Example of Dijkstra's Algorithm

fringe
<length, node, prev>

Visited: \bigcirc
Backpointers: <dist, node, prev>

What's the cost of Dijkstra's algorithm?

If a graph has N nodes and E edges:

Identify the most expensive line:
while fringe is not empty:
for each edge out of node to a neighbour:
add <neighbour, edge, length-to-neighbour〉 to fringe

How many times might we do that line?
What is the cost of that line?

Problem with Dijkstra's Algorithm

- If we want all shortest paths: Dijkstra is best.
- Greedy: never backtracks and every iteration adds a path to the answer
- If we want the shortest path to a goal: Dijkstra is wasteful:
- spends time building paths to useless nodes, not on the way to the goal:
- Need to combine:
- length of path to here, AND
- estimate of remaining distance
- Biases the choice towards nodes that are on the way to the goal.

A* Search.

- A* search is the standard good algorithm for finding shortest paths to a goal.
- Nodes on the fringe are ordered by estimated total path length through this node:
$=\underbrace{\text { length of path from start to this node }}+\underbrace{\text { estimate of remaining distance. }}$;
same as Djikstra's)
new: (same as first heuristic)
- Fringe items must have
- node,
- previous node or edge (for the backpointers)
- distance to node from start (needed to compute the distance to the neighbours)
- total estimated path length

Finding the Shortest Path（ A^{*} ）

FindShortestPath（start，goal）：
fringe \leftarrow PriorityQueue of 〈node，edge，length－to－node，estimate－total－path〉 Ordered by estimate
backpointers \leftarrow Map of nodes to edges
put 〈start，null， 0 ，est（start，goal）〉 on the fringe．
while fringe is not empty：
〈node，edge，length－to－node，estimate－total－path〉 \leftarrow remove from fringe
if node is not visited：
visit node
put 〈node，edge〉 into backpointers
if node＝goal：
return ReconstructPath（start，goal，backpointers）／／see earlier slide
for each neigh－edge out of node to a neighbour：
if neighbour is not visited：
length－to－neighbour \leftarrow length－to－node + neigh－edge．length
estimate－total－path \leftarrow length－to－neighbour + est（neighbour，goal）
add 〈neighbour，neigh－edge，length－to－neighbour，estimate－total－path〉 to fringe

A* example.

Number next to node is estimate of remaining path length based on Euclidean distance (straight-line distance)

Number on edge is actual length of the edge.

Does A* Search always work?

- The path found for by A^{*} Search is the shortest path from the start node to the goal node if the following conditions are satisfied.

1. The estimated cost to goal is an underestimate - never greater than the true cost (the heuristic estimate must be "admissible")
2. When we take a node off the fringe, this must be the shortest path to that node from the start. (the heuristic estimate must be "consistent" or "monotonic")

- If the estimate doesn't satisfy these conditions, the A^{*} algorithm may break.

Admissable heuristics for A^{*}

- A heuristic estimate of the remaining path is admissible if it always underestimates the remaining cost
- overestimating will cause A^{*} to avoid the path, even though it is actually the best
- If it is not admissible, it may not find the shortest path:

Fringe: \square

Monotonic/Consistent heuristic for A*

- Admissible is not enough for A^{*} :

When we visit a node, must be the best path to a node

Fringe:

There is a slower, more complicated version of A^{*} that doesn't require a consistent heuristic
change est(E) to 120

- To be able to commit to visited nodes:
- estimated path length must not get less accurate as you get closer to the goal

$$
\text { dist-to- } X+\operatorname{est}(X) \leq \text { dist-to- } X+\text { edge- } X-Y+\operatorname{est}(Y)
$$

Y/est(Y)

- Consistent heuristic:

$$
\text { est }(X)-\operatorname{est}(Y) \leq \quad \text { edge- } X-Y
$$

A* heuristic

- Consistent heuristics can be hard to find (Euclidean distance to goal is consistent)
- If the estimate is admissible, but is not consistent, then:
\Rightarrow cannot commit to a node when we take it off the queue
\Rightarrow may need to revisit nodes
\Rightarrow no point in the visited set

Summary

- A* Search is more effective than Dijkstra's algorithm for 1-to-1 pathfinding
- Many real-world applications
- not just paths: e.g. search for optimal loading of a truck
- any optimisation problem where build up a solution as a series of steps, and the cost of the solution is the sum of the costs of the steps.
- Conditions for success
- Admissible heuristic: never overestimate
- Consistent/Monotonic heuristic: $\mathrm{f}=\mathrm{g}+\mathrm{h}$ is monotonically non-decreasing
- The key is to design heuristic function to meet the conditions

