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Example of Dijkstra’s Algorithm

Visited:
Backpointers:  <dist, node, prev>
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What's the cost of Dijkstra's algorithm?

If a graph has N nodes and E edges:

Identify the most expensive line:

while fringe is not empty:
:

for each edge out of node to a neighbour:
:

add neighbour, edge,  length-to-neighbour to fringe

How many times might we do that line?
What is the cost of that line?
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Problem with Dijkstra's Algorithm

• If we want all shortest paths: Dijkstra is best.
• Greedy:  never backtracks and every iteration adds a path to the answer

• If we want the shortest path to a goal:  Dijkstra is wasteful:
• spends time building paths to useless nodes, not on the way to the goal: 

• Need to combine:
• length of path to here, AND
• estimate of remaining distance

• Biases the choice towards
nodes that are on the way
to the goal.
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A* Search.

• A* search is the standard good algorithm for finding shortest paths to a goal.

• Nodes on the fringe are ordered by estimated total path length through this node:
=  length of path from start to this node  +  estimate of remaining distance.

same as Djikstra's) new: (same as first heuristic)

• Fringe items must have 
• node,
• previous node or edge (for the backpointers)
• distance to node from start (needed to compute the distance to the neighbours)
• total estimated path length
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Finding the Shortest Path  (A*)

FindShortestPath(start, goal):
fringe  ←   PriorityQueue of  node, edge, length-to-node, estimate-total-path Ordered by estimate
backpointers ← Map of nodes to edges
put start, null, 0, est(start,goal) on the fringe. . 
while fringe is not empty:

node, edge, length-to-node, estimate-total-path ←  remove from fringe        
if node is not visited:

visit node
put node, edge into backpointers
if node=goal:  

return ReconstructPath(start, goal, backpointers) // see earlier slide
for each neigh-edge out of node to a neighbour:

if neighbour is not visited:
length-to-neighbour ← length-to-node +  neigh-edge.length
estimate-total-path ← length-to-neighbour +  est(neighbour, goal)
add neighbour, neigh-edge,  length-to-neighbour, estimate-total-path to fringe
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Number next to node is estimate
of remaining path length
based on Euclidean distance
(straight-line distance)

Number on edge is actual 
length of the edge.

Only show path-to-node and
est-total-path in the fringe items

A*  example.
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Does A* Search always work?

• The path found for by A* Search is the shortest path from the start node to the goal 
node if the following conditions are satisfied.

1. The estimated cost to goal is an underestimate - never greater than the true cost 
(the heuristic estimate must be "admissible")

2. When we take a node off the fringe, this must be the shortest path to that node from the start.  
(the heuristic estimate must be "consistent" or "monotonic")

• If the estimate doesn't satisfy these conditions, the A* algorithm may break.

49
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Admissable heuristics for A*

• A heuristic estimate of the remaining path is admissible if
it always underestimates the remaining cost
• overestimating will cause A* to avoid the path, even though it is actually the best

• If it is not admissible, it may not find the shortest path:
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Monotonic/Consistent heuristic for A*  

• Admissible is not enough for A*:
When we visit a node, must be the best path to a node

• To be able to commit to visited nodes:
• estimated path length must not get less accurate as you get closer to the goal

dist-to-X + est(X)  ≤   dist-to-X +  edge-X-Y + est(Y)    

• Consistent heuristic:
est(X) - est(Y) ≤   edge-X-Y
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There is a slower, 
more complicated 
version of A* that 
doesn't require a 
consistent heuristic

change est(E) to 120

Fringe:
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A* heuristic

• Consistent heuristics can be hard to find
(Euclidean distance to goal is consistent)

• If the estimate is admissible, but is not consistent,
then:
⇒ cannot commit to a node when we take it off the queue

⇒ may need to revisit nodes

⇒ no point in the visited set 
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Summary

• A* Search is more effective than Dijkstra’s algorithm for 1-to-1 pathfinding
• Many real-world applications

• not just paths: e.g. search for optimal loading of a truck
• any optimisation problem where build up a solution as a series of steps, and the cost of the 

solution is the sum of the costs of the steps.

• Conditions for success
• Admissible heuristic: never overestimate
• Consistent/Monotonic heuristic: f=g+h is monotonically non-decreasing
• The key is to design heuristic function to meet the conditions
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