
15/04/2024

1

© Peter Andreae and Xiaoying Gao

COMP261 # 62

Admin

• In person marking this week
• CO241
• Signed up tutorial time
• Check the announcement about priority, overflow

• Term test this Thursday
• No regular expression
• Front page

• Adjacency Matrix and Adjacency List   [15]
• Shortest Paths  [15]                     no code 
• Connected components [10]       with pseudocode
• Articulation Points [10]                with pseudocode

• Previous exams
• 2021, 2019 for articulation points; 



15/04/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 63

Kosuraja's Algorithm: Strongly Connected Components

Kosuraja(graph):
for each node in graph: 

node.component ← -1 // initialize nodes to not be in a component
componentNum ← 0

nodeList ← empty list;     

visited ← empty set

for each node in graph:  
if node is not visited then

ForwardVisit(node, nodeList, visited) // traverse graph from node forward along edges,
// adding nodes to nodeList in post-order

for each node in nodeList in reverse order:  
if node.component = -1 then

BackwardVisit(node, componentNum) // traverse graph from node backward along edges
componentNum++ // marking nodes with the component number



15/04/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 64

Kosuraja's Algorithm: Strongly Connected Components

// Search forward from node, putting node on nodeList after visiting everything it can get to.

ForwardVisit(node, nodeList, visited)
if node is not in visited then

add node to visited.
for each neighbour in node.outNeighbours:

ForwardVisit(neighbour, nodeList, visited)
add node to nodeList. 

// Search backwards from node, marking all the nodes than can get to it as the same component

BackwardVisit(node, componentNum) 
if node.component = -1 then

node.component ← componentNum

for each backNeighbour in node.inNeighbours:
BackwardVisit(backNeighbour, componentNum).



15/04/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 65

Kosuraja's Algorithm



15/04/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 66

Kosuraja's Algorithm



15/04/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 67

Kosuraja's Algorithm

A

PE D C

B S R

Q T

NodeList:                                                                                                   

U



15/04/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 68

Articulation points

• This graph is connected, but is it “fragile”?  
Would deleting one node disconnect it?

• Articulation point: node whose removal would disconnect part of the graph.
(for undirected graphs   - articulation points in directed graphs are a bit more complex)

A

Z

FF

C

M

N
B

Y

BB

P

DD

GG

AA

R

F

G

J

L

EE

CC

Q

O

V

D

T

H

WE

X

I

U

K



15/04/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 69

Articulation Points: a bad algorithm

ArticulationPoints(graph):
aPoints ← empty set,   
for each node  in graph 

visited ← empty set
add node  to visited
Traverse(first neighbour of node, visited)
for each neighbour  of node  

if neighbour is not visited then
add node to aPoints

return aPoints

Traverse (node, visited ):
if node not in visited  then

add node to visited 
for each neighbour of node

Traverse(neighbour, visited )

Take each node out in turn, 
and  test for connectedness



15/04/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 70

Why is it bad?

• Cost of Traverse:    O(E)      = O(N2) for very dense graphs

• Cost of Algorithm:   O(NE)    = O(N3) for very dense graphs

• Why do we have to traverse the whole graph n times, once for each node?

• Why not do a single traversal, identifying all articulation points as we go? 



15/04/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 71

Articulation Points.

• What are we looking for?

Nodes in a graph that separate
the graph into two groups, so that
all paths from nodes in one group 
to nodes in the other group 
go through the node.

S

T

QN

W

P

M

U

R



15/04/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 72

Articulation points: DFS

• Use depth first search, keeping track of 
the depth of each node in the search 
tree

• At root:
if there is >1  edge to an unvisited node, 
then root is an articulation point.

At Root node

B

C

D

A 

F

E



15/04/2024

12

© Peter Andreae and Xiaoying Gao

COMP261 # 73

Articulation points: DFS

• Use depth first search, keeping track of 
the depth of each node in the search 
tree

• At root:
if there is >1  edge to an unvisited node, 
then root is an articulation point.

• At lower nodes:
If there is a subtree that has no edge up to an 

ancestor node  
then node is an articulation point.

Non root:

Q

T
M

P

H

G

L

J

R

S

N



15/04/2024

13

© Peter Andreae and Xiaoying Gao

COMP261 # 74

Articulation Points

• Key ideas of algorithm:

• Record depth of nodes as you search

• From each recursive search of a subtree, return the highest point (ie, minimum depth) that the 
subtree can "reach back" to.

• Compare the "reach back" of each subtree to depth of this node

= depth of node   node is an articulation point 

• Can use depth to record whether visited



15/04/2024

14

© Peter Andreae and Xiaoying Gao

COMP261 # 75

Articulation points: Pseudo-code 

ArticulationPoints(graph):
foreach node in graph: 

node.depth ← -1, 
aPoints ← { } // the set of articulation points to return
numSubtrees ← 0
start ← first node in graph.
start.depth ← 0,  // visit start
foreach neighbour  of start 

if neighbour.depth = -1 then // not visited yet
recArtPts( neighbour, 1, start, aPoints) 
numSubtrees ++

if numSubtrees > 1   then 
add start to aPoints

return aPoints

B

C

D

A 

E

Can store depth of nodes in the nodes 
or in a Map<Node, int>



15/04/2024

15

© Peter Andreae and Xiaoying Gao

COMP261 # 76

Articulation points: DFS

recArtPts(node, depth, fromNode, aPoints):
node.depth ← depth,  // visit node
reachBack ← depth, // how far up this node can reach
foreach neighbour  of node:

if neighbour = fromNode then  continue 
else if neighbour.depth  -1 then // already visited

reachBack ← min(neighbour.depth, reachBack)
else

childReach ← recArtPts(neighbour, depth +1, node, aPoints)
if childReach >= depth  then // subtree doesn't reach past this node.

add node to aPoints
reachBack ← min(childReach, reachBack )

return  reachBack

M

P

L

J



15/04/2024

16

© Peter Andreae and Xiaoying Gao

COMP261 # 77

Articulation points: DFS

Q

T
M

P

H

G

L

J

R

S

N

2

3

4

3



15/04/2024

17

© Peter Andreae and Xiaoying Gao

COMP261 # 78

Exercise

• 2021, graphs, (c)

• 2019 exam
• Q2: calculate depth and reachback for each node
• Identify the articulation points

A


