
15/03/2024

1

© Peter Andreae and Xiaoying Gao

COMP 261 2024 Tri 1
Graphs and Data Structures

15/03/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 2

Assign 1 due Friday noon

• 10 Tutorials
• 4 Help desks
• Comp261-help@ecs.vuw.ac.nz

15/03/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 3

Graph
• Collection of nodes and edges:

• entities and relationships between them.

• Many real-world applications
• places with connections

airports & flights,
intersections & roads,
stations & railway tracks
network switches and cables ….

• entities with relationships
social networks,
biological models
web pages ….

• states and actions
games, plans, …..

3

15/03/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 4

Different Kinds of Graphs

• Directed or Undirected:
Are the edges symmetric or one-way?

• Single or multi-graph:
Can there be two edges between a pair of nodes?

• Do the edges have
information attached?

weights, lengths, labels,….

• Bipartite graphs
Two kinds of nodes
Edges between types
(eg: supervisors and projects)

• Is the graph known, or is it
constructed as you traverse it
(“Implicit” graph)

A

B

C

E

D

I

H

G

J

F

5

1
3

7

25

9

6

2

3
23

1

18

4
17

10

8

4

10

14

6

• Sparse Graphs
most pairs of nodes not connected

|edges| << |nodes|2

• Dense Graphs
nodes connected to most other nodes

|edges| |nodes|2

15/03/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 5

Graph Data Structure

What data structure(s) should be use to represent a graph?
• A good data structure should support the important operations efficiently

• e.g.
• Find all the nodes of the graph
• Find all the edges of the graph
• Find all outgoing edges of a node
• Find all incoming edges of a node
• Find all the outgoing node neighbours of a node
• Find all the incoming node neighbours of a node
• Find out whether two nodes are directly connected or not
• Find the edge between two nodes (if connected)

• …

• Two traditional data structures Object-based data structures
• Adjacency matrix, Collection of Node objects with lists of neighbours
• adjacency list Collection of Edge objects with pairs of Nodes5

15/03/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 6

Adjacency Matrix

• Use integers 0..n-1 to represent nodes
• Use an array to represent info about nodes

private Node[] nodes;

• Use a 2D matrix to represent the graph
private int[] edges;
• Number of rows and columns = number of nodes
• 𝑀 = 1 if there is an edge from node i to node j
• 𝑀 = 0 (blank) otherwise

• What about edges with labels
(lengths/weights/capacities/etc)?

• Cannot deal with multi-graphs. 6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 11

1 1 1 1 1

1

1

1

1

1

1 2 3 4 5 6 70 8 9

1

1

1

1

1

1

1

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E
F

G

H

I

J

1
B

2
C

3
D

4
E

5
F

6
G

7
H

0
A

8
I

9
J

5

3

7

3

1

1

3

3

4

4

5

7

5

6

5

6

5

5

6 7 9 32

9 9 4 4 7

2

6

7

9

3

9

9

4

4

7

6

6

private Edge[] edges;

Edge
object

15/03/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 7

Time Complexity of Adjacency Matrix

• Assume simple graph: at most one edge between each pair of nodes,
with N nodes and E edges, typically N < E < N2

• 2D adjacency matrix, requires O(N2) memory space

• Time cost:

• Find all nodes

• Find all edges

• Find all outgoing edges of a node

• Find all incoming edges of a node

• Find all outgoing node neighbours

• Find all incoming node neighbours

• Check if there is an edge between two nodes

1 2 3 4 5 6 70 8 9

0

1

2

3

4

5

6

7

8

9

5

3

7

3

1

1

3

3

4

4

5

7

5

6

5

6

5

5

6 7 9 32

9 9 4 4 7

2

6

7

9

3

9

9

4

4

7

6

6

From:

To:

Undirected or Directed?

15/03/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 9

Adjacency List

• Use integers 0..n-1 to represent nodes,
and array to represent info about nodes:

private Node[] nodes;

• Use an array of arrays/lists to represent the graph
private int[][] neighbours; or
private List<Integer>[] neighbours;

• What about edge information?
Lists could store edge objects containing

• nodes at each end
• length/capacity/labels on edges

private List<Edge>[] edges;

A

B

C

D
E F

G

H

I

J

1 7 8

0 2 6 8

1 3 8 9

2 4 9

3 5 8

4 6 9

1 5 7 8

0 6 9

60 1 2 4

9

9

2 3 5 6 7 8

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

15/03/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 10

Time Complexity of Adjacency List

• Assume simple graph: at most one edge between each pair of nodes, with 𝑁 nodes
and E directed edges, assume 𝑁 < 𝐸 < 2𝑁2

• node.adjList() is a list of outgoing node neighbours of node i

• Find all nodes

• Find all edges

• Find all edges of a node

• Find all node neighbours

• Check if there is an edge between two nodes

1 7 8

0 2 6 8

1 3 8 9

2 4 9

3 5 8

4 6 9

1 5 7 8

0 6 9

60 1 2 4

9

9

2 3 5 6 7 8

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

15/03/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 11

Adjacency List, Directed Graph

Same data structure

• Use integers 0..n-1 to represent nodes, and
array to represent info about nodes:

private Node[] nodes;

• Use an array of arrays/lists to represent the graph
private int[][] outNeighbours; or
private List<Integer>[] outNeighbours;
private List<Edge>[] outEdges;

A

B

C

D
E F

G

H

I

J

1 7 8

2 6

3 9

4 9

5

6 9

7 8

1 2 4 9

6 7

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

15/03/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 12

Time Complexity of Adjacency List, Directed

• Assume simple graph: at most one edge between each pair of nodes, with 𝑁 nodes and
E directed edges, assume 𝑁 < 𝐸 < 2𝑁2

• If graph has a maximum in-degree and/or out-degree: Δ , Δ , Δ = max Δ , Δ
• (maximum number of neighbours)

• Find all nodes

• Find all edges

• Find all outgoing edges of a node

• Find all incoming edges of a node

• Find all outgoing node neighbours

• Find all incoming node neighbours

• Check if there is an edge between two nodes

i th list has the outgoing neighbours of node i

1 7 8

0 2 6 8

1 3 8 9

2 4 9

3 5 8

4 6 9

1 5 7 8

0 6 9

60 1 2 4

9

9

2 3 5 6 7 8

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

