
21/03/2024

1

© Peter Andreae and Xiaoying Gao

COMP261 # 19

Admin

• Assign 1 due tomorrow 12noon

• All classes and interfaces in Parser.java
• Do not use packages
• Test it using all our testing classes: ParserTester1&2, ExecuteTester
• Report.txt for any partially completed stages

• I hate Plagiarism
• Do not copy and paste code
• Do not give your code to anybody

21/03/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 20

Adjacency List, Directed Graph
Two lists:

out edges
in edges

0 8

1 8

2

3

4

5

1 5

0 6

2 3

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

A

B

C

D
E F

G

H

I

J

8

9

Outgoing edges
Incoming edges

21/03/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 21

Object Oriented representation

• Forget the arrays.
• Don't use integers to represent nodes.

• Graph has a Collection of Nodes:
private Collection<Node> allNodes;

And maybe a Collection of Edges:
private Collection<Edge> allEdges;

Graph could contain a HashMap from Pairs of
Nodes to Edges:
HashMap<Pair<Node,Node>,Edge> allEdges;

• Big linked structure of Objects
• Collections may be Lists or Sets

• Nodes contain collection of Edges
private Collection<Edge> edges;

or two if directed graph:
private Collection<Edge> outgoing;
private Collection<Edge> incoming;

• Edges contain two Nodes
private Node from;
private Node to;

21/03/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 22

A Linked Graph Structure.
Nodes:

21/03/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 23

A Linked Graph Structure.
Nodes:

No information about the edges: neighbours are the nodes

21/03/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 24

A Linked Graph Structure.
Nodes: Undirected Edge objects with two nodes,

node neighbours are edges

21/03/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 25

A Linked Graph Structure.
Nodes: Directed Edge objects with two nodes,

nodes have out-neighbours
and in-neighbours

21/03/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 26

A Linked Graph Structure.
Nodes: Can also have a collection

of all Edge objects

Edges:

21/03/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 27

Wellington Public Transport Map

• Complex Graph structure
• directed graph
• multi-graph
• lots of information on nodes and edges
• multiple tasks.
• Additional structure (“lines"), kinds of edges.

• Assignment:
• build the graph structure edges and neighbours
• Find shortest paths
• Find strongly connected subgraphs
• Find "articulation points"

21/03/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 28

Graph Algorithms.

• Many graph problems require searching through the graph, following edges.
• Simplest: search a graph from a node, doing something to each node you reach.

• Key issue:
• Must keep track of the nodes you have

visited, so you don't visit them again.

• Key question: what order to search in?
• Depth first search
• Breadth first search
• Priority first search (search the most promising options)

A

B

C

E

D

I

H

G

J

F

5

1
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

21/03/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 29

Basic Graph Traversal Algorithm 1: Recursive DFS

TraverseGraph(node):
if node is not visited:

visit the node
process the node
for each neighbour of node:

if neighbour is not visited:
TraverseGraph(neighbour)

• Recording visited:
• mark the node [not a good option]
• keep a Set of visited nodes.

• Works on undirected graphs and on directed graphs.

21/03/2024

12

© Peter Andreae and Xiaoying Gao

COMP261 # 30

Basic Graph Traversal Algorithm 2: Iterative

TraverseGraph(startNode):
fringe ← Collection of nodes Stack, Queue,

put startNode on the fringe.
while fringe is not empty:

node ← remove from fringe
if node is not visited:

visit node
process node
for each neighbour of node:

if neighbour is not visited:
add neighbour to fringe

• Fringe is the collection of nodes that have been "seen" but not yet processed
• Stack/Queue determines the order: DFS or BFS

21/03/2024

13

© Peter Andreae and Xiaoying Gao

COMP261 # 31

(Java code for the pseudocode algorithm)

public void traverseGraph(Node start){
Set<Node> visited = new HashSet<Node>();
Queue<Node> fringe = new ArrayDeque<Node>(); (or Stack, or PriorityQueue)
fringe.offer(start);
while (!fringe.isEmpty()){

Node node = fringe.poll();
if (!visited.contains(node)) {

visited.add(node);
process(node);
for (Node neighbour : node.getNeighbours()){

if (!visited.contains(neighbour)){
fringe.offer(neighbour);

}
}

}
}

}

21/03/2024

14

© Peter Andreae and Xiaoying Gao

COMP261 # 32

Iterative Traversal: Stack

Visited:

A

B

C

E

D

I

H

G

J

F

5

1
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

21/03/2024

15

© Peter Andreae and Xiaoying Gao

COMP261 # 33

Iterative Traversal: Queue

Visited:

A

B

C

E

D

I

H

G

J

F

5

1
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

21/03/2024

16

© Peter Andreae and Xiaoying Gao

COMP261 # 34

Finding a path:

• Suppose we want to find a path from start to a goal?
• Assume graph is of physical places,

• each node has a location.
• each edge has the actual path length

• Which order should we choose?
• DFS?
• BFS?
• ??

A

B

C

E

D

I

H

G

J

F

5

1
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

21/03/2024

17

© Peter Andreae and Xiaoying Gao

COMP261 # 35

Iterative traversal: finding a path: version 1

FindPath(start, goal):
fringe ← PriorityQueue of nodes Ordered by shortest straight-line distance from node to goal
put start on the fringe. = estimate of how much further to go.
while fringe is not empty:

node ← remove from fringe Always removes the node on the fringe closest to the goal
if node is not visited:

visit node
if node=goal:

return the path to node How?
for each neighbour of node:

if neighbour is not visited:
add neighbour to fringe

Problems:
Will it find the shortest path?
How do we return the path?

21/03/2024

18

© Peter Andreae and Xiaoying Gao

COMP261 # 36

Iterative search, keeping track of the path

• When we visit a node, we need to
record how we got to it ("backpointers")

• Use a Map from node to previous node
• But how do we know where we came

from when we take the node off the
fringe?

• The fringe needs to contain more than just
the node:
• the node,
• the node we came from,
• …. the edge we came along
• …. other information to help decide

A

B

C

E

D

I

H

G

J

F

5

8
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

21/03/2024

19

© Peter Andreae and Xiaoying Gao

COMP261 # 37

Iterative traversal: finding a path: Storing paths.

FindPath(start, goal):
fringe ← PriorityQueue of node, prev, edge… Ordered by shortest node-goal distance .
backpointers ← Map of nodes to previous node or Map of nodes to edges
put start,null,null on the fringe.
while fringe is not empty:

node, prev, edge… ← remove from fringe
if node is not visited:

visit node
put node, prev into backpointers
if node=goal:

return backpointers Can reconstruct path to goal from the backpointers
for each edge out of node to a neighbour:

if neighbour is not visited:
add neighbour, node, edge… to fringe

Problems:
Will it find the shortest path?

If edges are directed, and contain
the from-node and to-node,
then we may only need to put the
edge on the fringe!

21/03/2024

20

© Peter Andreae and Xiaoying Gao

COMP261 # 38

Paths from BackPointers

• Backpointers:

ReconstructPath(start, goal, backpointers)
path ← List of nodes
add goal to path
node ← goal
while node ≠ start

node ← backpointers.get(node)
add node to path

reverse path

ReconstructPath(start, goal, backpointers)
path ← List of edges
node ← goal
do

edge ← backpointers.get(node)
add edge to path
node ← edge.from

until node = start

A

B

C

E

D

I

H

G

J

F

5

8
3

7

25

9

6

2

3

23

1

18

4

17

10 8

4
10

14

6

Map:node→prev

Map:node→edge

