Data Compression 3:
 Arithmetic Coding

Fang-Lue Zhang

The problem: encoding data succinctly

- Opportunity \#1: some symbols are used more
- Claude Shannon proved (1940's) there's a way to transmit symbol strings from alphabet X with an average of $H(X)$ bits/symbol, called the entropy:

$$
H(X)=\sum_{i} P_{i} \log _{2} \frac{1}{P_{i}}
$$

- He showed it was possible, but not how to do it!
- Huffman Coding gets quite close

Huffman recap

- send each symbol as soon as it occurs
(symbol code)
- optimal, given this restriction
- but wastes bits
- drop the restriction?
(\rightarrow stream codes)

a_{i}	p_{i}	$\log _{2} \frac{1}{p_{i}}$	l_{i}	$c\left(a_{i}\right)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
c	0.0263	5.2	5	00101
d	0.0285	5.1	5	10000
e	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	1101000000
k	0.0084	6.9	7	1010000
l	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
o	0.0689	3.9	4	1011
p	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
s	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
v	0.0069	7.2	8	11010001
w	0.0119	6.4	7	1101001
x	0.0073	7.1	7	1010001
y	0.0164	5.9	6	101001
z	0.0007	10.4	10	1101000001
-	0.1928	2.4	2	01

The problem: encoding data succinctly

- Opportunity \#1: some symbols are used more
- Opportunity \#2: the sequence isn't random
- \rightarrow Lempel-Ziv
- \rightarrow Arithmetic Coding, based on rather different ideas
- reaches the Shannon limit, for random ordered symbols, and
- in conjunction with a predictive language model, it does better still

The problem: encoding data succinctly

...and think of intervals as bit-strings

- the interval corresponding to n-bits has width $1 / 2^{n}$
- to specify interval of size α, we will need about $\log _{2} 1 / \alpha$ bits

$$
\begin{aligned}
& \text { eg: if } \alpha=1 / \mathbf{8} \\
& \text { we need } \\
& \log _{2} 1 / \alpha=3 \text { bits }
\end{aligned}
$$

next slide
considers sending symbols in a simple alphabet of just $\{\mathrm{a}, \mathrm{b}, \square$ \}

To send symbol string, send interval (as bit-string)

- To send a string, I recursively partition up the interval $[0,1]$ into segments... (but don't worry about the partitioning scheme just yet!)
- I send you the binary string that corresponds to the largest interval enclosed by the string I want to send.
- You should be able to decode this, provided you use the same scheme for partitioning as I did!

On-the-fly encoding: transmitting b.b.ba .

Illustration of the arith
as the sequence b.b.ba P80t世20015mitded
$=001000010$
$=0010100$
a

bb bbb bb
$\overline{\mathrm{bbb} \square}$
b: not wholly enclosed by 0 or 1
(i.e. could be 01,10 , or 11)
\rightarrow Don't transmit anything yet

On-the-fly encoding: transmitting b.b.ba .

Illustration of the arithmetic coding process as the sequence b.b.ba \square is transmitted

On-the-fly encoding: transmitting b.b.ba .

b.b.b: wholly within 10 , so
\rightarrow add ' 0 ' to the transmission

On-the-fly encoding: transmitting b.b.ba .

b.b.ba: is within 10011, so
add '011' to the transmission

On-the-fly decoding:

The first '1' arrives.

Could be b, or \square.
Don't emit anything yet
'10' has arrived
this is wholly enclosed by the 'b' interval, so now we can safely emit 'b'

A "vowellish" example

Symbols	Probabilities	Optimal \# Bits $\log 2(1 / \mathrm{Pi})$
a	0.12	3.06
e	0.42	1.25
I	0.09	3.47
o	0.3	1.74
u	0.07	3.84

To send "iou": Send any interval C within
 [0.37630, 0.37819)
Using a binary fraction of 0.011000001 (9 bits)
(It would be 10 bits in Huffman coding)
This example is from the book of Numerical Recipes

What's the best partitioning scheme?

- suppose our scheme gives string \mathbf{S} an interval of size $\alpha_{\text {s }}$
- this is going to require $\log _{2} 1 / \alpha_{\mathrm{s}}$ bits
- expected message length will be $\sum_{s} P_{s} \log _{2} \frac{1}{\alpha_{s}}$
- If we set $\alpha_{s}=P_{s}$ this matches the Shannon limit! (and any other scheme is worse)

So this is the code that Shannon knew must exist!

What's the best partitioning for an entire string?

- thought: is there a recursive way to do the partitioning, which gives the right "real estate" to a whole string, not just individual symbols?
- remarkably, yes!
- based on the recursive "chain rule" of probabilities...

$$
\begin{aligned}
P\left(s_{1}, s_{2}\right) & =P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) \\
P\left(s_{1}, s_{2}, s_{3}\right) & =P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(s_{3} \mid s_{1}, s_{2}\right) \quad \text { details not examinable }
\end{aligned}
$$

- to do it, we need to build a predictive model of the language - Machine Learning, 400 level.

Summary

- key insight is to make a stream code
- with a fixed partitioning, based on fixed symbol probabilities from a look-up table, we get to the Shannon limit for "random looking" text
- with partitioning based on dynamic symbol probabilities (via a learned predictive model) we get close to the entropy of the strings in the language, ie. the theoretical limit $)$

