Adjacency Matrix

COMP261 \# 6

- Use integers 0..n-1 to represent nodes
- Use an array to represent info about nodes
private Node[] nodes;

- Use a 2D matrix to represent the graph private Edge[][] edges;
- Number of rows and columns = number of nodes
- $M_{i j}=1$ if there is an edge from node i to node j
- $M_{i j}=0$ (blank) otherwise
- What about edges with labels (lengths/weights/capacities/etc)?
- Cannot deal with multi-graphs.

Adjacency List

- Use integers 0..n-1 to represent nodes, and array to represent info about nodes:
private Node[] nodes;
- Use an array of arrays/lists to represent the graph private int[][] neighbours; or private List<Integer>[] neighbours;

-What about edge information?
Lists could store edge objects containing
- nodes at each end
- length/capacity/labels on edges
private List<Edge>[] edges;

0	A	0	1	7	8				
1	B	1	0	2	6		8		
2	C	2	1	3	8		9		
3	D	3	-2	4	9				
4	E	4	3	5	8				
5	F	5	4	6	9				
6	G	6	1	5	7		8	9	
7	H	7	0	6	9				
8	I	8	0	1	2	4	4	6	9
9	J	9	-2	3	5		6	7	8

Time Complexity of Adjacency List,

COMP261 \# 10

- Assume simple graph: at most one edge between each pair of nodes, with N nodes and E directed edges, assume $N<E<2 N^{2}$
- Row i: a list of outgoing node neighbours of node i
- Find all nodes
- Find all edges
- Find all edges of a node
- Find all node neighbours
- Check if there is an edge between two nodes

Adjacency List, Directed Graph

COMP261 \# 12

Same data structure

- Use integers 0..n-1 to represent nodes, and array to represent info about nodes: private Node[] nodes;
- Use an array of arrays/lists to represent the graph
 private int[][] outNeighbours;
or private List<Integer>[] outNeighbours; private List<Edge>[] outEdges;

0	A
1	B
2	C
3	D
4	E
	F
	G
	H
	1
	J

[^0]
Time Complexity of Adjacency List, Directed

- Assume simple graph: at most one edge between each pair of nodes, with N nodes and E directed edges, assume $N<E<2 N^{2}$
- If graph has a maximum in-degree and/or outdegree: $\Delta_{\text {in }}, \Delta_{\text {out }}, \Delta=\max \left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$
- (maximum number of neighbours)
- Find all nodes
- Find all edges
- Find all outgoing edges of a node
- Find all incoming edges of a node
- Find all outgoing node neighbours
- Find all incoming node neighbours
- Check if there is an edge between two nodes

$i^{\text {th }}$ list has the outgoing neighbours of node i

Time Complexity of Adjacency List, Directed

- Assume simple graph: at most one edge between each pair of nodes, with N nodes and E directed edges, assume $N<E<2 N^{2}$
- If graph has a maximum in-degree and/or outdegree: $\Delta_{\text {in }}, \Delta_{\text {out }}, \Delta=\max \left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$
- (maximum number of neighbours)
- Find all nodes $\mathrm{O}(\mathrm{N})$
- Find all edges $O(E)$
- Find all outgoing edges of a node $O(\Delta)$
- Find all incoming edges of a node $O(E)$
- Find all outgoing node neighbours $O(\Delta)$
- Find all incoming node neighbours $O(E)$
- Check if there is an edge between two nodes $O(E)$

$i^{\text {th }}$ list has the outgoing neighbours of node i

Adjacency List for Directed Graph

- Not efficient in finding incoming edges or neighbours of a node
- Solution: store two adjacency lists
private List<Edge>[] outEdges; private List<Edge>[] inEdges;

Time Complexity of Adjacency List

COMP261 \# 16

- Worse-case complexity of finding edge/node neighbours is $O(N)$, if the graph is fully connected.
- In practice, this complexity is much smaller
- Node degree "deg(node)": the number of outgoing (incoming) edges of a node
- Max degree of a graph $(\Delta=\max \{\operatorname{deg}(n o d e)\})$: the maximal number of neighbours of the nodes in the graph
- E.g.: an intersection connects at most four streets, $\Delta=4$
- Complexity of finding all outgoing/incoming neighbours
- $O(\Delta) \ll \boldsymbol{O}(N)$
- Almost O (1)

Time Complexity Comparison

- Assume simple graph: at most one edge between each pair of nodes, with N nodes and E directed edges, max degree of graph: $\Delta_{\text {in }}=\Delta_{\text {out }}=\Delta$
- Adjacency matrix: each entry stores an edge object
- Adjacency list: each node has list of edge objects or two lists, (outgoing and incoming) for directed graph

	Adjacency Matrix	Adjacency List	Edge List
Find all nodes	$O(N)$	$O(N)$	$O(\mathrm{E})$
Find all edges	$O\left(N^{2}\right)$	$O(\mathrm{E})$	$O(\mathrm{E})$
Find all outgoing edges of a node	$O(N)$	$O(\Delta)$	$O(\mathrm{E})$
Find all incoming edges of a node	$O(N)$	$O(\Delta)$	$O(\mathrm{E})$
Find all outgoing node neighbours of a node	$O(N)$	$O(\Delta)$	$O(\mathrm{E})$
Find all incoming node neighbours of a node	$O(N)$	$O(\Delta)$	$O(\mathrm{E})$
Check if there is an edge from u to v	$O(1)$	$O(\Delta)$	$O(\mathrm{E})$
Get next shortest edge	$O\left(N^{2}\right)$	$O(\mathrm{E})$	$O(\log (\mathrm{E}))$

- Adjacency list has better time unless checking edge from uto v is important.

Edge List:

- Array of Edges

	0	1	2	3	4	5	6	7	8	9	10	11								
$\begin{array}{r} \text { to } \\ \text { from } \end{array}$	0	0	0	1	1	2	2	2	3	3	4	5	5	5	6	7	7	8	9	9
	3	4	7	2	0	6	4	5	9	3	1	7	0	5	4	8	1	2	0	5
length	25	31	19	82	43	74	86	21	10	33	17	66	47	65	53	68	46	22	3	92

- Slow for almost everything, except finding the next shortest edge:

to	0	1	2	3	4	5	6	7	8	9	10	11								
	9	3	4	0	2	8	0	0	3	1	7	5	6	5	5	7	2	1	2	9
from	0	9	1	7	5	2	3	4	3	0	1	0	4	5	7	8	6	2	4	5
length	3	10	17	19	21	22	25	31	33	43	46	47	53	65	66	68	74	82	86	92

Object Oriented representation

COMP261 \# 19

- Forget the arrays.
- Don't use integers to represent nodes.
- Graph has a Collection of Nodes:
private Collection<Node> allNodes; And maybe a Collection of Edges:
private Collection<Edge> allEdges;

Graph could contain a HashMap from Pairs of Nodes to Edges:
HashMap<Pair<Node,Node>,Edge> allEdges;

- Big linked structure of Objects
- Collections may be Lists or Sets
- Nodes contain collection of Edges private Collection<Edge> edges; or two if directed graph: private Collection<Edge> outgoing; private Collection<Edge> incoming;
- Edges contain two Nodes
private Node from; private Node to;

A Linked Graph Structure.

No information about the edges: neighbours are the nodes

Wellington Public Transport Map

- Complex Graph structure
- directed graph
- multi-graph
- lots of information on nodes and edges
- multiple tasks.
- Additional structure ("lines"), kinds of edges.
- Assignment:
- build the graph structure edges and neighbours
- Find shortest paths
- Find strongly connected subgraphs
- Find "articulation points"

[^0]: | 0 | 1 | 1 | 7 | 8 |
 | :--- | :--- | :--- | :--- | :--- |
 | | - | 2 | 6 | |

