
10/03/2024

1

© Peter Andreae and Xiaoying Gao

COMP261 # 60

Admin

• Term Test1 this week
• Thursday 5pm-6pm

• MCLT101 (A-F),
• MCLT103 (G-N),
• KKLT303 (P-Z)

• Do the previous tests/exams, Assign1 (at least Stage 0)

• Help desks start this week, open to all
• Wed, Thur, Fri

• Also tutorials, comp261-help@ecs,vuw,ac,nz

• My office hour for this week: Tuesday 9-10

10/03/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 61

Extending the language 2: Conditional expressions

• Suppose the expression language used for customizing what is displayed for a
smart home system which includes a number of sensors.
• The sensors report on the state of the house: #isEmpty, #nighttime, #cold, #windowsOpen, ….

• The expressions specify what values should be calculated and displayed

• The expressions should be able to include the sensors using conditional expressions such as:

mul(34, add(15, if (#isEmpty, 5, 30), if (and(#cold, #doorOpen), 110, 10)))

• To include sensors, if-expressions, boolean operators, need to
• extend the grammar

• define new node classes (Including a new category of nodes)

• define new parse…. methods

10/03/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 62

Extending the language 2: Conditional expressions

Expr ::= Num | Add | Sub | Mul | Div | Cond
Add ::= “add” “(” Expr [“,” Expr]+ “)”
Sub ::= “sub” “(” Expr [“,” Expr]+ “)”
Mul ::= “mul” “(” Expr [“,” Expr]+ “)”
Div ::= “div” “(” Expr [“,” Expr]+ “)”
Cond ::= “if” “(” Bool “,” Expr “,” Expr “)”
Bool ::= Sensor | And | Or | Not
And ::= “and” “(“ Bool [“,” Bool]+ “)”
Or ::= “or” “(“ Bool [“,” Bool]+ “)”
Not ::= “not” “(“ Bool “)”
Num ::= matches “[-+]?[0-9]+”
Sensor ::= matches "#[a-zA-Z]+"

add(if(#isEmpty, 5, 20), if(and(#cold, #doorOpen), 110,15))

Add

Sensor
#cold

Num
110

Num
5

Num
20

Cond

Num
15

Sensor
#doorOpen

And
Sensor

#isEmpty

Cond

10/03/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 63

Extending the language 2: Node classes: BoolNode

• Bool nodes (for the if statement) are different from ExprNodes:
• ExprNodes have an evaluate() method that returns an int
• BoolNodes have an evaluate() method that returns a boolean

• Therefore, they can't be the same interface

public interface ExprNode {
public int evaluate();

}

public interface BoolNode {
public boolean evaluate();

}

10/03/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 64

Extending the language 2: Node classes: CondNode

class CondNode implements ExprNode {
final BoolNode condition;
final ExprNode trueExp;
final ExprNode falseExp;

public CondNode(BoolNode cnd, ExprNode texp, ExprNode fexp){
condition = cnd; trueExp=texp; falseExp=fexp;

}

public String toString() {
return "if("+condition+" then "+trueExp+" else "+falseExp+")";

}

public int evaluate() {
if (condition.evaluate()){ return trueExp.evaluate(); }
else { return falseExp.evaluate(); }

}
}

Cond ::= “if” “(” Bool “,” Expr “,” Expr “)”

10/03/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 65

Extending the language 2: Node classes: SensorNode

class SensorNode implements BoolNode {

final String sensorName;

public SensorNode(String sname){
sensorName = sname;

}
public String toString() {

return "sensor:"+sensorName;
}
public boolean evaluate () {

return houseSystem.getSensorValue(sensorName);
}

}

Sensor ::= matches "#[a-zA-Z]+"

10/03/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 66

Extending the language 2: Node Classes: AndNode

class AndNode implements BoolNode {

final List<BoolNode> conjuncts;

public AddNode(List<BoolNode> cnjcts){ conjuncts = cnjcts; }

public String toString(){
StringBuilder ans = new StringBuilder("(");
ans.append(conjuncts.get(0));
for (int i=1; i<args.size(); i++){

ans.append(" & ").append(conjuncts.get(i));}
ans.append(")");
return ans.toString();

}
public boolean evaluate(){

for (BoolNode conjunct : conjuncts) {
if (!conjunct.evaluate()) {return false; }

}
return true;

}

And ::= “and” “(” Bool [“,” Bool]+ “)”

Similar to an AddNode,
except BoolNodes
instead of ExprNodes

10/03/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 67

Extending the language 2: Node Classes: OrNode, NotNode

class OrNode implements BoolNode {
final List<BoolNode> disjuncts;
...[similar to AndNode]...

}

class NotNode implements BoolNode {

final BoolNode expr;

public NotNode(BoolNode> exp){ expr = exp; }

public String toString(){
return "!"+ expr;

}

public boolean evaluate(){
return !expr.evaluate();

}

Or ::= “or” “(” Bool [“,” Bool]+ “)”

Not ::= “not” “(” Bool “)”

10/03/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 68

Extending the language 2: the parse… methods: parseBool

public BoolNode parseBool(Scanner s) {

if (!s.hasNext()) { fail("Empty Boolean expr",s); }

if (s.hasNext(SENSOR_PAT)) { return parseSensorNode(s);}

if (s.hasNext(AND_PAT)) { return parseAndNode(s); }

if (s.hasNext(OR_PAT)) { return parseOrNode(s); }

if (s.hasNext(NOT_PAT)) { return parseNotNode(s); }

fail("not a Boolean expression", s);

return null;

}

Bool ::= Sensor | And | Or | Not

10/03/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 69

Extending the language 2: the parse…. methods: parseAnd

public BoolNode parseAnd(Scanner s) {
List<BoolNode> conjuncts = new ArrayList<BoolNode>();

require(AND_PAT, "Expecting 'and'", s);

require(OPEN_PAT, "Missing '('", s);

conjuncts.add(parseBool(s));

do {

require (COMMA_PAT, "Missing ','", s);

conjuncts.add(parseBool(s));

} while (!s.hasNext(CLOSE_PAT));

require(CLOSE_PAT, "Missing ')'", s);

return new AndNode(conjuncts);

}

And ::= “and” “(” Bool [“,” Bool]+ “)”

Just like parseAdd, but
parseBool instead of
parseExpr

10/03/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 70

Summary: building a parser (for a "nice" grammar)

• interfaces for each category of node
• Different return types of the evaluate/execute method => different category

• classes for each node type (corresponding to each non-terminal)
• fields for the components and a constructor
• toString() to print out nicely (including the subcomponents); [StringBuilder to build up strings]
• evaluate() or execute() method, recursively called on the subcomponent nodes.

• methods to parse each non-terminal
• "choice" non-terminals: peek at next token and call appropriate parse method
• require(..) for each structural token (like "add" or ",")
• recursive calls for the components.
• loops if there are repeated components (need to work out when to stop the loop!)
• build and return the node

10/03/2024

12

© Peter Andreae and Xiaoying Gao

COMP261 # 71

Recursive Descent Parsing

• Recursive Descent Parsing works on LL(1) grammars:
• top-down (works down from the top of the parse tree, with expectations of what's next)
• deterministic, (always knows what choice to make next)
• one-token lookahead (bases choice on the next token only)
• left-to-right.

• When can the LL(1) conditions fail? Can we fix it?
• Two options start with the same token

• May be able to fix the grammar by "left factoring"
• Some grammars are ambiguous - multiple possible parse trees.

• May be able to force "right-recursion" to make it deterministic
• May be able to change grammar to respect operator precedence (eg ‘BEDMAS’)
 it’s tricky : there’s lots more to grammars

10/03/2024

13

© Peter Andreae and Xiaoying Gao

COMP261 # 72

4 example grammars (or bits of) that “fail” LL(1)

• CMD := FILE “delete” “;” | FILE “copy” “;”

• IFSTMT ::= “if” “(“ COND “)” STMT | “if” “(“ CONT “)” STMT “else” STMT

• LIST ::= id | LIST “,” LIST

• E ::= number | E “+” E | E “–” E | E “∗” E | E “/” E

All these fail LL(1). The last two are also ambiguous.

72

10/03/2024

14

© Peter Andreae and Xiaoying Gao

COMP261 # 73

Fixing the unclear choices: Factoring

CMD := FILE “delete” “;” | FILE “copy” “;”

IFSTMT ::= “if” “(“ COND “)” STMT | “if” “(“ COND “)” STMT “else” STMT

• Factor out the common first part:

CMD := FILE OP
OP := “delete” “;”| “copy” “;”

IFSTMT ::= “if” “(“ COND “)” STMT

RESTIF ::= “else” STMT | “”

10/03/2024

15

© Peter Andreae and Xiaoying Gao

COMP261 # 74

ParseIfStmt code.

public Node parseIfStmt(Scanner s) {

require(IF_PAT, “Missing ‘if’”, s);

require(LEFT_PAT, “Missing ‘(‘”, s);

BooleanNode cond = parseBoolean(s);

require(RIGHT_PAT, “Missing ‘(‘”, s);

ProgramNode thenPart = parseStmt(s);

ProgramNode elsePart = parseRestIf(s);

return new IfNode(cond, thenPart, elsePart);
}

public Node parseRestIf(Scanner s) {
if (s.hasNext(ELSE_PAT)) { s.next(); return parseStmt(s);}
else { return null; }

}

10/03/2024

16

© Peter Andreae and Xiaoying Gao

COMP261 # 75

Ambiguous grammars

• LIST ::= id | LIST “,” LIST
a, b, c, d, e, f, g, h

L L L L L L

L L L

L L

L

"," ","

L L

L

"," "," "," "," ",""a" "b" "c" "d" "e" "f" "g" "h"

L

"a"

L L L L L

L

L

L

L

L

L

"," ","

L L

L

"," "," "," "," ",""b" "c" "d" "e" "f" "g" "h"

10/03/2024

17

© Peter Andreae and Xiaoying Gao

COMP261 # 76

Fixing ambiguous grammars (a)

Force left recursion:
LIST ::= id | LIST “,” id

Now it is unambiguous!
BUT

We can't tell which option to use!

"a"

L

L

L

L

L

L

"," ","

L

"," "," "," "," ",""b" "c" "d" "e" "f" "g" "h"

L

10/03/2024

18

© Peter Andreae and Xiaoying Gao

COMP261 # 77

Fixing ambiguous grammars (a)

Force right recursion:
LIST ::= id | id “,” LIST

Factoring solves the choice:
LIST ::= id RESTLIST
RESTLIST ::= “,” LIST | “”

Use same coding trick
to not make RESTLIST nodes

"a"

L

L

L

L

L

L

"," ","

L

"," "," "," "," ",""b" "c" "d" "e" "f" "g" "h"

L

10/03/2024

19

© Peter Andreae and Xiaoying Gao

COMP261 # 78

Ambiguous Grammars

Grammar:
E ::= number | E “+” E | E “–” E | E “∗” E | E “/” E

Text: 65 * 74 – 68 + 25 * 5 / 3 + 16

E E E E E E E

E E E

E E

E

10/03/2024

20

© Peter Andreae and Xiaoying Gao

COMP261 # 79

Possible Parses

Grammar:
E ::= number | E “+” E | E “–” E | E “∗” E | E “/” E

65 * 74 – 68 + 25 * 5 / 3 + 16

E E E E E E E

E

E

E

E

E

E Left recursion

This is what 4-function
calculators do!

10/03/2024

21

© Peter Andreae and Xiaoying Gao

COMP261 # 80

Possible Parses

Grammar:
E ::= number | E “+” E | E “–” E | E “∗” E | E “/” E

65 * 74 – 68 + 25 * 5 / 3 + 16

E E E E E E E

E

E

E

E

E

E
Right recursion

Forces evaluation
from right to left!

10/03/2024

22

© Peter Andreae and Xiaoying Gao

COMP261 # 81

Possible Parses

Grammar:
E ::= number | E “+” E | E “–” E | E “∗” E | E “/” E

65 * 74 – 68 + 25 * 5 / 3 + 16

E E E E E E E

E

E

E
E

E

E

This is consistent
with the BEDMAS
rule for arithmetic,

But it is somewhat
left recursive!

10/03/2024

23

© Peter Andreae and Xiaoying Gao

COMP261 # 82

Fixing Ambiguous Grammars (b)

• Use Operator Precedence & Right Recursion to resolve ambiguity.

EXPR ::= TERM | TERM “+” EXPR | TERM “–” EXPR
TERM ::= FACTOR | FACTOR “∗” TERM | FACTOR “/” TERM
FACTOR ::= number | “(” EXPR “)”

65 * 74 – 68 + 25 * 5 / 3 + 16

T T

E

E

E

T

T

E

T

T T

Right recursion

Three "levels" of
non-terminals forces
BEDMAS operator
precedence

10/03/2024

24

© Peter Andreae and Xiaoying Gao

COMP261 # 83

Also need to factor the rules

EXPR ::= TERM | TERM “+” EXPR | TERM “–” EXPR

TERM ::= FACTOR | FACTOR “∗” TERM | FACTOR “/” TERM

FACTOR ::= number | “(” EXPR “)”

• Factor:

EXPR ::= TERM RESTOFEXPR
RESTOFEXPR ::= “+” EXPR | “–” EXPR | ∈

TERM ::= number RESTOFTERM

RESTOFTERM ::= “∗” TERM | “/” TERM | ∈

FACTOR ::= number | “(” EXPR “)”

• Transformations such as these can often turn a problematic grammar into a
tractable grammar, but not always!!

∈ means
“empty string”

Problem: all options
start the same way

Which should we
choose?

