx,ps7-gspi-1.00.a";

b i

ps7 _gpio 0: ps7-gpio@e000a000 {
compatible = "xlnx,ps7-gpio-1.00.a";

}og

ps7 usb 0: ps7-usb@e0002000 {
compatible = "xlnx,ps7-usb-1.00.a";

}oi

ps7 uart 1: serial@e0001000 ({
compatible = "xlnx,ps7-uart-1.00.a",

© Copyright 2016 Xilinx

"x1lnx,ps7-axi-interconnect-1.00.a",

ps7_ethernet 0: ps7-ethernet@e000b000 {
compatible = "xlnx,ps7-ethernet-1.00.a";

"simple-bus";

"x1lnx,xuartps";

& XILINX » ALL PROGRAMMABLE.

e A
Outline

» Linux Device Driver Overview

» Loadable Modules

— Concepts
— Considerations

> User Space I/O

— Concepts
— Direct Access to /dev/mem
— User Space /O (UIO) Framework

» Summary

Device Drivers and Modules 06- 16 © Copyright 2016 Xilinx 8 X”_lNX > ALL PROGRAMMABLE.

Y o
Loadable Kernel Modules

> Device drivers can be statically or dynamically linked to the kernel
— Kernel modules provide dynamic linking capability
— Driver stored in filesystem as a . ko file
— Loaded into the kernel with 1dmod
— Removed with rmmod

ldmod mydriver

rmmod mydriver

Device Drivers and Modules 06- 17 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

e)
Loadable Kernel Modules — Basic Usage

» Use 1smod command to list installed modules

lsmod
Module Size Used by
mydriver 30764

> “Used by” count shows how many clients
— Processes holding open device nodes
— Internal kernel usages of module

> Can only rmmod when usage count is zero

Device Drivers and Modules 06- 18 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

e) o
Loadable Kernel Modules - Desktop vs Embedded

» Modules extensively used in desktop systems
— Keeps core kernel small while allowing support for many different devices

» Disk space much cheaper than memory
* Only load those modules required
» Still useful in embedded context
— Can reduce core kernel boot time

— Double-cost with memory-based file systems
* One copy on disk (in memory)
* One copy in kernel memory

— Helpful during development phase

Device Drivers and Modules 06- 19 © Copyright 2016 Xilinx 8 X”_lNX > ALL PROGRAMMABLE.

Device drivers

> Device drivers and other Kernel modules do not have a “main”
» Instead they have a set of functions.
> Two are required to manage the loading and unloading of the module:

— module_init(module); Used to initialise the module functionality and to register it. Called during Idmod.
— module_exit(module); Used to clean things up and de-register the module. Called during rmmod.

> To interact with the driver, usually 4 or more functions are used, they are mapped via a
file operations data structure (fs.h).
— dev_open(): Called each time the device is opened from user space.
— dev_read(): Called when data is sent from the device to user space.
— dev_write(): Called when data is sent from user space to the device.
— dev_release(): Called when the device is closed in user space.

> We will examine this more closely in the lab. For more info:
http://derekmolloy.ie/writing-a-linux-kernel-module-part-1-introduction/

e A
Outline

» Linux Device Driver Overview

» Loadable Modules
— Concepts
— Considerations

> User Space I/0

— Concepts
— Direct Access to /dev/mem
— User Space /O (UIO) Framework

» Summary

Device Drivers and Modules 06- 21 © Copyright 2016 Xilinx 8 X”_lNX > ALL PROGRAMMABLE.

e) o
User Space Device Access

» Commonly from traditional embedded developers

"Can't | just access my hardware from user space?" |

> No! Well, yes, but there are rules...

> Two approaches considered (may not be supported, or could be slightly different)
— Direct access to /dev/mem
— User Space |0 (UIO) framework

Device Drivers and Modules 06- 22 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

Y o
UIO Driver

> By using /dev/mem, Linux is able to
map physical device memory to an Ulo
address accessible from user space Framework

> UIO improves stability by preventing Kernelspace
user space from mapping memory that
does not belong to the device @

> A small kernel driver calls only a few

Interface
kernel functions __
PP B4 M S
» UIO framework generates a set of | h |
directories and attribute files in sysfs _
Userspace Application 4mm) Driver

Linux kernel memory management

Device Drivers and Modules 06- 23 © Copyright 2016 Xilinx 8 X”_lNX > ALL PROGRAMMABLE.

e) o
User Space Device Access - /dev/mem

» /dev/mem
— Userspace interface to system address space
— Accessed via mmap () system call
— Must be root or have appropriate permissions

— Quite a blunt tool — must be used carefully
» Can bypass protections provided by the MMU
» Possible to corrupt kernel, device or memory of other processes

Device Drivers and Modules 06- 24 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

User Space Device Access - /dev/mem Example

/*
* poke utility - for those who remember the good old days!
*

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>

Open
F) int main(int argc, char *argv([])
{

/dev/mem

void *ptr;

unsigned val;

unsigned addr, page addr, page offset;
\insigned page_ size=sysconf (SC PAGESIZE);

d=open ("/dev/mem",0_RDWR) ;

1if (fd<1) {

perror (argv([0]) ;

exit (-1);

}

if (argc!=3) {
printf (“Usage: poke <addr> <data>"\n”");
exit (-1);

Memory map

}

addr=strtoul (argv[1l],NULL,0) ;
val=strtoul (argv[2],NULL,0) ;

page_addr=(addr & ~(page_size-1));
page offset=addr-page addr;

tr=mmap(NULL,page_size,PROI_READIPROI_WRITE,MAR_SHARED,fd,pagq_addr);
if ((int)ptr==-1) {
perror (argv[0]);

Access via

) il A

pointer SRit(-1);
}
::::::§§§<i(unsigned *) (ptr+page offset))=val,
return 0;

}

Device Drivers and Modules 06- 25 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

e)
User Space Device Access - /dev/mem Advantages and

Disadvantages

> Pro
— Very simple — no kernel module or code
— Good for quick prototyping / IP verification
» peek/poke utilities
— Portable (in a very basic sense)
> Con
— No interrupt handling possible
— No protection against simultaneous access
— Need to know physical address of IP
» Hard-code?

> OK for prototyping — not recommended for production

Device Drivers and Modules 06- 26 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

e) o
User Space Device Access - The UIO framework

> In Linux 2.6.22, the User space 10 (UIO) API was introduced

— linux-3.14/drivers/uio
— Allows clean, portable implementation of user space device drivers
— Basic interrupt handling capabilities
> Very thin kernel-level driver
— Register UIO device
— Trivial interrupt handler

> All of the real work happens in user space

Device Drivers and Modules 06- 27 © Copyright 2016 Xilinx 8 X”_lNX > ALL PROGRAMMABLE.

e) o
UIO - the Application Level

» Opening the device
— Walk through sysfs mounted /sys/class/uio/uioX (remember sys/class/LEDSs)
— Check virtual file 'name’
— If it matches

fd=open ("/dev/uioX", 0 RDWR) ;

» Memory mapping the resources

void *ptr=mmap (NULL, size, PROT READ|PROT WRITE,
MAP SHARED, fd, n * PAGE_SIZE);

— n is the mapping number (device specific)

> ptr may now be safely used for direct access to the hardware

Device Drivers and Modules 06- 28 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

e AP
UIO - Interrupt Handling

> Several options
— Issuing a read () on the device returns number of interrupts since last read call

read (fd, &num irqgs, sizeof (num 1rgs));

— Can be blocking or non blocking
« O _NONBLOCK flag in open () call
- select () system call on the file descriptor
« optionally block until an IRQ occurs
— Actual handling of the interrupt is device dependent

Device Drivers and Modules 06- 29 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

e AP
UIO — Kernel Interface (1)

> By default, even UIO requires a thin kernel-space driver
— Register and remap device address map
— Specify IRQ handler function
— Register driver with UIO subsystem

> Bulk of device driver implemented in userspace

Device Drivers and Modules 06- 30 © Copyright 2016 Xilinx 8 X||_|NX > ALL PROGRAMMABLE.

Y o
UIO - Pros and Cons

> Pro > Other
— Benefits of /dev/mem and mmap ()
* Plus IRQ handling
— No kernel code at all
« If using OF _GENIRQ extensions
— No need to recompile and reboot kernel

» Kernel drivers can easily break the kernel and
force a reboot

= UIO driver errors not usually fatal

* Open driver development to non-kernel
developers

» Con
— Interrupt model is simple but adequate
— Subject to variable or high latency
— No support for DMA to/from user space

— Can avoid some GPL licensing issues
» Kernel drivers/modules must be GPL licensed

* No such requirement for user space drivers in
ulo

Device Drivers and Modules 06- 31 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

e)
Summary

» Direct access to hardware through /dev/mem is quick and easy but limited
— Best for quick prototyping

> The UIO framework allows you to quickly develop device drivers that can be controlled
from user space

— Includes interrupt handling

> The full Linux device driver model is still appropriate and recommended in some
circumstances

Device Drivers and Modules 06- 32 © Copyright 2016 Xilinx & XILINX » ALL PROGRAMMABLE.

