The single-cycle LEGv8 datapath is shown in Fig. 1 below. The encoding of each
LEGvVS instruction is listed in Table 1. The arithmetic and logic unit (ALU) control
logic is shown in Table 2. The instruction control logic is shown in Table 3. The
translation from instruction opcode to ALU control input is shown in Table 4.

1. For the LEGvS8 instruction LDUR x10, #100, refer to Figure 1 and tables 1-4 and
answer the following questions:
a. Convert the instruction to binary.

[2 Marks]
b. Referring to the opcode table, what format of instruction is this.

[2 Marks]
c. What is the Opcode of the instruction?

[2 Marks]

d. On the diagram in Figure 1 below, highlight the active datapath used by
this instruction.
[5 Marks]
e. What are the output settings of the Control component.
[9 Marks]
f. What are the output binary codes for the ALU control component.
[2 Marks]



w0
M
X
ALU
4= Add gyt B\
/_\J Reg2loc
/ . Branch
[ | MemRead
Instruction [31 21]' | MemtoReg
1Cont rol| ALUO
u, Memﬁrne
\ ,a' ALUSrc
! /_RegWrite
A
Instruction [9-5] Read
. PCes 220 Instruction [20-16]9 | redister 1 Reaq
M Read 2data1
Instruction X register
e d 11
31-0] I | Write Read Addresst%%g —1
Instruction || Tinstrction [4-0] register data 2 M
memory _ u
Write 0
data i
Registers Write Data
data memory,
Instruction [31-0 32 m 64 /\ |
Sl ~( Stan [ AU | |

\control
/

1%

Figure 1: The single-cycle LEGv8 datapath.

mm-mmmmm

Instruction [31-21]

ADD (add) 1112,

SUB (subtract) 1624, reg 0 n.a. n.a. reg reg
ADDI (add immediate) | 5804 reg n.a. constant | n.a. reg n.a.
SUBI (sub immediate) | 836, reg n.a. constant | n.a. reg n.a.

LOUR (load word) D 1986, reg n.a. address 0 reg n.a.
STUR (store word) D 1984, reg n.a. address 0 reg n.a.

Table 1: LEGvS Instruction Encoding

Instruction Desired ALU control
Instruction operation Opcode field ALU action input

LDUR load register XAKHKXKXXKX 0010
STUR 00 store register XUXXXXXXXXX | add 0010
CBZ 01 compare and XIXXXXKXXXX | pass input b 0111
branch on zero
R-type 10 ADD 10001011000 |add 0010
R-type 10 sSuB 11001011000 | subtract 0110
R-type 10 AND 10001010000 |AND 0000
R-type 10 ORR 10101010000 |OR 0001

: Control of the ALU control input based on the Opcode field and ALUOp.



Inputs 1[31] 1 1 1 1
1[30] X 1 1 0

1[29] X 1 1 1

1[28] 0 1 1 1

271 1 1 1 0

1[26] 0 0 0 1

1[25] 1 0 0 0

I[24] ¥ 0 0 0

1[23] 0 0 0 X

1[22] 0 1 0 X

[21] 0 0 0 X

Outputs Reg2Loc 0 X 1 1
ALUSrc 0 1 1 0

MemtoReg 0 1 X X

RegWrite 1 1 0 0

MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOpO 0 0 0 1

Table 3: The instructional control outputs based on the Opcode field 1[31:21] and

type of instruction.

Opcode field

| Amwop ]  Opcodefied |
| awopr | Awopo [usuifusor|uzsi|uzsi|z7i|uzsi|uzsifuza1fuzsi|uz2z1|u211| operation
X X X X X X X X X X

X 0010

0111

0010

0110

0000

Rlklke=<|o
XN X[ = |xX|P|O

RS T
olo|r|o|x
~lo|lolo|x
o|lOo|0o|O|x>x
e e
o |O|C|O|x
R
OOk |k
olo|lo|o|x
ololo|lo|x
o|lo|o|o]|x

0001

Table 4: The truth table for the 4-bit ALU control input, labelled Operation in the

table.

2. Examine the difficulty of adding a proposed LWI Rd, Rm(Rn) “Load With
Increment” instruction to the LEGv8 datapath shown in Fig. 1.
Interpretation: Reg[Rd] = Mem[Reg[Rm] + Reg[Rn]]

a.

What new functional blocks (if any) do we need for this instruction?

b. Which existing functional blocks (if any) require modification?
C.
d. What new signals do we need (if any) from the control unit to support

Which new datapaths (if any) do we need for this instruction?

this instruction?



3. If we were to translate the datapath in Fig. 1 to a pipelined datapath:

a.
b.
C.

e.

What are the stages we could split the datapath into?

How would we connect each stage of the datapath together?

Draw a block diagram of each stage of your pipelined datapath, include
the control circuits required.

. The following code is executed on your pipelined datapath:

LDUR x9,[x20,#0]

ADDI x8,x9,#10

STUR x8,[x20,#0]

LDUR x10,[x20,#8]

SUBI x7,x10,#10

STUR x7,[x20,#8]

LDUR x11,[x20,#16]

AND x6,x8,x11

STUR x6,[x20,#16]

Draw a diagram showing how the code is executed, include indications
of any stalls in your diagram and the number of cycles the code takes to
execute.

Could we modify the code above to remove any stalls?



