
19/03/2024

1

© Peter Andreae and Xiaoying Gao

COMP261 # 6

Adjacency Matrix

• Use integers 0..n-1 to represent nodes
• Use an array to represent info about nodes

private Node[] nodes;

• Use a 2D matrix to represent the graph
private int[][] edges;
• Number of rows and columns = number of nodes
• 𝑀 = 1 if there is an edge from node i to node j
• 𝑀 = 0 (blank) otherwise

• What about edges with labels
(lengths/weights/capacities/etc)?

• Cannot deal with multi-graphs. 6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 11

1 1 1 1 1

1

1

1

1

1

1 2 3 4 5 6 70 8 9

1

1

1

1

1

1

1

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E
F

G

H

I

J

1
B

2
C

3
D

4
E

5
F

6
G

7
H

0
A

8
I

9
J

5

3

7

3

1

1

3

3

4

4

5

7

5

6

5

6

5

5

6 7 9 32

9 9 4 4 7

2

6

7

9

3

9

9

4

4

7

6

6

private Edge[][] edges;

Edge
object

19/03/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 9

Adjacency List

• Use integers 0..n-1 to represent nodes,
and array to represent info about nodes:

private Node[] nodes;

• Use an array of arrays/lists to represent the graph
private int[][] neighbours; or
private List<Integer>[] neighbours;

• What about edge information?
Lists could store edge objects containing

• nodes at each end
• length/capacity/labels on edges

private List<Edge>[] edges;

A

B

C

D
E F

G

H

I

J

1 7 8

0 2 6 8

1 3 8 9

2 4 9

3 5 8

4 6 9

1 5 7 8

0 6 9

60 1 2 4

9

9

2 3 5 6 7 8

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

19/03/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 10

Time Complexity of Adjacency List,
• Assume simple graph: at most one edge between each pair of nodes, with 𝑁 nodes

and E directed edges, assume 𝑁 < 𝐸 < 2𝑁2

• Row i: a list of outgoing node neighbours of node i

• Find all nodes

• Find all edges

• Find all edges of a node

• Find all node neighbours

• Check if there is an edge between two nodes

1 7 8

0 2 6 8

1 3 8 9

2 4 9

3 5 8

4 6 9

1 5 7 8

0 6 9

60 1 2 4

9

9

2 3 5 6 7 8

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

19/03/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 12

Adjacency List, Directed Graph
Same data structure

• Use integers 0..n-1 to represent nodes, and
array to represent info about nodes:

private Node[] nodes;

• Use an array of arrays/lists to represent the graph
private int[][] outNeighbours; or
private List<Integer>[] outNeighbours;
private List<Edge>[] outEdges; 1 7 8

2 6

3 9

4 9

5

6 9

7 8

1 2 4 9

6 7

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

A

B

C

D
E F

G

H

I

J

19/03/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 13

Time Complexity of Adjacency List, Directed

• Assume simple graph: at most one edge between
each pair of nodes, with 𝑁 nodes and E directed
edges, assume 𝑁 < 𝐸 < 2𝑁2

• If graph has a maximum in-degree and/or out-
degree: Δ , Δ , Δ = max Δ , Δ

• (maximum number of neighbours)

• Find all nodes

• Find all edges

• Find all outgoing edges of a node

• Find all incoming edges of a node

• Find all outgoing node neighbours

• Find all incoming node neighbours

• Check if there is an edge between two nodes

A

B

C

D
E F

G

H

I

J

i th list has the outgoing neighbours of node i

19/03/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 14

Time Complexity of Adjacency List, Directed

• Assume simple graph: at most one edge between
each pair of nodes, with 𝑁 nodes and E directed
edges, assume 𝑁 < 𝐸 < 2𝑁2

• If graph has a maximum in-degree and/or out-
degree: Δ , Δ , Δ = max Δ , Δ

• (maximum number of neighbours)

• Find all nodes O(N)

• Find all edges O(E)

• Find all outgoing edges of a node O(Δ)

• Find all incoming edges of a node O(E)

• Find all outgoing node neighbours O(Δ)

• Find all incoming node neighbours O(E)

• Check if there is an edge between two nodes O(E)

A

B

C

D
E F

G

H

I

J

i th list has the outgoing neighbours of node i

19/03/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 15

Adjacency List for Directed Graph

• Not efficient in finding incoming edges or neighbours of a node
• Solution: store two adjacency lists

private List<Edge>[] outEdges;

private List<Edge>[] inEdges;

15

19/03/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 16

Time Complexity of Adjacency List

• Worse-case complexity of finding edge/node neighbours is 𝑂(𝑁), if the graph is fully
connected.

• In practice, this complexity is much smaller
• Node degree “𝑑𝑒𝑔(𝑛𝑜𝑑𝑒)”: the number of outgoing (incoming) edges of a node
• Max degree of a graph (Δ = max{deg (𝑛𝑜𝑑𝑒)}): the maximal number of neighbours

of the nodes in the graph
• E.g.: an intersection connects at most four streets, Δ = 4

• Complexity of finding all outgoing/incoming neighbours
• 𝑶 𝚫 ≪ 𝑶(𝑵)

• Almost 𝑂 1

16

19/03/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 17

Time Complexity Comparison
• Assume simple graph: at most one edge between each pair of nodes,

with 𝑁 nodes and 𝐸 directed edges, max degree of graph: Δ = Δ = Δ

• Adjacency matrix: each entry stores an edge object

• Adjacency list: each node has list of edge objects
or two lists, (outgoing and incoming) for directed graph

• Adjacency list has better time unless checking edge from u to v is important.17

Adjacency Matrix Adjacency List Edge List

Find all nodes 𝑂(𝑁) 𝑂(𝑁) 𝑂(E)

Find all edges 𝑂(𝑁) 𝑂(E) 𝑂(E)

Find all outgoing edges of a node 𝑂(𝑁) 𝑂(Δ) 𝑂(E)

Find all incoming edges of a node 𝑂(𝑁) 𝑂(Δ) 𝑂(E)

Find all outgoing node neighbours of a node 𝑂(𝑁) 𝑂(Δ) 𝑂(E)

Find all incoming node neighbours of a node 𝑂(𝑁) 𝑂(Δ) 𝑂(E)

Check if there is an edge from u to v 𝑂(1) 𝑂(Δ) 𝑂(E)

Get next shortest edge 𝑂(𝑁) 𝑂(E) 𝑂(log(E))

19/03/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 18

Edge List:

• Array of Edges

• Slow for almost everything,
except finding the next shortest edge:

0

4

31

0

7

19

1

2

82

1

0

43

2

6

74

2

4

86

2

5

21

0

3

25

3

9

10

1 2 3 4 5 6 70 8 9

3

3

33

5

7

66

5

0

47

5

5

65

6

4

53

7

8

68

7

1

46

8

2

22

4

1

17

9

0

3

11 12 13 14 15 16 1710 18 19

9

5

92

to

from

length

0

4

31

0

7

19

1

2

82

1

0

43

2

6

74

2

4

86

2

5

21

0

3

25

3

9

10

1 2 3 4 5 6 70 8 9

3

3

33

5

7

66

5

0

47

5

5

65

6

4

53

7

8

68

7

1

46

8

2

22

4

1

17

9

0

3

11 12 13 14 15 16 1710 18 19

9

5

92

to

from

length

19/03/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 19

Object Oriented representation

• Forget the arrays.
• Don't use integers to represent nodes.

• Graph has a Collection of Nodes:
private Collection<Node> allNodes;

And maybe a Collection of Edges:
private Collection<Edge> allEdges;

Graph could contain a HashMap from Pairs of
Nodes to Edges:
HashMap<Pair<Node,Node>,Edge> allEdges;

• Big linked structure of Objects
• Collections may be Lists or Sets

• Nodes contain collection of Edges
private Collection<Edge> edges;

or two if directed graph:
private Collection<Edge> outgoing;
private Collection<Edge> incoming;

• Edges contain two Nodes
private Node from;
private Node to;

19/03/2024

12

© Peter Andreae and Xiaoying Gao

COMP261 # 20

A Linked Graph Structure.
Nodes:

19/03/2024

13

© Peter Andreae and Xiaoying Gao

COMP261 # 21

A Linked Graph Structure.
Nodes:

No information about the edges: neighbours are the nodes

19/03/2024

14

© Peter Andreae and Xiaoying Gao

COMP261 # 22

A Linked Graph Structure.
Nodes: Undirected Edge objects with two nodes,

node neighbours are edges

19/03/2024

15

© Peter Andreae and Xiaoying Gao

COMP261 # 23

A Linked Graph Structure.
Nodes: Directed Edge objects with two nodes,

nodes have out-neighbours
and in-neighbours

19/03/2024

16

© Peter Andreae and Xiaoying Gao

COMP261 # 24

A Linked Graph Structure.
Nodes: Can also have a collection

of all Edge objects

Edges:

19/03/2024

17

© Peter Andreae and Xiaoying Gao

COMP261 # 25

Wellington Public Transport Map

• Complex Graph structure
• directed graph
• multi-graph
• lots of information on nodes and edges
• multiple tasks.
• Additional structure (“lines"), kinds of edges.

• Assignment:
• build the graph structure edges and neighbours
• Find shortest paths
• Find strongly connected subgraphs
• Find "articulation points"

