
26/03/2024

1

© Peter Andreae and Xiaoying Gao

COMP261 # 43

Example of Dijkstra’s Algorithm

Visited:
Backpointers: <dist, node, prev>

A

B

C

E

D

J

H

G

K

F

5

1
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

<0,G,->

<6,B,G>

<10,H,G>

<13,K,H>

<25,F,G>

<6,B,G>

<8,J,G>

<10,H,G>

<14,K,G>

<25,F,G>

<8,J,G>

<10,H,G>

<14,K,G>

<25,F,G>

<9,J,B>

<11,C,B>

<13,A,B>

<10,H,G>

<14,K,G>

<25,F,G>

<9,J,B>

<11,C,B>

<13,A,B>

<12,A,J>

<14,K,J>

<17,C,J>

<8,J,G>

<14,K,G>

<25,F,G>

<11,C,B>

<13,A,B>

<12,A,J>

<14,K,J>

<17,C,J>

<13,K,H>

<20,A,H>

<14,K,G>

<25,F,G>

<13,A,B>

<12,A,J>

<14,K,J>

<17,C,J>

<13,K,H>

<20,A,H>

<12,D,C>

<13,K,C>

<14,K,G>

<25,F,G>

<13,A,B>

<14,K,J>

<17,C,J>

<13,K,H>

<20,A,H>

<13,K,C>

<13,K,D>

<16,E,D>

<12,A,J>
<11,C,B>

<12,D,C>

<14,K,G>

<25,F,G>

<13,A,B>

<14,K,J>

<17,C,J>

<13,K,H>

<20,A,H>

<12,D,C>

<13,K,C>

<14,K,G>

<25,F,G>

<14,K,J>

<17,C,J>

<20,A,H>

<13,K,C>

<13,K,D>

<16,E,D>

<31,F,K>

<25,F,G>

<17,C,J>

<31,F,K>

<39,F,E>

<31,F,K>

<39,F,E>

<16,E,D>

<0,G,->

start

fringe
<length, node, prev>

26/03/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 44

What's the cost of Dijkstra's algorithm?

If a graph has N nodes and E edges:

Identify the most expensive line:

while fringe is not empty:
:

for each edge out of node to a neighbour:
:

add neighbour, edge, length-to-neighbour to fringe

How many times might we do that line?
What is the cost of that line?

26/03/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 45

Problem with Dijkstra's Algorithm

• If we want all shortest paths: Dijkstra is best.
• Greedy: never backtracks and every iteration adds a path to the answer

• If we want the shortest path to a goal: Dijkstra is wasteful:
• spends time building paths to useless nodes, not on the way to the goal:

• Need to combine:
• length of path to here, AND
• estimate of remaining distance

• Biases the choice towards
nodes that are on the way
to the goal.

26/03/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 46

A* Search.

• A* search is the standard good algorithm for finding shortest paths to a goal.

• Nodes on the fringe are ordered by estimated total path length through this node:
= length of path from start to this node + estimate of remaining distance.

same as Djikstra's) new: (same as first heuristic)

• Fringe items must have
• node,
• previous node or edge (for the backpointers)
• distance to node from start (needed to compute the distance to the neighbours)
• total estimated path length

26/03/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 47

Finding the Shortest Path (A*)

FindShortestPath(start, goal):
fringe ← PriorityQueue of node, edge, length-to-node, estimate-total-path Ordered by estimate
backpointers ← Map of nodes to edges
put start, null, 0, est(start,goal) on the fringe. .
while fringe is not empty:

node, edge, length-to-node, estimate-total-path ← remove from fringe
if node is not visited:

visit node
put node, edge into backpointers
if node=goal:

return ReconstructPath(start, goal, backpointers) // see earlier slide
for each neigh-edge out of node to a neighbour:

if neighbour is not visited:
length-to-neighbour ← length-to-node + neigh-edge.length
estimate-total-path ← length-to-neighbour + est(neighbour, goal)
add neighbour, neigh-edge, length-to-neighbour, estimate-total-path to fringe

26/03/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 48

Number next to node is estimate
of remaining path length
based on Euclidean distance
(straight-line distance)

Number on edge is actual
length of the edge.

Only show path-to-node and
est-total-path in the fringe items

A* example.

F
/15

C
/25

T
/26

S

H
/22

L
/17

Q
/20

K
/5

I
/13

J
/11

E
/6

P
/17

B
/15

M
/11

D
/11

R
/6

G

X
/8

12

8
14

35

6

7

12

9
8

9

10

7

6

9

10

8

13

10

18

10

12

8

N
/31 5

8

26/03/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 49

Does A* Search always work?

• The path found for by A* Search is the shortest path from the start node to the goal
node if the following conditions are satisfied.

1. The estimated cost to goal is an underestimate - never greater than the true cost
(the heuristic estimate must be "admissible")

2. When we take a node off the fringe, this must be the shortest path to that node from the start.
(the heuristic estimate must be "consistent" or "monotonic")

• If the estimate doesn't satisfy these conditions, the A* algorithm may break.

49

26/03/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 50

Admissable heuristics for A*

• A heuristic estimate of the remaining path is admissible if
it always underestimates the remaining cost
• overestimating will cause A* to avoid the path, even though it is actually the best

• If it is not admissible, it may not find the shortest path:

C
/40

B
/25

S
/30

T
/25

G

G
/710

1010

10

10

10
E

/15

10

Fringe:

estimate

26/03/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 51

Monotonic/Consistent heuristic for A*

• Admissible is not enough for A*:
When we visit a node, must be the best path to a node

• To be able to commit to visited nodes:
• estimated path length must not get less accurate as you get closer to the goal

dist-to-X + est(X) ≤ dist-to-X + edge-X-Y + est(Y)

• Consistent heuristic:
est(X) - est(Y) ≤ edge-X-Y

C/100

B /10

S /20

G
10

55

10

E /20

200

X/est(X)
edgeXY

Y/est(Y)
distX

There is a slower,
more complicated
version of A* that
doesn't require a
consistent heuristic

change est(E) to 120

Fringe:

26/03/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 52

A* heuristic

• Consistent heuristics can be hard to find
(Euclidean distance to goal is consistent)

• If the estimate is admissible, but is not consistent,
then:
⇒ cannot commit to a node when we take it off the queue

⇒ may need to revisit nodes

⇒ no point in the visited set

26/03/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 53

Summary

• A* Search is more effective than Dijkstra’s algorithm for 1-to-1 pathfinding
• Many real-world applications

• not just paths: e.g. search for optimal loading of a truck
• any optimisation problem where build up a solution as a series of steps, and the cost of the

solution is the sum of the costs of the steps.

• Conditions for success
• Admissible heuristic: never overestimate
• Consistent/Monotonic heuristic: f=g+h is monotonically non-decreasing
• The key is to design heuristic function to meet the conditions

53

