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Adjacency Matrix

• Use integers 0..n-1 to represent nodes
• Use an array to represent info about nodes

private Node[] nodes;

• Use a 2D matrix to represent the graph
private int[][] edges;
• Number of rows and columns = number of nodes
• 𝑀 = 1 if there is an edge from node i to node j
• 𝑀 = 0 (blank) otherwise

• What about edges with labels 
(lengths/weights/capacities/etc)?

• Cannot deal with multi-graphs. 6
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private Edge[][] edges;
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Adjacency List

• Use integers 0..n-1 to represent nodes, 
and array to represent info about nodes:

private Node[] nodes;

• Use an array of arrays/lists to represent the graph
private int[][] neighbours;    or
private List<Integer>[] neighbours;

• What about edge information?
Lists could store edge objects containing 

• nodes at each end
• length/capacity/labels on edges

private List<Edge>[] edges;
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Time Complexity of Adjacency List, 
• Assume simple graph: at most one edge between each pair of nodes, with 𝑁 nodes 

and E directed edges, assume 𝑁 < 𝐸 < 2𝑁2

• Row i: a list of outgoing node neighbours of node i

• Find all nodes

• Find all edges

• Find all edges of a node

• Find all node neighbours

• Check if there is an edge between two nodes
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Adjacency List, Directed Graph
Same data structure

• Use integers 0..n-1 to represent nodes, and
array to represent info about nodes:

private Node[] nodes;

• Use an array of arrays/lists to represent the graph
private int[][] outNeighbours;    or   
private List<Integer>[] outNeighbours;
private List<Edge>[] outEdges; 1 7 8
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Time Complexity of Adjacency List, Directed

• Assume simple graph: at most one edge between 
each pair of nodes, with 𝑁 nodes and E directed 
edges, assume 𝑁 < 𝐸 < 2𝑁2

• If graph has a maximum in-degree and/or out-
degree: Δ ,  Δ ,   Δ = max Δ ,  Δ

• (maximum number of neighbours)

• Find all nodes     

• Find all edges     

• Find all outgoing edges of a node   

• Find all incoming edges of a node    

• Find all outgoing node neighbours

• Find all incoming node neighbours

• Check if there is an edge between two nodes
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Time Complexity of Adjacency List, Directed

• Assume simple graph: at most one edge between 
each pair of nodes, with 𝑁 nodes and E directed 
edges, assume 𝑁 < 𝐸 < 2𝑁2

• If graph has a maximum in-degree and/or out-
degree: Δ ,  Δ ,   Δ = max Δ ,  Δ

• (maximum number of neighbours)

• Find all nodes     O(N)

• Find all edges     O(E)

• Find all outgoing edges of a node   O(Δ)

• Find all incoming edges of a node    O(E)

• Find all outgoing node neighbours O(Δ)

• Find all incoming node neighbours O(E)

• Check if there is an edge between two nodes O(E)
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Adjacency List for Directed Graph

• Not efficient in finding incoming edges or neighbours of a node
• Solution: store two adjacency lists

private List<Edge>[] outEdges;

private List<Edge>[] inEdges;

15
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Time Complexity of Adjacency List

• Worse-case complexity of finding edge/node neighbours is 𝑂(𝑁), if the graph is fully 
connected.

• In practice, this complexity is much smaller
• Node degree “𝑑𝑒𝑔(𝑛𝑜𝑑𝑒)”: the number of outgoing (incoming) edges of a node
• Max degree of a graph (Δ = max{deg (𝑛𝑜𝑑𝑒)}): the maximal number of neighbours

of the nodes in the graph 
• E.g.: an intersection connects at most four streets, Δ = 4

• Complexity of finding all outgoing/incoming neighbours
• 𝑶 𝚫 ≪ 𝑶(𝑵)

• Almost 𝑂 1

16
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Time Complexity Comparison
• Assume simple graph: at most one edge between each pair of nodes, 

with 𝑁 nodes and 𝐸 directed edges, max degree of graph: Δ = Δ = Δ

• Adjacency matrix: each entry stores an edge object

• Adjacency list: each node has list of edge objects
or two lists, (outgoing and incoming) for directed graph

• Adjacency list has better time unless checking edge from u to v is important.17

Adjacency Matrix Adjacency List Edge List

Find all nodes 𝑂(𝑁) 𝑂(𝑁) 𝑂(E)

Find all edges 𝑂(𝑁 ) 𝑂(E) 𝑂(E)

Find all outgoing edges of a node 𝑂(𝑁) 𝑂(Δ) 𝑂(E)

Find all incoming edges of a node 𝑂(𝑁) 𝑂(Δ) 𝑂(E)

Find all outgoing node neighbours of a node 𝑂(𝑁) 𝑂(Δ) 𝑂(E)

Find all incoming node neighbours of a node 𝑂(𝑁) 𝑂(Δ) 𝑂(E)

Check if there is an edge from u to v 𝑂(1) 𝑂(Δ) 𝑂(E)

Get next shortest edge 𝑂(𝑁 ) 𝑂(E) 𝑂(log(E))
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Edge List:

• Array of Edges

• Slow for almost everything, 
except finding the next shortest edge:
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Object Oriented representation

• Forget the arrays.
• Don't use integers to represent nodes.

• Graph has a Collection of Nodes: 
private Collection<Node> allNodes;

And maybe a Collection of Edges:
private Collection<Edge> allEdges;

Graph could contain a HashMap from Pairs of 
Nodes to Edges:
HashMap<Pair<Node,Node>,Edge> allEdges;

• Big linked structure of Objects
• Collections may be Lists or Sets

• Nodes contain collection of Edges
private Collection<Edge> edges;

or two if directed graph:
private Collection<Edge> outgoing;
private Collection<Edge> incoming;

• Edges contain two Nodes
private Node from;
private Node to;
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A Linked Graph Structure.
Nodes:
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A Linked Graph Structure.
Nodes:

No information about the edges: neighbours are the nodes
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A Linked Graph Structure.
Nodes: Undirected Edge objects with two nodes, 

node neighbours are edges
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A Linked Graph Structure.
Nodes: Directed Edge objects with two nodes, 

nodes have out-neighbours
and in-neighbours
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A Linked Graph Structure.
Nodes: Can also have a collection

of all Edge objects

Edges:
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Wellington Public Transport Map

• Complex Graph structure
• directed graph
• multi-graph
• lots of information on nodes and edges
• multiple tasks.
• Additional structure (“lines"), kinds of edges.

• Assignment:
• build the graph structure edges and neighbours
• Find shortest paths   
• Find strongly connected subgraphs
• Find "articulation points"


