
1 

Lab session 3 & 4 

Bare-metal ARM assembly programming 
 

In the previous two lab sessions, we investigated the execution of Bare-metal C code on a 

Beaglebone ARM processor and the JTAG debugging tool. For this lab we will learn bare-

metal ARM assembly programming using Beaglebone, JTAG and the Code Composer 

Studio (CCS). We will introduce the basics of ARM assembly programming. You will use 

what we introduced to accomplish some programming tasks. Please note that the instruction 

set we introduced in this lab is supported by ARMv7 processors. It is different from LEGv8 

discussed in the lectures, which is part of the ARMv8 instruction set. 

 

Step 1: Power up the Beaglebone board in Bare-metal mode and then connect the SEGGER 

JTAG debugger unit. 

 

Step 2: Download the zip file: EEEN301_lab3_4.zip and load into Code Composer Studio. 

 

Step 3: Click on the Debug button to launch the debug session. Bring up the disassembler 

window to observe the loaded code. 

Note: CCS may ask you to re-configure the debugger connection setting. If so, please follow 

step 4 of Lab session 1 to configure the connection properly. If CCS continues to generate 

error message regarding the connection setting, please repeat steps 1 to 4 of Lab session 1 to 

create a clean new project (in step 1 of Lab session 1, choose “Empty project (with main.c)”). 

Then copy main.c and test.S in EEEN301_lab3_pt1.zip to the newly created project to 

overwrite the existing main.c file in the new project. Afterwards, try to debug the code again. 

 

Step 4: Expand the “Registers” window as per below. 

 



2 

 
 

Check the current program status register (CPSR). The format of this register is shown 

in the figure below: 

 
Let us focus now on the mode bits, M0, M1, M2, M3 and M4. The five mode bits together 

determine the ARM operation mode. An ARM processor can operate in one of the following 

operation modes: 

• User mode: normal operation 

• IRQ mode: mode for handling interrupt operations 

• Supervisory mode: mode for the operating system 

• FIQ mode: fast interrupt mode 

• Undefined mode: when an undefined instruction is executed 

• Abort mode: this mode indicates that the current memory access cannot be completed 

Q1: What are the current values of the five mode bits? 

Q2: What do you think is the current mode of your ARM processor when debugging just 

starts from the main() function and why? 

 

Step 5: Open the test.S assembly file. Replace the code in test.S by the assembly code given 

below 
.globl test 
test: 
 MOV r1, #1 
 MOV r2, #2 



3 

 … 
 BX lr 
 

Please fill the … part in the above code respectively by each of the following instructions 

(fill the … part by each of the three instructions below one at a time): 
ADD r1, r1, #10 
AND r1, r2, #10 
EOR r1, r2, #10 

 

Debug the code using the JTAG debugger. 

 

Q3: For each of the instructions above, when we add it to test.S, which register will change 

its value as a result of executing test.S? What is the changed value and why? 

 

Step 6: Some data processing instructions can change the flag bits in CPSR. Replace the 

… part in test.S (see step 5) by each of the following instructions (fill the … part by each 

of the two instructions below one at a time): 
ADDS r1, r1, r2 
SUBS r1, r1, r2 
 

Q4: For each of the instructions above, when we add it to test.S, which flag bit will be set 

or unset as a result of executing the instruction? Explain your finding. 

 

Step 7: The MOV instruction is very flexible in ARMv7. Particularly, we can perform 

logic shift, such as logic shift left (lsl), on the Rm register before copying its value to the 

Rn register in the instruction template below: 
MOV Rn, Rm, lsl #n // Shift Rm n times to the left and store the result in Rn 

 

Q5: Replace the … part in test.S (see step 5) by each of the following instructions (fill the 

… part by each of the four instructions below one at a time). As a result of executing each 

added instruction, what will be the new value in register r1 and why? 
MOV r1, r2, lsl #2 
MOV r1, r2, lsr #1 // lsr stands for logic shift right 
MOV r1, r2, asr #1 // asr stands for arithmetic shift right 
ADD r1, r2, r2, lsl #2 
 



4 

Q6: We can also set up conditions for the MOV instruction. Replace the … part in test.S 

(see step 5) by the following two instructions (fill the … part with both of the two 

instructions below), what will happen as a result of executing the added instructions and 

why? 
CMP r1, r2 
MOVNE r1, r2 
 

Step 8: Similar to the MOV instruction, arithmetic instructions can include extra 

conditions. Please refer to the table below for different types of conditions that can be 

included in arithmetic instructions. 

 
For the example assembly code below 
CMP r1, r2 
ADDEQ r3, r4, r5 
Register r3 will have its value updated to r4+r5 only when r1=r2. 

 

Q7: Convert the following pseudo-code into THREE lines of ARM assembly code. Insert 

the converted code into the … part of test.S (see step 5). What will happen as a result of 

executing test.S and why? Please include your assembly code in test.S in your answer to 

this question. Please also include a screenshot that clearly shows the result of executing 

your assembly code. 
If r1>r2 Then r3=r1-r2 
Else if r1<r2 Then r3=r1+r2 
 



5 

Step 9: ARMv7 provides dedicated instructions such as BL and BX to support function 

calls. Particularly, BL subroutine_name is used to call a subroutine (or function), where the 

return address will be saved in the link register lr (r14). On the other hand, we can use BX lr 

to return the control back to the function caller. 

 

Q8: In test.S, add new assembly code to define a new function named func to add the 

integer values in registers r1 and r2 and save the addition result back to r1. Make 

necessary changes to the test function in test.S so the test function can call func() in the … 

part (see step 5). You may need to preserve some registers in the test function before 

calling func(). After func() returns, you need to restore the original value of some registers 

in the test function too. Please include your assembly code in test.S in your answer to this 

question. Please also include a screenshot that clearly shows the result of executing your 

assembly code. 

 

Step 10: ARMv7 supports a range of conditional branch instructions as summarized in the 

table below: 

 
 

Q9: Using some of the conditional branch instructions above as well as instructions 

introduced earlier in this lab, convert the following pseudo-code to ARM assembly code. 

Assuming that variable a (signed number) is assigned to register r1 and variable b (signed 

number) is assigned to register r2, replace the … part of test.S (see step 5) by the newly 



6 

converted assembly code. Please include your assembly code in test.S in your answer to 

this question. Please also include a screenshot that clearly shows the result of executing 

your assembly code. 

 
 

Step 11: With ARMv7 processors, we can access memory using several data transfer 

instructions, including LDR and STR. LDR is used to load a word into a register from 

memory. STR is used to transfer a word from a register to memory. 

 

Q10: Replace the existing code in test.S completely by the assembly code given below. 

Execute test.S and identify any changes to register r1, after executing the instruction 

highlighted in blue. Explain what the blue instruction does. 
.globl test 
test: 
 MOV r1, #1 
 MOV r2, #2 
 LDR r3,=numbers 
 LDR r1, [r3,#8] 
 BX lr 
 
.data 
numbers: 
 .word 0 
 .word 1 
 .word 2 
 .word 3 
 

Q11: Replace the blue instruction in Q10 with the instruction given below. Identify the 

changes in memory and in register r3 because of executing the replaced instruction. 

Discuss what the replaced instruction does. 
STR r2, [r3, #4]! 



7 

 

Step 12: The LDR and STR instructions enable us to handle arrays of arbitrary length in 

memory. 

 

Q12. Following the assembly code given in Q10 as an example, re-define the test function 

in test.S to calculate the sum across an array of words. The sum result must be placed in 

register r0 before the test function returns. In test.S, you need to define the array to be 

stored in memory and associate the array with the label “numbers”. We assume that the 

number of elements/words in the array is unknown upon writing the assembly code. 

However, all elements of the array, except the last element, are non-zero. The last element 

is 0. 

Please include your assembly code in test.S in your answer to this question. Please also 

include a screenshot that clearly shows the result of executing your assembly code. 

 

Submission instruction 

Please pay attention to the following while submitting your report for lab 3&4. 

• Please provide a single report for all questions included in this lab. While this lab covers 

week 4 and week 5, you only need to write a single report for both weeks. 

• Your report MUST be submitted in PDF format. Reports submitted in other formats will 

not be marked. 

• In your report, please clearly separate and indicate your answer to each question. Please 

make sure that you include assembly code and screenshot requested in your answers to 

questions Q7, Q8, Q9, and Q12. For other questions, no source code and screenshot are 

required for your answer. 

 


