15/03/2024

COMP 261 2024 Tri 1
Graphs and Data Structures

© Peter Andreae and Xiaoying Gao

15/03/2024

COMP261 # 2

Assign 1 due Friday noon

* 10 Tutorials
* 4 Help desks
« Comp261-help@ecs.vuw.ac.nz

15/03/2024

Graph

* Collection of nodes and edges:
* entities and relationships between them.

* Many real-world applications

* places with connections
airports & flights,
intersections & roads,
stations & railway tracks
network swifches and cables

« entities with relationships
social networks,
biological models
web pages

* states and actions
games, plans, 2

INVERCARGILL

COMP261 # 3

© Peter Andreae and Xiaoying Gao

15/03/2024

Different Kinds of Graphs

* Directed or Undirected:
Are the edges symmetric or one-way?

« Single or multi-graph:
Can there be two edges between a pair of nodes?

* Do the edges have

information attached?
weights, lengths, labels,....

* Bipartite graphs
Two kinds of nodes
Edges between types
(eg: supervisors and projects)

COMP261 # 4

» Sparse Graphs
most pairs of nodes not connected
|ledges| << |nodes|?
* Dense Graphs
nodes connected to most other nodes
|edges| ~ |[nodes|?

* |s the graph known, or is it
constructed as you traverse it
(“Implicit” graph)

© Peter Andreae and Xiaoying Gao

15/03/2024

COMP261 #5

Graph Data Structure

What data structure(s) should be use to represent a graph?
* A good data structure should support the important operations efficiently
*e.g.

* Find all the nodes of the graph

* Find all the edges of the graph

* Find all outgoing edges of a node

* Find all incoming edges of a node

* Find all the outgoing node neighbours of a node

* Find all the incoming node neighbours of a node

* Find out whether two nodes are directly connected or not

* Find the edge between two nodes (if connected)

* Two traditional data structures Object-based data structures

 Adjacency matrix, Collection of Node objects with lists of neighbours
* adjacency list Collection of Edge objeets with pairs of Nodes

© Peter Andreae and Xiaoying Gao

15/03/2024

COMP261 #6

» Use integers 0..n-1 to represent nodes
» Use an array to represent info about nodes

private Node[] nodes;
Als]c]p[e[F[cH]ITV]

* Use a 2D matrix to represent the graph
| private Edge[] edges;
* Number of rows and columns = number of nodes

0 5
* M;; = 1 if there is an edge from node /tonode / 1 [5 3 7
* M;; = 0 (blank) otherwise 2 3 1
3 1 3
4 3| |4
« What about edges with labels 5 2l s 2 object
(lengths/weights/capacities/etc)? 6| |7 5 : 6|3 471
7
8|2(6|7 9 3 6
« Cannot deal with multi-graphs. o olof [4]4]7]6

© Peter Andreae and Xiaoying Gao

15/03/2024

Time Complexity of Adjacency Matrix o

« Assume simple graph: at most one edge between each pair of nodes,
with M nodes and £ edges, typically N< E< AP

« 2D adjacency matrix, requires O(N2) memory space
Undirected or Directed?

* Time cost:
i To:
* Find all nodes °
0123456 8 9
« Find all edges From: 0| |5 2
115 3 7 6
* Find all outgoing edges of a node 2 3 1 719
3 1 3 9
* Find all incoming edges of a node 4 3 4 9
5 4 5 4
* Find all outgoing node neighbours 6 7 5 6134
_ _ _ _ 715 6 7
* Find all incoming node neighbours 8 6 NEE 6
9 9 4 7|6

* Check if there is an edge between two nodes

© Peter Andreae and Xiaoying Gao

15/03/2024

COMP261 #9

Adjacency List

» Use integers 0..n-1 to represent nodes,

and array to represent info about nodes:
private Node[] nodes;

» Use an array of arrays/lists to represent the graph
private int[][] neighbours; or

private List<Integer>[] neighbours;

oA o[H{1l7[8]
1B 1|11{0[2]6][8]
« What about edge information? 2|C 2|11[3[819]
Lists could store edge objects containi - s
ists could store edge objects containing B L5 T5Ts
* nodes at each end 5[F s[4+{4]6]9
- length/capacity/labels on edges 6|G 6| T11[5[7[8]9]
. . 7| H 7|T10]6([9
private List<Edge>[] edges; s s|+HHo[1]2]4]6]9]
o[J o[{2[3[5]6][7]8]

15/03/2024

COMP261 #10

Time Complexity of Adjacency List

« Assume simple graph: at most one edge between each pair of nodes, with N nodes
and E directed edges, assume N < E < 2N?

* node.adjList() is a list of outgoing node neighbours of node /

* Find all nodes

o[A o[H1[7]8]
. 1B 1|110[2]6[8
* Find all edges 2l c o[+H{1]3[8]9]
3D 3| H2]4]9]
- Find all edges of a node 41E 4|11315]8]
5|F s +{4]6]9
6| G 6| 1{1]5][7]8]9]
* Find all node neighbours 7| H 3o l6]9
8|1 s|4+Ho[1]2]4]6]9]
- Check if there is an edge between two nodes oL olg12]3[5]6[7]8]

15/03/2024

COMP261 # 11

Adjacency List, Directed Graph

Same data structure

» Use integers 0..n-1 to represent nodes, and

array to represent info about nodes:
private Node[] nodes;

» Use an array of arrays/lists to represent the graph
private int[][] outNeighbours; or

private List<Integer>[] outNeighbours; o[A o[F11]7T8]
private List<Edge>[] outEdges; 1B 1276

2| cC 2[4+{3]9

3| D 3|49

4[E 4 [45]

5| F 5| +{6]9

6|G 6| 1718

7| H T T

8| 1 8| 411]2[4]9]

oL 94167

© Peter Andreae and Xiaoying Gao

10

15/03/2024

COMP261 # 12

Time Complexity of Adjacency List, Directed

» Assume simple graph: at most one edge between each pair of nodes, with N nodes and
E directed edges, assume N < E < 2N?

« If graph has a maximum in-degree and/or out-degree: A, A, A =max(A,, Aour)
* (maximum number of neighbours)

* Find all nodes

o[A o[F{1[7]8]

- Find all edges 1B 1]10[2]6]8]
2[c 2[F-{1 3]s 9]

- Find all outgoing edges of a node 3D 3| 112[4]9]

: - : 4| E 4[4{3]5]8]

* Find all incoming edges of a node s F 5 E 21619

- Find all outgoing node neighbours 6|G 6|11115(7]8]9]
7| H 7|110[6]9

« Find all incoming node neighbours 8| | 8| 1T10[1[2]4]6]9]
9| J 9|4+12]3]5]6]7]8]

* Check if there is an edge between two nodes

/M list has the outgoing neighbours of node /

© Peter Andreae and Xiaoying Gao

11

