
EEEN301 Embedded systems

Lecture 17 – Device drivers

This material exempt per Department of Commerce license exception TSU

Zynq
Vivado 2015.4 and PetaLinux 2015.4

Device Drivers, User Space I/O,
and Loadable Kernel Modules

© Copyright 2016 Xilinx

Objectives

After completing this module, you will be able to:
– Explain the concepts of the Linux device driver model
– Identify the role and usage of loadable kernel modules
– Understand the two approaches to userspace drivers

• /dev/mem

• UIO framework

© Copyright 2016 XilinxDevice Drivers and Modules 06- 3

Linux Device Driver Overview
Loadable Modules
– Concepts
– Considerations

User Space I/O
– Concepts
– Direct Access to /dev/mem
– User Space I/O (UIO) Framework

Outline

© Copyright 2016 XilinxDevice Drivers and Modules 06- 4

User space is virtualized memory
Kernel deals with absolute memory
Kernel must be bullet proof, because it can access anything in the system
If there is an error, system crashes
Must follow rigid set of rules – "privileged" mode
How can a user application access a physical address if the kernel either protects or
virtualizes that address?

Device Drivers and Modules 06- 5

User Space vs Kernel Space

© Copyright 2016 Xilinx

Linux Kernel – Kernel Space vs User Space

Kernel Space
– Virtual and Physical memory
– CPU ‘Kernel/Supervisor Mode’ (ARM

Privileged)

User Space
– Virtual memory only (kernel handles the

mapping and page faults)
– CPU ‘User Mode’ (ARM Unprivileged)
– All hardware access via kernel syscall

interface

U
se

r S
pa

ce

Application

Kernel syscall API

libc

LibrariesApplication

K
er

ne
l S

pa
ce

Application

Linux Kernel

Hardware

Linux Kernel – Kernel Space vs User Space
Drivers
– In-built drivers and kernel modules are all

run within kernel space
– Kernel interfaces for drivers in user space

ABI/API Compatibility
– API = Application Programmers Interface

• Source code interface, a set of functions for
the programmer.

– ABI = Application Binary Interface
• Binary code interface, a set of precompiled

modules or libraries called by the compiler.
– Kernel to User API/ABI compatibility is

stable
– Inter-Kernel API/ABI is not stable

Linux supports
– Thousands of different devices
– Numerous device categories

• Network, display, storage
• user interface
• sensors/clock sources
• ...

– Many bus architectures
• PCI/PCIe
• USB
• SPI/I2C
• ...

Needs a very sophisticated (and complicated) device driver model

The Linux Device Driver Model (1)

© Copyright 2016 XilinxDevice Drivers and Modules 06- 8

At the highest level
– Character

• e.g. keyboard/mouse, parallel port, Bluetooth, console, terminal, sound, video, ...
• Most custom IP drivers will be of this kind

– Block
• Hard/floppy disks, ram disks, CD/DVD

– Network
• Ethernet, CAN, Wi-Fi, ...

The Linux Device Driver Model (2)

© Copyright 2016 XilinxDevice Drivers and Modules 06- 9

Device numbers
– Char and block devices identified by a pair of numbers

• (major,minor)

– All devices of the same type share a major number
• '$ cat /proc/devices' lists all drivers and devices

Device nodes
– Symbolic file-system handle to a device

• /dev/ttyS0 – serial port 0
• /dev/fb0 – frame buffer 0

Device Nodes and Numbers

© Copyright 2016 XilinxDevice Drivers and Modules 06- 10

This sort of driver uses many internal
kernel functions and macros
Must write an in-kernel driver from scratch
Debugging the driver will be challenging

when debugging an application

Device Drivers and Modules 06- 11

Conventional Driver

© Copyright 2016 Xilinx

Writing custom drivers is a deep topic
– Could easily cover over a one-week training

Are there any shortcuts?
– There are two approaches: /dev/mem and user space I/O framework
– Direct access to device registers via /dev/mem

• Memory map /dev/mem into application address space
• Access device via pointer returned from mmap()
• Very simple, quick to prototype
• Limited functionality

§ No IRQ handling
– UserSpace IO (UIO) framework

• Generic kernel framework for user space drivers
• Simple interface, little (or no) custom device driver code at all
• Can do basic user space IRQ handling

Device Drivers for Custom Hardware

© Copyright 2016 XilinxDevice Drivers and Modules 06- 12

Device driver implements standard kernel API
– Hooks or entry points for

• open/release

• read/write/ioctl/mmap

• Interrupts

Device driver registration
– Initialise a file_operations structure with pointers to handler functions
– Register driver with kernel

At run time, kernel automatically calls the driver entry points in response to application
behavior
– open/read/write/close/...

For details, see Linux Device Drivers, 3rd ed by Corbet, Rubini, Kroah-Hartmann,
O’Reilly Press, 2005

Device Driver Interface

© Copyright 2016 XilinxDevice Drivers and Modules 06- 13

How do we know what devices are present in the system (and their address/IRQ)?
– Some buses are self-describing, e.g. PCI/PCIe/USB

• OS queries configuration space to find devices
• Assigns device addresses and IRQs
• Drivers query this data to access their device

System-on-Chip buses are typically static
For ARM Cortex-A9 etc, the device tree (DTS) is used
Device tree enables configuration depending on what is loaded into the system
– Standard and custom IP drivers can be loaded

Platform Configuration

© Copyright 2016 XilinxDevice Drivers and Modules 06- 14

DTS file
– Device Tree Source
– Textual description of system device tree

DTB
– Device Tree Blob
– Compiled, binary representation of DTS

DTC
– Device Tree Compiler
– Converts DTS to DTB

The Device Tree

/ {
cpus {
ps7_cortexa9_0: cpu@0 {
compatible = "xlnx,ps7-cortexa9";
...

} ;
ps7_cortexa9_1: cpu@1 {
compatible = "xlnx,ps7-cortexa9";
...

} ;
} ;
ps7_axi_interconnect_0: amba@0 {
compatible = "xlnx,ps7-axi-interconnect-1.00.a", "simple-bus";
ranges ;
ps7_ddrc_0: ps7-ddrc@f8006000 {
compatible = "xlnx,zynq-ddrc-1.00";
reg = < 0xf8000000 0x1000 >;

}
ps7_ethernet_0: ps7-ethernet@e000b000 {
compatible = "xlnx,ps7-ethernet-1.00.a";
...

} ;
ps7_qspi_0: ps7-qspi@e000d000 {
compatible = "xlnx,ps7-qspi-1.00.a";
...

} ;
ps7_gpio_0: ps7-gpio@e000a000 {
compatible = "xlnx,ps7-gpio-1.00.a";

} ;
ps7_usb_0: ps7-usb@e0002000 {
compatible = "xlnx,ps7-usb-1.00.a";

} ;
...
ps7_uart_1: serial@e0001000 {
compatible = "xlnx,ps7-uart-1.00.a", "xlnx,xuartps";
...

} ;
} ;

} ;

© Copyright 2016 XilinxDevice Drivers and Modules 06- 15

Linux Device Driver Overview
Loadable Modules
– Concepts
– Considerations

User Space I/O
– Concepts
– Direct Access to /dev/mem
– User Space I/O (UIO) Framework

Summary

Outline

© Copyright 2016 XilinxDevice Drivers and Modules 06- 16

Device drivers can be statically or dynamically linked to the kernel
– Kernel modules provide dynamic linking capability
– Driver stored in filesystem as a .ko file
– Loaded into the kernel with ldmod
– Removed with rmmod

Loadable Kernel Modules

ldmod mydriver
...
rmmod mydriver
...

© Copyright 2016 XilinxDevice Drivers and Modules 06- 17

Use lsmod command to list installed modules

“Used by” count shows how many clients
– Processes holding open device nodes
– Internal kernel usages of module

Can only rmmod when usage count is zero

Loadable Kernel Modules – Basic Usage

lsmod
Module Size Used by
mydriver 30764 1

© Copyright 2016 XilinxDevice Drivers and Modules 06- 18

Modules extensively used in desktop systems
– Keeps core kernel small while allowing support for many different devices

• Disk space much cheaper than memory
• Only load those modules required

Still useful in embedded context
– Can reduce core kernel boot time
– Double-cost with memory-based file systems

• One copy on disk (in memory)
• One copy in kernel memory

– Helpful during development phase

Loadable Kernel Modules - Desktop vs Embedded

© Copyright 2016 XilinxDevice Drivers and Modules 06- 19

Device drivers and other Kernel modules do not have a “main”
Instead they have a set of functions.
Two are required to manage the loading and unloading of the module:
– module_init(module); Used to initialise the module functionality and to register it. Called during ldmod.
– module_exit(module); Used to clean things up and de-register the module. Called during rmmod.

To interact with the driver, usually 4 or more functions are used, they are mapped via a
file operations data structure (fs.h).
– dev_open(): Called each time the device is opened from user space.
– dev_read(): Called when data is sent from the device to user space.
– dev_write(): Called when data is sent from user space to the device.
– dev_release(): Called when the device is closed in user space.

We will examine this more closely in the lab. For more info:
http://derekmolloy.ie/writing-a-linux-kernel-module-part-1-introduction/

Device drivers

Linux Device Driver Overview
Loadable Modules
– Concepts
– Considerations

User Space I/O
– Concepts
– Direct Access to /dev/mem
– User Space I/O (UIO) Framework

Summary

Outline

© Copyright 2016 XilinxDevice Drivers and Modules 06- 21

Commonly from traditional embedded developers

No! Well, yes, but there are rules...
Two approaches considered (may not be supported, or could be slightly different)
– Direct access to /dev/mem
– User Space IO (UIO) framework

User Space Device Access

"Can't I just access my hardware from user space?"

© Copyright 2016 XilinxDevice Drivers and Modules 06- 22

By using /dev/mem, Linux is able to
map physical device memory to an
address accessible from user space
UIO improves stability by preventing
user space from mapping memory that
does not belong to the device
A small kernel driver calls only a few
kernel functions
UIO framework generates a set of
directories and attribute files in sysfs
Linux kernel memory management

Device Drivers and Modules 06- 23

UIO Driver

© Copyright 2016 Xilinx

/dev/mem

– Userspace interface to system address space
– Accessed via mmap() system call
– Must be root or have appropriate permissions
– Quite a blunt tool – must be used carefully

• Can bypass protections provided by the MMU
• Possible to corrupt kernel, device or memory of other processes

User Space Device Access - /dev/mem

© Copyright 2016 XilinxDevice Drivers and Modules 06- 24

User Space Device Access - /dev/mem Example

/*
* poke utility - for those who remember the good old days!
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{

int fd;
void *ptr;
unsigned val;
unsigned addr, page_addr, page_offset;
unsigned page_size=sysconf(_SC_PAGESIZE);

fd=open("/dev/mem",O_RDWR);
if(fd<1) {

perror(argv[0]);
exit(-1);

}

if(argc!=3) {
printf(“Usage: poke <addr> <data>”\n”);
exit(-1);

}

addr=strtoul(argv[1],NULL,0);
val=strtoul(argv[2],NULL,0);

page_addr=(addr & ~(page_size-1));
page_offset=addr-page_addr;

ptr=mmap(NULL,page_size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,page_addr);
if((int)ptr==-1) {

perror(argv[0]);
exit(-1);

}

*((unsigned *)(ptr+page_offset))=val;
return 0;

}

Open
/dev/mem

Memory map

Access via
pointer

© Copyright 2016 XilinxDevice Drivers and Modules 06- 25

Pro
– Very simple – no kernel module or code
– Good for quick prototyping / IP verification

• peek/poke utilities

– Portable (in a very basic sense)
Con
– No interrupt handling possible
– No protection against simultaneous access
– Need to know physical address of IP

• Hard-code?

OK for prototyping – not recommended for production

User Space Device Access - /dev/mem Advantages and
Disadvantages

© Copyright 2016 XilinxDevice Drivers and Modules 06- 26

In Linux 2.6.22, the User space IO (UIO) API was introduced
– linux-3.14/drivers/uio

– Allows clean, portable implementation of user space device drivers
– Basic interrupt handling capabilities
Very thin kernel-level driver
– Register UIO device
– Trivial interrupt handler

All of the real work happens in user space

User Space Device Access - The UIO framework

© Copyright 2016 XilinxDevice Drivers and Modules 06- 27

Opening the device
– Walk through sysfs mounted /sys/class/uio/uioX (remember sys/class/LEDs)

– Check virtual file 'name'
– If it matches

Memory mapping the resources

– n is the mapping number (device specific)
ptr may now be safely used for direct access to the hardware

UIO - the Application Level

void *ptr=mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_SHARED, fd, n * PAGE_SIZE);

fd=open("/dev/uioX",O_RDWR);

© Copyright 2016 XilinxDevice Drivers and Modules 06- 28

Several options
– Issuing a read() on the device returns number of interrupts since last read call

– Can be blocking or non blocking
• O_NONBLOCK flag in open() call

– select() system call on the file descriptor
• optionally block until an IRQ occurs

– Actual handling of the interrupt is device dependent

UIO - Interrupt Handling

read(fd, &num_irqs, sizeof(num_irqs));

© Copyright 2016 XilinxDevice Drivers and Modules 06- 29

By default, even UIO requires a thin kernel-space driver
– Register and remap device address map
– Specify IRQ handler function
– Register driver with UIO subsystem

Bulk of device driver implemented in userspace

UIO – Kernel Interface (1)

© Copyright 2016 XilinxDevice Drivers and Modules 06- 30

UIO - Pros and Cons

Pro
– Benefits of /dev/mem and mmap()

• Plus IRQ handling
– No kernel code at all

• If using OF_GENIRQ extensions
– No need to recompile and reboot kernel

• Kernel drivers can easily break the kernel and
force a reboot

§ UIO driver errors not usually fatal
• Open driver development to non-kernel

developers
Con
– Interrupt model is simple but adequate
– Subject to variable or high latency
– No support for DMA to/from user space

Other
– Can avoid some GPL licensing issues

• Kernel drivers/modules must be GPL licensed
• No such requirement for user space drivers in

UIO

© Copyright 2016 XilinxDevice Drivers and Modules 06- 31

Direct access to hardware through /dev/mem is quick and easy but limited
– Best for quick prototyping

The UIO framework allows you to quickly develop device drivers that can be controlled
from user space
– Includes interrupt handling

The full Linux device driver model is still appropriate and recommended in some
circumstances

Summary

© Copyright 2016 XilinxDevice Drivers and Modules 06- 32

