AIML428

- ONLINE ONLY this week
- Check presentation sign ups
- New section Mon April 4th
- Submit the excel file for "peer review" after each presentation lectures.

Review					
 Text classification 					
 Text representation 					
 Bag-of-words model Each unique word is a feature: Each document is a vector Term weight: count TFIDF: Classification algorithms K Nearest Neighbour Naïve Base 		а	b	с	d
	aacab	1	1	1	0
	bcdaa	1	1	1	1
	aacab	3	1	1	0
	bcdaa	2	1	1	1
	aacab	3	1	1	0
Support Vector Machine	bcdaa	2	1	1	1.41
 One classical model for many traditional algorithms 					

Simple classifier for book reviews

Short version with simple classifiers is attached at lecture page.

- Load data
- Split data into train, test
- Prepare the data:
 - X:
 - CountVectorizer
 - TfidfVectorizer
 - Y: LabelEncoder
- Create a learning model:
 - KNeighborsClassifier or naïve_bayes or LogisticRegression
 - fit
 - predict
 - accuracy_score

Bag-of-words model

What are the limitations or disadvantages?

The distance between any two words

Previously

- Two words are either the same: 0
- · Two words are not the same: indefinite

• But some words are semantically related

- · good and excellent, bad and terrible
- day and night, good and bad
- Key question: how to decode the meaning of a word
 - Cat
 - The cat (Felis catus) is a domestic species of small carnivorous mammal.

Represent each word as a vector

- Cat= [0.83, 0.52, -1.63, 0.07, -0.36, ... -1.2, 0.02]
- · So we can use cosine similarity to measure the distance

• We can even do math on it king + women - man = queen

Questions:

- · What are the dimensions
- How many dimensions
- How to get the value for each dimension

Word Embeddings

- Word Vectors
- Word Embeddings
- Vector-space word representations
- Continuous space word representations models
- A word embedding is a form of representing words using a dense vector representation. [0.83, 0.52, -1.63, 0.07, -0.36, ... -1.2, 0.02]

= cat

- Examples
- wiki-news-300d-1M.vec globe.6B.50d
- Word2Vec, Glove, FastText

Distribution Hypothesis

"You shall know a word by the company it keeps" John Rupert Firth

Consider the Context: (phrase minus word)

The _____ hurt its paw.

What would make sense here?

Cat, Dog, or Siberian_Tiger? YES

X-Wing, Lollygag? NO

What does this mean?

It means that Dog and Tiger

How is Distribution Hypothesis relevant?

It means that:

If you know how well any two words fit all contexts, then you know how similar they are in meaning.

Therefore:

If you train a model to predict the likelihood of a word appearing in a context, then you are training it to find the meaning of the word.

This is exactly what word2vec does!

Conceptualise Word2Vec

Given what we have learned, we need to:

- Define how the model predicts the likelihood of a word in a context.
- Cover how the word vectors are trained to maximise predictive accuracy.

Two approaches

There are two ways to train the vectors:

CBOW model (Continuous Bag Of Words)
Input is the context, output is the word

Skip Gram Model

Input: the word, output: the context

Rong, X. (2014). word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.

Visualisation

- https://ronxin.github.io/wevi/
- CBOW
 - Input: two words as context
 Output: one word as the word
- Skip gram

Sources

An Intuitive Understanding of Word Embeddings: From Count Vectors to Word2Vec

 https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-countword2veec/

A visualisation at https://ronxin.github.io/wevi/

A tutorial on Word2Vec as implemented in Tensorflow: https://www.tensorflow.org/tutorials/word2vec

(Contains the link to the original paper by Mikolov and the Google team)