
COMP261 Algorithms and Data Structures

Data Compression 2 Extension:
String Search

Fang-Lue Zhang

String search
“Given a string S and a text T,
look for an occurrence of S as a substring of T”

• Which one? (first, all…)
• What do I do when I find it?

• If found, return index of first character of S in T;
otherwise return -1 (or some other index outside of T).

• What would you expect the cost to be?

2

String search - some variations
• Just check whether it’s there, returning Boolean.

• Find first/last/any occurrence of S in T.

• Find all occurrences of S in T.

– What if occurrences overlap?

• Find occurrence(s) as a whole word/anywhere?

• Find occurrences within lines/allow occurrences to extend across line

breaks?

• Assume random data? English text? Other data?

3

qwerxcvvtewfzxcfasfed
rsadfsdacfasdrtvtewqw
ertcsvte
wfvtxqwfczsrdcvvtzfec
eeaeszxccvvtvtsafsers
dxzcvtedfaevsadcv
vtvtewfvtxqwfczsvzxgv
tasfvtcasrfvtewqtrwtr
avtecvvtwfxtrac

String search

• In Java, we can do this by using:
– T.indexOf(S);
– T.lastIndexOf(S);
– T.contains(S);

• But we’d like to know if these are good choices
– or if we can do better.

• Let’s start with a simple algorithm, and see how we can improve
upon it.

5

Brute force approach
• string: S = ananaba
• text: T = bannabanabananaban
• Look for S, starting at T[0]:

ananaba
bannabanabananaban

• Look for S, starting at T[1]:
ananaba

bannabanabananaban
• Look for S, starting at T[2]:

ananaba
bannabanabananaban

• Etc. till found, or none left.

6

Brute force algorithm

• Basic idea:
Look for S in T,
starting at positions T[0], T[1], ….

• What is last position in T we need to consider?

for k ← 0 to T.length() - S.length()
if T.substring(k, S.length()).equals(S) then return k

return -1

7

Can we improve?

• First, some very simple “improvements”:

– Don’t call length methods in the loop.
Avoid cost of method call (compiler may inline it).

– Don’t call substring method in the loop.
Don’t need to copy the substring to a new string to compare with S.

8

for k ← 0 to T.length() - S.length()
if T.substring(k, S.length()).equals(S) then return k

return -1

Brute force algorithm

Brute force algorithm

Assigning m ← S.length() and n ← T.length() first:

• for k ← 0 to n-m
found ← true
for i ← 0 to m-1

if S[i] != T[k+i] then found ← false, break
if found then return k

return -1

• Okay what is the cost?

9

Brute force algorithm: cost

• S = s0 s1 s2 s3 … (m of these)
T = t0 t1 t2 t3 t4 t5 t6 t7 …(n of these)

• What is best/worst/expected cost?

• What if text is random? English?

• What case gives best/worst cost (for any m and n)?
– How many positions in T need to be considered?
– How many characters need to be considered at each position?

10

Brute force algorithm: best cost

• S = s0 s1 s2 s3 … (m of these)
T = t0 t1 t2 t3 t4 t5 t6 t7 …(n of these)

• Suppose s0 doesn’t occur in T.
– s0 will be compared to t0, t1, …
– So cost will be?

• Suppose S is a prefix of T.
– Will compare s0 with t0, s1 with t1, …
– So cost is?

11

Brute force algorithm: worst cost

• S = s0 s1 s2 s3 … (m of these)
T = t0 t1 t2 t3 t4 t5 t6 t7 …(n of these)

What case will force the algorithm to do the most comparisons?
§ Hint 1: Want S not in T, so it tries the maximum number of

positions.
§ Hint 2: At each position, want algorithm to do the most

possible comparisons before failing.
àà Fail on the last character in S!

What inputs would do this?

12

• What about
S = aaaaab
T = aaaaaaaaaaaaaaaaaaaaaa

What is the cost?

Would this ever happen with English text?
What sort of data then?

13

• ideally, we’d have an algorithm that never needs to re-trace its steps in the long
string. Can we check each letter just once?

• abcdh???????????????????????????
abcdefg

– having got to a fail point, where should we check next?
– jump ahead, and re-start at the fail point?

– this could speed up search a lot!
– is it “safe”?

14

fail

String search: can we do better?

• anzn#??????????????????????????
anzngfg
– having got to a fail point, where should we check next?
– jump ahead, and re-start at… where?

• anan#??????????????????????????
ananafg
– what about now?
– It is unsafe to jump to the fail point

• Key idea of KMP algorithm: Use characters in partial match to
determine where to start next match attempt.

15

fail

String search: can we do better?

String search: Example

• T = abc_abcdab_abcdabcdabde
S = abcdabd

• T = abc_abcdab_abcdabcdabde
S = abcdabd

• T = abc_abcdab_abcdabcdabde
S = abcdabd

• T = abc_abcdab_abcdabcdabde
S = abcdabd

16

continued
next slide

String search: Example

• T = abc_abcdab_abcdabcdabde
S = abcdabd

• T = abc_abcdab_abcdabcdabde
S = abcdabd

• T = abc_abcdab_abcdabcdabde
S = abcdabd

• T = abc_abcdab_abcdabcdabde
S = abcdabd

17

Knuth-Morris-Pratt (KMP) algorithm
• The “Knuth” here is Donald Knuth –

https://en.wikipedia.org/wiki/Donald_Knuth

After a mismatch, advance to the earliest place where search string
could possibly match.
• never has to re-check a character

How far can we advance safely?
• Use a table based on the search string.
• Let M[0..m-1] be a table showing how far to back up the search if a

prefix of S has been matched.

18

String search

• Simple search
– Slide the window by 1

• t = t+1;

• KMP
– Slide the window faster

• t = t + s – M[s]
– Never re-check the matched characters

• If there is a “suffix ==prefix”?
– No, skip these characters

» M[s] = 0
– Yes, reuse, no need to recheck these characters

» M[s] is the length of the “reusable” suffix

19

abcdmndsjhhhsjgrjgslagf
abcdefg

ananfdfjoijtoiinkjjkjgghfj
anangba

abcdefg

anangba

Knuth Morris Pratt
input: string S[0 .. m-1] , text T[0 .. n-1], partial match table M[0 .. m-1]
output: the position in T at which S is found, or -1 if not present
variables: k ← 0 start of current match in T

i ← 0 position of current character in S
while k + i < n

if S[i] = T[k + i] then // match
i ← i + 1
if i = m then return k // found S

else if M[i] = -1 then // mismatch, no self overlap
k ← k + i + 1, i ← 0

else // mismatch, with self overlap
k ← k + i - M[i] // match position jumps forward
i ← M[i]

return -1 // failed to find S

20

String search - recap

• Simple search
– Slide the window by 1

• t = t+1;
• Knuth-Morris-Pratt (KMP)

– Slide the window faster
• t = t + s – M[s]

• is there a “suffix ==prefix”?
– If No, skip these characters altogether (big jump ahead for S)

» M[s] = 0
– If Yes, reuse: no need to recheck those characters!

(smaller jump for S, but start further along it)
» M[s] is the length of the “reusable” suffix

21

abbabbtabbarsaa;ldifewskf
abbabbczz
abbabbczz

abbabbtabbarsaa;ldifewskf
abbabbczz

abbabbczz
abbabbczz

abbabbczz

abbabbczz

abbabbczz

slow…
.

faster….

KMP - how far to move along? (in general)

• long text: ...ananx???....
• string: anancba

• If mismatch at string position s (and text position t+s)
– find longest suffix of text (up to just before the fail point) that matches

a prefix of string
– move k forward by (i – length of substring)
– keep matching from i ← length of substring

• special case:
– if i = 0, then move k to k + 1 and match from i ← 0

22

KMP
• anzn#??????????????????????????

anzngfg
– having got to a fail point, where should we check next?
– jump ahead, and re-start at… where?

• anan#??????????????????????????
anangfg
– what about this one?
– unsafe to jump straight to the fail point!

• anan#??????????????????????????
ananafg
– what about this one?
– (nb: in theory, could jump further in such cases, for a small extra saving)

23

fail: not ‘g’

the fail point

move S by 2, but restart
from the fail point (#)

simplest: treat
same as above

fail: not ‘g’ but it could be ‘a’!

KMP
MOVING FROM THE LEFT of the search string S, on mismatch with T we check
for a suffix == prefix, skip ahead that many, and continue checking matches from
the fail point.

T: abbabbtabbabbczzrsaldifewsk
S: abbabbczz

T: abbabbtabbabbczzrsaldifewsk
S: abbabbczz

T: abbabbtabbabbczzrsaldifewsk
S: abbabbczz

T: abbabbtabbabbczzrsaldifewsk
S: abbabbczz

24

suffix of 3 in the matched part:
skip ahead 3, and restart from “t”

no suffix: move to “t”, and restart

no suffix: move to “t”, and restart

and we could precompute
all these jumps, just from S

input: string S[0 .. m-1] , text T[0 .. n-1], jump table M[0 .. m-1]
output: the position in T at which S is found, or -1 if not present
variables: k ← 0 start of current match in T

i ← 0 position of current character in S

while k + i < n
if S[i] = T[k + i] then // match at i

i ← i + 1
if i = m then return k // found S

else if M[i] = -1 then // mismatch, no self overlap
k ← k + i + 1, i ← 0

else // mismatch, with self overlap
k ← k + i - M[i] // match position jumps forward
i ← M[i]

return -1 // failed to find S

25

KMP, the algorithm

How do we build the “jump” table? Example.
• Consider the search string abcdabd
• Look for a proper suffix of failed match, which is a prefix of S,

starting at each position in S
– so suffix ends at previous position.

• 0: abcdabd
We can’t have a failed match at position 0.
Special case, set M[0] to -1.

• 1: abcdabd
a not a proper suffix.
Special case, set M[1] to 0.

• 2: abcdabd
b not a prefix, set M[2] to 0.

26

How do we build the “jump” table? Example.
– 3: abcdabd

abc has no suffix which is a prefix, set M[3] to 0.
– 4: abcdabd

abcd has no suffix which is a prefix, set M[4] to 0.
– 5: abcdabd

a is longest suffix which is a prefix, set M[5] to 1.
– 6: abcdabd

ab is longest suffix which is a prefix, set M[6] to 2.

– Knowing what we matched before allows us to determine length of next
match.

27

ananaba

abcefg

How do we precompute the “jump” table, M?

28

Look for suffix of a failed match which is prefix of the search
string. eg:

• abcmndsjhhhsjgrjgslagfiigirnvkfir
abcefg

• No suffix. Resume checking at ‘m’:

• ananfdfjoijtoiinkjjkjgfjgkjkkhgklhg
ananaba

• Yes (‘an’). Resume checking at the second ‘a’:

• NB: suffix of a partial match is also part of the search string…
We can find partial matches just by analysing the search string!

KMP – Partial Match Table
29

Index 0 1 2 3 4 5 6

S a b c d a b d
M -1 0 0 0 0 1 2

KMP – Partial Match Table
30

Index 0 1 2 3 4 5 6

S a b c d a b d
M -1 0 0 0 0 1 2

KMP – Partial Match Table
31

Index 0 1 2 3 4 5 6

S a n a n a b a
M -1 0 0 1 2 3 0

KMP – Partial Match Table
32

Index 0 1 2 3 4 5 6

S a n a n a b a
M -1 0 0 1 2 3 0

Building the table
input: S[0 .. m-1] // the string
output: M[0 .. m-1] // match table

initialise: M[0] ← -1, M[1] ← 0
j ← 0 // position in prefix
pos ← 2 // position in table

while pos < m
if S[pos - 1] = S[j] //substrings ...pos-1 and 0..j match

M[pos] ← j+1,
pos++, j++

else if j > 0 // mismatch, restart the prefix
j ← M[j]

else // j = 0 // we have run out of candidate prefixes
M[pos] ← 0,
pos++

andandba

andandba

M: 0 1 2 3 4 5 6 7
|-1 | 0 | 0 | 0 | 1 | 2 | 3 | 0|

33

String search: can we do even better?!
• The previous lecture said: “ideally, we’d have an algorithm that

never needs to re-trace its steps in the long string. Can we
check each letter just once?” (Answer: yes, it’s KMP).

• aabah???????????????????????????
aabaacb

– but notice h is nowhere in the key string, so we can jump past…
– Boyer-Moore exploits this notion to the absolute max, so much so that it

does better than our “aim” of only checking everything once!

34

fail

String search: Boyer-Moore

• KMP searches forwards, and gets worse as the search sequence gets longer.
• It seems implausible that one could do better than looking at each T element

only once, and yet…

• Boyer-Moore algorithm searches backward, gets better as search sequence
gets longer!

1. Bad character rule – tries to turn mis-match into match
2. Good suffix rule – tries to keep existing matches okay

35

Boyer Moore’s “Bad Character rule” (details not examinable)

Go FROM THE RIGHT within the search string S, upon a mis-match, we skip
until either: CCTTTTGC
• mismatch becomes a match, or
• S moves past the mis-match character
T: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
S: CCTTTTGC

T: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
S: CCTTTTGC

T: GCTTCTGCTACCTTTTGCGCGCGCGCGGAA
S: CCTTTTGC

Boyer Moore’s “Good Suffix rule” (details not examinable)

T: CGTGCCTACTTACTTACTTACTTACTTACGCGAA
S: CTTACTTAC

T: CGTGCCTACTTACTTACTTACTTACTTACGCGAA
S: CTTACTTAC

T: CGTGCCTACTTACTTACTTACTTACTTACGCGAA
S: CTTACTTAC

37

t

_ _ t _ _

Let t be the substring matched by the inner loop. On mismatch we skip
until either no mismatch between S and t, or S moves past t

Boyer-Moore algorithm (details not examinable)

T : C T T A T A G C T G A T C G C G G C G T A G C G G C G A A
S : G T A G C G G C G

T : C T T A T A G C T G A T C G C G G C G T A G C G G C G A A
S : G T A G C G G C G

T : C T T A T A G C T G A T C G C G G C G T A G C G G C G A A
S : G T A G C G G C G

T : C T T A T A G C T G A T C G C G G C G T A G C G G C G A A
S : G T A G C G G C G

38

bad character: 6

good suffix: 2

good suffix: 7

completely ignored! good suffix: 7

This is the go-to algorithm for fast string search in most practical cases.
At each step, look up both jumps, and take max!

