Data Compression 1: Huffman Coding

Fang-Lue Zhang

Data/Text Compression

- Files containing text, sound, video etc. can easily become huge. E.g. a blu ray movie is about 25 Gb .
- Can we reduce the amount of time/space required to transmit/store them?
- E.g. text files are hugely redundant - we use 8 bits (or more) to store each character, but there is far less information than that.
- Compression is about reducing the memory required to store some information.

Lossless v. Lossy Data Compression

Data compression may be:

- Lossless:
- No information is lost - just gets stored more compactly
- Can retrieve the original data exactly (decompress)
- Important for text and some numerical data
- compress to store/transmit, decompress to use
- Lossy:
- Information may be lost
- Can't retrieve the original data exactly
- Acceptable in some contexts
- data is stored and used in compressed form
- E.g. JPEG compresses image files

Lossless v. Lossy Data Compression

- Lossless compression only possible if there is redundancy in the original.
- Compression identifies and removes some of the redundant elements.
- Eg:
- Identify repeated patterns
- If lots of repeated characters, replace by count and character
- Construct a dictionary and replace words by indices to it

Encoding: compression, one symbol at a time

- Problem:
- Given a set of symbols (characters, numbers, ...)
- Encode them as bit strings
- Use a separate code for each symbol
- Try to minimise the total number of bits.
- Today: Huffman coding
- Very clever solution, very widely used (JPEG/MP3 as a back-end)
- Combining several great ideas!
- Note: When coding data to store/transmit, we often add extra bits (i.e. redundancy) so we can detect errors:
- See parity bits, error-correcting codes.
- This can still be done with compressed data.

Equal Length Codes

- Obvious approach: Use the same number of bits for every symbol to be encoded.
- E.g. digits:

symbol:	0	1	2	3	4	5	6	7	8	9
code:	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

- E.g. letters:

symbol:	a	b	c	d	e	f	g	\ldots	z
code:	00001	00010	00011	00100	00101	00110	00111	\ldots	11010

cf: $\mathrm{ASCII} \quad$ How many bits are needed? 26 symbols -> 5 bits, much better than 8!

Equal Length Codes

- With N bits, we can have up to 2^{N} different codes.
- For N different symbols, need $\log _{2} \mathrm{~N}$ bits per symbol 10 numbers, message length $=4$ 26 letters, message length $=5$
- If there are many repeated symbols, can we do better? String: $a \operatorname{abajaba} a b$

Variable Length Codes

- Great idea \#1:
- Use fewer bits for more common symbols
- Eg for letters, suppose:
a occurs 50% of the time, b-c occurs 15% of time, d-e each occur 5% of time, f-j each occur 2\% of time.

$$
\begin{aligned}
& \text { Encode: } \\
& \text { a by ' } 0 \text { ' } \\
& \text { b by ' } 1 \text { ' } \\
& \text { c by ' } 10 \\
& \text { d by '100' } \\
& \text { e by '101' } \\
& \text { f by '110' } \\
& \text { i.. '1001' } \\
& \text { i by ' }
\end{aligned}
$$

Variable Length Codes

sym:	a	b	c	d	e	f	g	h	i	j
code:	0	1	10	100	101	110	111	1000	1001	1010

String: \quad a $a b a j a b a b b$

Fixed: 0000000000010000100100000010000000000001 (using 4 bits each as only 10 letters used)

Variable: 00101001010001

Takes 14 bits, rather than 40.
Compression Rate Comparing to ASCII: 35\% (Avg Bit Number / 8)

Variable length encoding

- Problem: where are the boundaries?

sym:	a	b	c	d	e
code:	0	1	10	100	101

```
g 111

\author{
11
} 1000
- How can we tell if 1001 is code for i , db or baab?
- A possible approach:
- Use 0 as a "sentinel bit" to mark the end of a code
- But then can only use 1's for the code itself
- Sym: a b Code: 10110


1110
d e f .. 111101111101111110.11111111110
- That's not so good - can we do better?

\section*{Prefix-free codes}
- Great idea \#2:
- Design codes so that no code is the prefix of another code!
- Eg: \(\begin{array}{llcllllll}\text { sym: } & \text { a } & \text { b } & \text { c } & \text { d } & \text { e } & \text { f } & \text { g } & \text { h } \\ \text { code: } & 0 & 10 & 1100 & 11101 & 11100 & 11111 & 11010 & 110110\end{array}\)
- How do we design codes that are prefix-free?

\section*{Prefix-free codes}
- We can think of prefix-free codes as path labels to leaves in a binary tree

- Balanced tree gives equal length codes
- Linear tree is like using a sentinel bit
- What tree shape will give best codes?
- Want more frequent symbols at the top, less frequent at the bottom - but not too far away!

\section*{Designing a good prefix-free code}
- Great idea \#3:
- Build the tree from the bottom-up, combining nodes with lowest frequencies.
- Start with a leaf for each symbol, labelled with its frequency.
- At each step, combine two nodes with smallest frequencies, add a new node as their parent, labelled with the sum of their frequencies.
- Stop when all nodes are combined into a single tree.

\section*{Example: Building the tree}


\section*{Example: assigning the codes}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\$ \(50 \%\)} \\
\hline - & 20\% \\
\hline \% & 5\% \\
\hline \(+\) & 5\% \\
\hline () & 5\% \\
\hline (1) & 5\% \\
\hline (3) & 2\% \\
\hline (1) & 2\% \\
\hline \(\checkmark\) & 2\% \\
\hline * & 2\% \\
\hline I & 2\% \\
\hline
\end{tabular}


\section*{Example: assigning the codes}
- \(50 \% \quad 0\)
- 20\% 10
* \(5 \% 1100\)
+ 5\% 11101
() \(5 \% 11100\)
© \(5 \% 11111\)
(2) 2\% 11010
(4) 2\% 110110
- 2\% 110111
* 2\% 111100
- 2\% 111101

average code length \(=\left(1^{*} .5\right)+\left(2^{*} .2\right)+\left(4^{*} .05\right)+\left(5^{*} .17\right)+\left(6^{*} .08\right)=2.43\) bits

\section*{Huffman Coding}
- Generates the best set of codes, given frequencies/probabilities on all the symbols.
- Creates a binary tree, which is used to construct the codes.
```

Construct a leaf node (singleton tree) for each symbol.
Put these nodes into a priority queue, with frequency as priority.
(Lowest frequency = highest priority)
while there is more than one node in the queue: (i.e. > 1 tree)
remove the top two nodes
create a new tree node with these two nodes as children.
node frequency = sum of frequencies of the two nodes
add new node to the queue
Final node is root of tree.
Traverse this tree to assign codes:
if node has code c, assign c0 to left child, c1 to right child

```

\section*{Huffman Coding}
- To decode, we need a table of the codes used.
- If we label the edges of the tree with 0's and 1's, as added at each level, we get a trie which can be used like a scanner to split the coded string/file into separate codes to be decoded.
- See examples in the following slides

\section*{Example: assigning the codes}
\begin{tabular}{|c|c|c|}
\hline do & 50\% & 0 \\
\hline - & 20\% & 10 \\
\hline \% & 5\% & 1100 \\
\hline \(+\) & 5\% & 11101 \\
\hline () & 5\% & 11100 \\
\hline © & 5\% & 11111 \\
\hline (8) & 2\% & 11010 \\
\hline (1) & 2\% & 110110 \\
\hline \(\checkmark\) & 2\% & 110111 \\
\hline * & 2\% & 111100 \\
\hline I & 2\% & 111101 \\
\hline
\end{tabular}


\section*{Huffman Coding}
- When storing/transmitting a compressed file, we need to include the tree for decompressing.
- Can reduce efficiency of coding.
- Or, use a standard frequency table, not based on the particular file, for code.
- E.g. use known frequencies of letters in English text.```

