

Algorithms and Data Structures

Data Compression 3: Arithmetic Coding

Fang-Lue Zhang

The problem: encoding data succinctly

- Opportunity #1: some symbols are used more
- Claude Shannon proved (1940's) there's a way to transmit symbol strings from alphabet X with an average of *H(X)* bits/symbol, called the *entropy:*

$$H(X) = \sum_{i} P_i \log_2 \frac{1}{P_i}$$

- He showed it was possible, but not how to do it!
- Huffman Coding gets quite close

P(x)

0.0575

0.0128

0.02630.0285

0.0913

0.0173

0.0133

0.0313

x

а

b

d

e f

g

Huffman recap

- send each symbol as soon as it occurs
 - (symbol code)
- optimal, given this restriction
- but wastes bits
- drop the restriction?
 (→stream codes)

a_i	p_i	$\log_2 \frac{1}{p_i}$	l_i	$c(a_i)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
С	0.0263	5.2	5	00101
d	0.0285	5.1	5	10000
е	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	1101000000
k	0.0084	6.9	7	1010000
1	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
0	0.0689	3.9	4	1011
р	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
S	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
v	0.0069	7.2	8	11010001
W	0.0119	6.4	7	1101001
х	0.0073	7.1	7	1010001
У	0.0164	5.9	6	101001
z	0.0007	10.4	10	1101000001
_	0.1928	2.4	2	01

The problem: encoding data succinctly

- Opportunity #1: some symbols are used more
- Opportunity #2: the sequence isn't random
 - \rightarrow Lempel-Ziv
 - → Arithmetic Coding, based on rather different ideas
- *reaches* the Shannon limit, for random ordered symbols, and
- in conjunction with a predictive language model, it does better still

The problem: encoding data succinctly

5

...and think of intervals as bit-strings

- the interval corresponding to *n*-bits has width $1/2^n$
- to specify interval of size α , we will need about $\log_2 1/\alpha$ bits

eg: if
$$\alpha = 1/8$$

we need
 $\log_2 1/\alpha = 3$ bits

next slide considers sending symbols in a simple alphabet of just {a,b, □}

To send symbol string, **send interval** (as bit-string)

- To send a string, I recursively partition up the interval [0,1] into segments...
 (but <u>don't worry</u> about the partitioning scheme just yet!)
- I send you the binary string that corresponds to the largest interval enclosed by the string I want to send.
- You should be able to *decode* this, provided you use <u>the same scheme</u> for partitioning as I did!

On-the-fly encoding: transmitting bbba

Illustration of the arithmetic coding process as the sequence $bbba\Box$ is transmitted

On-the-fly encoding: transmitting bbba. 00000 0000 - 000 $\frac{00010}{00011}0001$ - 00 00100 0010 00110 0011 - 001 a 00111 0 01000 01001 0100 - 010 01010 01011 0101 - 01 01100 01101 0110 - 011 01110 01111 0111 ba - 10010111 10011000 10000 1000 10011001 10001 bbbaa 100 10011010 bba 10010 10011 1001 10011011 10011 bbba obba bbbab 10011100 10100 1010 10 b 10011101 bb 🛛 10101 bbb bbbb 10011110 bbba 101 10110 10111 1011 10011111 10100000 hh□ $\frac{11000}{11001}1100$ ЪЪ□ 100111101 - 110 Ъ□ - <u>11010</u> - <u>11011</u> 1101 bbb: wholly within 10, so - 11 11100 11101 1110 - 111 11110 \rightarrow add '0' to the transmission ´ 1111 11111

On-the-fly encoding: transmitting bbba. 00000 0000 — 000 00010 00011 0001 - 00 00100 0010 а 0 01000 01001 0100 — 010 01010 01011 0101 - 01 01100 01101 0110 $\begin{array}{r} - 01110\\ - 01111\\ 01111 \end{array} 0111$ ba - 10010111 10000 10001 1000 10011000 10011001 bbbaa - 100 bba 10011010 10010 10011 1001 10011011 10011 bbba bbba bbbab 10011100 - 10 $\frac{10100}{10101}1010$ b 10011101 bb bbb bbbb 10011110 - 101 bbba□ $\frac{-10110}{-10111}1011$ 10011111 10100000 bbb□ ЪЪ□ $- 11000 \\ - 11001 \\ 1100$ 100111101 $\frac{11010}{-11011} 1101$ Ъ□ bbba: is within 10011, so - 11 11100 11101 1110 - 111 11110 add '011' to the transmission ´1111 11111

On-the-fly decoding:

The first '1' arrives.

Could be b, or \Box .

Don't emit anything yet

'10' has arrived

this is wholly enclosed by the 'b' interval, so now we can safely emit 'b'

a				00
	ba		$ \frac{-01000}{-01001} 0100 \\ \frac{-01010}{-01010} 0101 \\ \frac{-01011}{-01011} 0101 $	— 0 01
		bba	$ = \frac{10000}{1000} 1000 \\ = 10001 1000 \\ = 10010 1001 $,
Ъ	bb	<u>bbba </u> bbb bbbb bbb□	$ \frac{-10100}{-10101} 1010 \\ \frac{-10101}{-10110} 1011 $ 101	10
	b□	bb□	$\frac{-11000}{-11001}$	
			$ \begin{array}{r} 110 \\ - 11010 \\ - 11011 \\ - 11101 \\ - 11100 \\ - 11101 \\ - 11110 \\ - 11111 \\ - 11111 \\ - 11111 \end{array} $	11

A "vowellish" example

Symbols	Probabilities	Optimal # Bits log2(1/Pi)
а	0.12	3.06
e	0.42	1.25
I	0.09	3.47
0	0.3	1.74
u	0.07	3.84

To send "iou": Send any interval C within [0.37630, 0.37819) Using a binary fraction of 0.011000001 (9 bits) (It would be 10 bits in Huffman coding)

This example is from the book of Numerical Recipes

What's the best partitioning scheme?

- suppose our scheme gives string **S** an interval of size α_s
- this is going to require $\log_2 1/\alpha_s$ bits

• expected message length will be
$$\sum_{s} P_s \log_2 \frac{1}{\alpha_s}$$

If we set ^{α_s = P_s} this matches the Shannon limit!
 (and any other scheme is worse)

So this is the code that Shannon knew must exist!

What's the best partitioning for an entire string?

- thought: is there a recursive way to do the partitioning, which gives the right "real estate" to a whole <u>string</u>, not just individual symbols?
- remarkably, yes!
- based on the recursive "chain rule" of probabilities...

 $P(s_{1}, s_{2}) = P(s_{1})P(s_{2} | s_{1})$ $P(s_{1}, s_{2}, s_{3}) = P(s_{1})P(s_{2} | s_{1})P(s_{3} | s_{1}, s_{2}) \quad \text{details } not \text{ examinable}$

to do it, we need to build a predictive model of the language
 Machine Learning, 400 level.

key insight is to make a stream code

with a fixed partitioning, based on fixed symbol probabilities from a look-up table, we get to the Shannon limit for "random looking" text

with partitioning based on dynamic symbol probabilities (via a learned *predictive model*) we get close to the entropy of the *strings in the language*, ie. the theoretical limit ⁽²⁾