
COMP261 Algorithms and Data Structures

Data Compression 1:

Huffman Coding

Fang-Lue Zhang

Data/Text Compression

• Files containing text, sound, video etc. can easily become huge.
E.g. a blu ray movie is about 25Gb.

• Can we reduce the amount of time/space required to transmit/store them?

• E.g. text files are hugely redundant – we use 8 bits (or more) to store each
character, but there is far less information than that.

• Compression is about reducing the memory required to store some
information.

Original text/image/sound compress compressed
text/image/sound

2

Lossless v. Lossy Data Compression

Data compression may be:
• Lossless:

– No information is lost – just gets stored more compactly
– Can retrieve the original data exactly (decompress)
– Important for text and some numerical data

• compress to store/transmit, decompress to use
• Lossy:

– Information may be lost
– Can’t retrieve the original data exactly
– Acceptable in some contexts

• data is stored and used in compressed form
– E.g. JPEG compresses image files

3

Lossless v. Lossy Data Compression

• Lossless compression only possible if there is redundancy in the
original.

• Compression identifies and removes some of the redundant elements.

• Eg:

– Identify repeated patterns

– If lots of repeated characters, replace by count and character

– Construct a dictionary and replace words by indexes to it

4

Encoding: compression, one symbol at a time

• Problem:
– Given a set of symbols (characters, numbers, …)
– Encode them as bit strings

• Use a separate code for each symbol
– Try to minimise the total number of bits.

• Today: Huffman coding
– Very clever solution, very widely used （JPEG/MP3 as a back-end）
– Combining several great ideas!

• Note: When coding data to store/transmit, we often add extra bits (i.e.
redundancy) so we can detect errors:
– See parity bits, error-correcting codes.
– This can still be done with compressed data.

5

Equal Length Codes

• Obvious approach:
Use the same number of bits for every symbol to be encoded.

• E.g. digits:
symbol: 0 1 2 3 4 5 6 7 8 9
code: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

• E.g. letters:
symbol: a b c d e f g … z
code: 00001 00010 00011 00100 00101 00110 00111 … 11010

cf: ASCII

6

How many bits are needed? 26 symbols -> 5 bits, much better than 8!

Ex: How many
bits for upper
and lower case
letters, and 0-9?

https://www.wikiwand.com/en/ASCII

Equal Length Codes

• With N bits, we can have up to 2N different codes.

• For N different symbols, need log2N bits per symbol
10 numbers, message length = 4
26 letters, message length = 5

• If there are many repeated symbols, can we do better?

8

String: a a b a j a b a a b

Variable Length Codes
• Great idea #1:

– Use fewer bits for more common symbols

• Eg for letters, suppose:
a occurs 50% of the time,
b-c occurs 15% of time,
d-e each occur 5% of time,
f-j each occur 2% of time.

9

Encode:
a by ‘0’
b by ‘1’
c by ‘10’
d by ‘100’
e by ‘101’
f by ‘110’

…
j by ‘1001’

Variable Length Codes

sym: a b c d e f g h i j
code: 0 1 10 100 101 110 111 1000 1001 1010

String: a a b a j a b a a b

Fixed: 0000 0000 0001 0000 1001 0000 0010 0000 0000 0001
(using 4 bits each as only 10 letters used)

Variable: 0 0 1 0 1001 0 10 0 0 1

Takes 14 bits, rather than 40.

10

Variable length encoding

• Problem: where are the boundaries?

• How can we tell if 1001 is code for i, db or baab?

• A possible approach:
– Use 0 as a “sentinel bit” to mark the end of a code
– But then can only use 1’s for the code itself

• Sym: a b c d e f … j
Code: 10 110 1110 11110 111110 1111110… 11111111110

• That’s not so good – can we do better?

11

Prefix-free codes

• Great idea #2:

• Design codes so that no code is the prefix of another code!

• Eg:
sym: a b c d e f g h
code: 0 10 1100 11101 11100 11111 11010 110110

• How do we design codes that are prefix-free?

12

Prefix-free codes
• We can think of prefix-free codes as path labels to leaves in a

binary tree

• Balanced tree gives equal length codes
• Linear tree is like using a sentinel bit
• What tree shape will give best codes?
• Want more frequent symbols at the top, less frequent at the bottom – but not

too far away!

13

10

1010

00 10 1101

10

10

0

0

10

110 111

1

Designing a good prefix-free code
• Great idea #3:

• Build the tree from the bottom-up, combining nodes with smallest
frequencies.

– Start with a leaf for each symbol, labelled with its frequency.
– At each step, combine two nodes with smallest frequencies, add a

new node as their parent, labelled with the sum of their frequencies.
– Stop when all nodes are combined into a single tree.

14

Example: Building the tree
b 50%

d 20%

k 5%

l 5%

q 5%

N 5%

O 2%

U 2%

Y 2%

Z 2%

w 2%

Z 2% w 2%

A 4%

A 4%

U 2% Y 2%

B 4%

B 4%

N 5%

D 9%

D 9%

O 2%

C 6%

C 6%

q 5% l 5%

E 10%

E 10%

k 5%

F 11%

F 11%

G 19%

G 19%

H 30%

H 30%

d 20%

J 50%

J 50%

b 50%

View the powerpoint
animation!

New nodes added in
the order indicated
by their letters… ie.
letters don't mean
anything

15

Example: assigning the codes

Z w

A

U Y

B N

D

O

C

q l

Ek

F
G

Hd

Jb

16

0 1

0 1

0 1

0 1
0 1

0 1

0 1

0 1
0 1

0 1

b 50%

d 20%

k 5%

l 5%

q 5%

N 5%

O 2%

U 2%

Y 2%

Z 2%

w 2%

Example: assigning the codes
b 50%

d 20%

k 5%

l 5%

q 5%

N 5%

O 2%

U 2%

Y 2%

Z 2%

w 2%

Z w

A

U Y

B N

D

O

C

q l

Ek

F
G

Hd

Jb

17

0 1

10 11

110 111

1100 1101 1110 1111

11110 11111

111100 111101

11100 11101
11010 11011

110110 110111

0

10

1100

11101

11100

11111

11010

110110

110111

111100

111101

Assign
parent code + 0 to left child
parent code + 1 to right child

average code length = (1*.5)+(2*.2)+(4*.05)+(5*.17)+(6*.08) = 2.43 bits

Huffman Coding
• Generates the best set of codes, given frequencies/probabilities on all the

symbols.
• Creates a binary tree, which is used to construct the codes.

Construct a leaf node (singleton tree) for each symbol.
Put these nodes into a priority queue, with frequency as priority.

(lowest frequency = highest priority)

while there is more than one node in the queue: (i.e. > 1 tree)
remove the top two nodes
create a new tree node with these two nodes as children.

node frequency = sum of frequencies of the two nodes
add new node to the queue

Final node is root of tree.
Traverse this tree to assign codes:
if node has code c, assign c0 to left child, c1 to right child

• See video on YouTube: ‘Text compression with Huffman coding’

18

Huffman Coding

• To decode, we need a table of the codes used.

• If we label the edges of the tree with 0’s and 1’s, as added at each
level, we get a trie which can be used like a scanner to split the
coded string/file into separate codes to be decoded.

• Example: Use above tree to decode:
010011010010

19

Example: assigning the codes
b 50%

d 20%

k 5%

l 5%

q 5%

N 5%

O 2%

U 2%

Y 2%

Z 2%

w 2%
Z w

A

U Y

B N

D

O

C

q l

Ek

F
G

Hd

Jb

20

0 1

10 11

110 111

1100 1101 1110 1111

11110 11111

111100 111101

11100 11101
11010 11011

110110 110111

0

10

1100

11101

11100

11111

11010

110110

110111

111100

111101

Example: Use tree to
decode this alien message
01001101011111
bdb O N

Huffman Coding

• When storing/transmitting a compressed file, we need to include
the tree for decompressing.
– Can reduce efficiency of coding.

• Or, use a standard frequency table, not based on the particular file,
for code.
– E.g. use known frequencies of letters in English text.

21

