
Technical Report 12-07:

Understanding Lack of Trust in Distributed Agile Teams:

A Grounded Theory Study

Siva Dorairaj, James Noble and Petra Malik

February 21, 2012

Abstract

Background: Trust fuels team performance and contributes to build an effective and cohesive
team. The self-organizing and collaborative nature of Agile teams increases the importance of
trust in software development teams. Trust is, however, affected in distributed teams. Aim:
Through a Grounded Theory study we investigate the impact of trust in distributed Agile
teams. Method: We interviewed 45 Agile practitioners from 28 different software companies
in the USA, India and Australia, over a period of 3 years, using semi-structured open-ended
questions. Results: In this paper, we present the reasons for lack of trust and its adverse
effects in distributed Agile teams that emerged from the analysis, using the causal-consequences
theoretical model. Conclusion: Understanding the causes and consequences of lack of trust can
develop awareness of the importance of trust in distributed teams and pave ways for effectively
building trust in project-oriented contexts.

1 Introduction

The success of Agile software development in delivering quality software on time and on budget lures
software companies to use Agile methods in distributed software development, mainly to capitalise
on the talented global resources pool and to lower costs [7, 55, 63]. Agile methods, however,
advocate frequent face-to-face interaction and close collaboration between team members including
barrier-free collocated teams [10, 12, 20]. There is no doubt that integrating Agile methods in
distributed software development requires considerable effort from team members and managers [7,
41, 55, 58].

We conducted a Grounded Theory study to explore distributed software development from the
perspective of Agile practitioners. This study, over a period of three years, involved 45 Agile prac-
titioners from 28 different software companies in the USA, Australia and India. We conducted
one-on-one face-to-face semi-structured interviews with Agile practitioners from a wide range of
roles in distributed Agile projects. The initial analysis gave rise to a number of key concerns for
distributed teams, particularly cultural differences, communication, team interaction, and trust. We
formulated research questions for these emergent key concerns and commenced in-depth investiga-
tion on them.

1



In this paper we investigate the research question: “What are the causes and consequences of
lack of trust in distributed Agile teams?”, whereas in a companion paper [19], we investigated the
research question “What are the techniques for building trust in distributed Agile teams?” and
presented seven techniques for building trust.

2 Background

Agile methods are a family of software development methods that follow an iterative and incre-
mental style of development [1]. The Agile methods includes XP (eXtreme Programming) [6],
Scrum [62], ASD (Adaptive Software Development) [36], DSDM (Dynamic Systems Development
Method) [66], FDD (Feature Driven Development) [56], and Crystal Clear [11].

Scrum and XP are considered to be the most widely adopted Agile methods in software devel-
opment projects [23]. Scrum practices such as sprint planning, daily meetings, sprint reviews, and
sprint retrospectives require trust motivated individuals to communicate effectively and collaborate
closely [49, 62]. One of the 12 principles behind the Agile Manifesto explicitly states that man-
agers should trust the Agile teams to “get the job done” [24]. Agile teams are collaborative and
self-organizing in nature [40, 64]. The self-organizing nature of Agile teams increases the impor-
tance of trust in software development teams [39, 48, 50]. A member of a team should trust that
other members in the team are competent, knowledgeable and willing to collaborate effectively to
deliver business values to customers [37, 48, 53]. Trust among team members is imperative for
blending agility with distributed software development projects [53, 58]. Trust is, however, affected
in distributed teams [9, 51, 58]. Several studies discuss the impact of trust in software development
teams [51, 5, 54, 45, 60, 42]. There is, however, a paucity of studies into the impact of trust in
distributed Agile software development [35, 49]. To address this gap, we investigate the reasons for
lack of trust and its adverse effects in distributed Agile teams.

3 Research Method

Grounded Theory (GT) is a systematic research method that emphasises the generation of theory
derived from systematic and rigorous analysis of data. GT was originally developed by Barney
G. Glaser and Anslem L. Strauss [32]. GT is successfully being used to study the social nature
of Agile teams [25, 40, 47, 58, 69]. We chose GT as our research method for two main reasons.
Firstly, GT is suitable to be used in areas that are under-explored or where a new perspective
might be beneficial [61], and the literature on distributed Agile software development generally and
in particular the impact of trust on distributed teams is still scarce [35, 49]. Secondly, GT allows
researchers to study social interactions and the behaviour of people [32], and Agile methods focus
on people and their interactions in software development teams [62]. Using Glaser’s guidelines, the
study started with a general area of interest – distributed Agile software development – rather than
beginning with a specific research question that can lead to preconceived ideas or hypotheses of the
research phenomenon [2, 29, 34, 38, 52]. The problems and its key concerns, however, emerged in
the initial stages of data analysis [28, 29].

2



3.1 Context

This study gradually involved 45 Agile practitioners from 28 different software companies in the
USA, India and Australia. Participants fulfilled the specified criteria of (1) at least four years of
experience in Agile projects, and (2) direct involvement in distributed Agile projects either in a
technical, business or management role. Table 1 shows the participant and project details. Our
participants adopted Agile methods, primarily Scrum and XP, in distributed software development.
The project distribution varied from 2 to 4 countries, the project durations varied from 6 to 24
months, and the team size varied from 8 to 50 people depending on the complexity of the projects.

In order to get a rounded perspective, we included participants from a range of different roles
within the projects: Scrum Master, Agile Coach, Developer, Quality Analyst, Business Analyst,
Product Owner, and Senior Management (e.g. Development Manager, Recruitment Director, and
Director of Technology). Due to privacy and ethical consideration, we will only identify our partic-
ipants using the codes P1 to P45. All data were personally collected and analysed by the primary
researcher in order to maintain consistency in the application of GT.

3.2 Data Collection

We conducted face-to-face, one-on-one interviews with our participants using open-ended questions.
The interviews were voice recorded with the consent from the participants so that we could concen-
trate on the conversation. Initially a set of interview questions was prepared to develop a smooth
discussion with the participants. The interview questions mainly focused on the background of
the project, challenges faced by distributed Agile teams, and the strategies adopted by teams to
overcome those challenges. We phrased our questions carefully so that the concerns in distributed
Agile software development would emerge from the participants rather than from our own agenda.

Data collection and analysis occurs simultaneously in a GT study. We particularly avoided col-
lecting all the data during a specific data collection phase, and then analysing them in a subsequent
data analysis phase. Rather, we started analysis during an interview, and after each interview. This
process of data collection is called theoretical sampling [27, p.36]:

“Theoretical sampling is the process of data collection for generting theory whereby the
analyst jointly collects, codes, and analyzes his data and decides what data to collect
next and where to find them, in order to develop his theory as it emerges.”

Several key concerns emerged from the initial analysis: cultural differences, communication,
team interaction, trust, knowledge sharing and management support. We adjusted our interview
questions, particularly in subsequent interviews, to focus on these key concerns. That is, an ongoing
analysis guided the future interviews, and also the choice of future participants. The research
questions were formulated based on the emergent key concerns, such as:

• “What are the techniques for bridging cultural differences in distributed Agile teams?”

• “What are the causes of communication challenges in distributed Agile teams?”, and “How
do distributed teams overcome communication challenges?”

• “How do Agile teams promote team interaction in distributed software development?”

3



Table 1: Summary of Participant and Distributed Agile Project. (Agile Position: Scrum Master
(SM), Agile Coach (AC), Developer (DEV), Business Analyst (BA), Quality Analyst (QA), Product
Owner (PO), Senior Management (MGT))
Participant Agile Project Distribution Project Domain Team Duration Iteration
(code) Position Size (months) (weeks)

P1 DEV USA-India Financial Services 8 to 10 10 2
P2 AC USA-India E-Commerce 12 to 14 12 2
P3 SM USA-Western Europe-India Mobile Application 10 8 3
P4 AC USA-China Online Trading 10 8 2
P5 AC USA-India Internet Media Services 8 12 2 to 3
P6 DEV USA-UK Internet Hosting Services 20 to 22 8 2
P7 AC USA-Argentina-India Internet Domain Services 18 6 2
P8 DEV USA-Australia-India Publishing 9 to 10 8 2
P9 DEV Western Europe-Brazil Web Search Engine 14 24 2 to 3
P10 SM USA-Argentina-India Software Platform 10 to 12 8 3
P11 SM USA-Middle East-India Web Services 13 10 2
P12 DEV USA-India Internet Hosting Services 12 18 2
P13 SM USA-India Web Portal 17 to 20 5 2
P14 DEV USA-India E-Commerce 16 to 17 36 2
P15 QA USA-India E-Commerce 16 18 2
P16 SM USA-India E-Commerce 16 18 2
P17 DEV USA-India E-Commerce 16 18 2
P18 BA UK-India Financial Services 8 12 2
P19 DEV USA-India Insurance 8 to 10 10 3
P20 MGT Australia-India E-Commerce 9 to 12 12 2 to 3
P21 SM USA-Australia Financial Services 15 9 2
P22 SM Australia-India E Commerce 9 to 12 12 2 to 3
P23 QA Japan-India-China Power Distribution 7 to 8 4 2
P24 AC Western Europe-India Automobile 9 5 2
P25 SM USA-India Information Security 24 6 3
P26 AC USA-India Healthcare 16 ongoing 3
P27 SM USA-Brazil Finacial Services 30 6 2
P28 MGT USA-India E-Commerce 20 18 3
P29 SM USA-India Social Networking 14 10 2
P30 AC Western Europe-India Retail 8 to 10 ongoing 2 to 3
P31 AC UK-India Retail 15 to 20 ongoing 3
P32 MGT UK-South Africa Retail 12 18 2
P33 AC Australia-Ukraine-India Recruitment 50 24 3
P34 AC USA-India Real Estate 6 to 8 10 2
P35 AC USA-India Online Payment 8 18 3
P36 QA Canada-India Web Services 10 to 15 18 2
P37 DEV Western Europe-India E-Commerce 16 4 2
P38 BA USA-India E-Commerce 28 ongoing 2
P39 AC USA-India Telecommunication 22 to 25 6 to 7 2
P40 DEV Australia-India Online Trading 7 6 1
P41 AC Northern Europe-India Retail 10 to 12 ongoing 2
P42 MGT USA-India Healthcare 7 ongoing 4
P43 SM USA-India E-Commerce 7 ongoing 2 to 3
P44 PO Canada-India Cloud Computing 10 to 12 ongoing 2 to 3
P45 MGT USA-India Financial Services 10 ongoing 3

4



We investigated these research questions and presented the findings in different papers [15, 16,
17, 18, 19]. In this paper, we investigate the research question described in section 1, which is
“What are the causes and consequences of lack of trust in distributed Agile teams?”

3.3 Data Analysis

Interviews were transcribed and the transcripts were analyzed using open coding to explore the
meaning in the data by searching for similarities and differences [3, 26]. Open coding breaks down,
examines, compares, conceptualises and categorises the data [67]. We collated key points from the
data and assigned a code, or a summary phrase, to each key point. For example, we analysed the
interview transcript from participant P1. In Table 2, “K” indicates “key point”, and suffix “P1”
identifies participant P1 (e.g. key point 3 from participant P1 appears as KP13). Thus we can
trace back, through the interview transcriptions, to the actual quote and context of each key point.

ID Key Point Code

KP13 Video conferencing captures the visual aspect in communication communication tool
KP16 The Americans were very unaware of the Indian culture cultural difference
KP17 Only some people can understand dialects language barriers
KP112 The team is comfortable reporting to their own people who were with them team ambassador
KP119 They didn’t want us to hear them asking questions lack of trust
KP124 I travelled to Chennai for a few weeks to help in training and team building team building
KP135 The Indian team members haven’t even been engaged on the calls lack of team spirit

Table 2: Examples of Key Points and Codes - data from participant P1

Using GT’s constant comparison method [31], we constantly compared each code with the
codes from the same interview, and those from other interviews. The codes that were related to a
common theme were grouped together to produce a second level of abstraction called a concept. As
we continuously compared the codes, many fresh concepts emerged. These concepts were analysed
using constant comparison method to produce a third level of abstraction called a category. We
wrote-up memos on the ideas about the codes, concepts and categories, and their inter-relationships
with one another. This theoretical memoing is the “core stage” of a GT study [29]. We sorted the
collection of the theoretical memos because sorting “puts the fractured data back together” [27,
p.116]. A grounded theory is fundamentally written from the theoretical sorting of memos, and
therefore sorting the theoretical memos is an “essential step” in GT [27, p.116].

3.4 Theoretical Coding

The final step of data analysis is the theoretical coding that systematically generates theoretical
codes. Theoretical coding integrates all the data, codes, concepts and categories into a set of seam-
less theoretical codes. Substantive codes are the emergent categories that describes the research
phenomenon, whereas the theoretical codes are emergent abstractions that model the integration
of substantive codes [27, 30]. Theoretical codes are emergent and effectively weave the ‘fractured’
substantive codes into an organized theory. “Substantive codes could be related without theoret-
ical codes, but the result is usually confused, unclear theoretically, and/or typically connected by
descriptive topics but going nowhere theoretically” [30, p.60].

5



Theoretical coding schemas known as theoretical coding families [27, 30] are readily available
to assist researcher conceptualize how the categories and their properties may relate to each other.
The sorted memos are weaved together in the theoretical coding families so that the explication of
the research phenomenon exhibits a strong connections between the substantive codes [27, 28].

In this study, the emergent concepts No Sense of Belonging, Sense of Vulnerability, Poor Team
Bonding, Lack of Cultural Understanding, Missing Face-to-Face Interaction, and Ineffective Com-
munication describe the substantive code ‘reasons for lack of trust’. Further, the emergent concepts
Lack of Commitment, Ineffective Collaboration, Team Conflict, and Poor Team Performance de-
scribe the substantive code ‘adverse effects of lack of trust’. Sensitivity to the different theoretical
coding families that model the integration of substantive codes allowed the theoretical code Lack of
Trust to emerge naturally from the emergent concepts and categories. By comparing our findings
with the theoretical coding families, the causal-consequence theoretical family [27, 30] emerged to
be the best ‘fit’ for the theoretical code Lack of Trust. Figure 1 illustrates the causal-consequences
theoretical family for the Lack of Trust. This causal-consequence theoretical family explicates the
Lack of Trust in terms of the (1) causes of lack of trust, and (2) its adverse consequences. Through
integration of the sorted memos into the causal-consequence theoretical family, we realize that the
findings appear “more plausible, more relevant and more enhanced”.

Figure 1: Causal-Consequences Theoretical Family for the Lack of Trust.

4 Causes of Lack of Trust

In this section, we describe the causes of lack of trust in distributed Agile teams based on the
emergent concepts No Sense of Belonging, Sense of Vulnerability, Poor Team Bonding, Lack of
Cultural Understanding, Missing Face-to-Face Interaction, and Ineffective Communication. We
also present selected quotations drawn from our interviews that describe these concepts.

4.1 No Sense of Belonging

An individual’s sense of belonging to a particular team is central to the success of the team because
it provides the ‘glue’ that can promote desirable team cohesion for individuals working together
from different locations, and foster trust building in the team [4, 21]. Without seeing and knowing
the entire team, however, individuals in a team feel ‘not part of the team’:

6



“I have not seen the entire team. So it’s difficult to have a feel about the team members
and get to trust them.” – P24, Agile Coach.

Distributed team members often communicate over technology-mediated communication such
as emails, telephones and video-conferences [22, 46]. Unlike video communication, the written
communication and voice communication limits team interaction. Building rapport between de-
velopment team and customers, and establishing trust in the team can be difficult when team
interaction is limited:

“All the team members have not physically met. We have only had conversations over
the phone, and we don’t do video conferencing. We’ve not really built the rapport with
this customer.” – P25, Scrum Master.

When individuals feel a strong identification with the team, they are willing to devote time and
efforts for the achievement of their project goals. Team cohesiveness that is important for building
trust can be affected when team members do not know each other:

“We used to work together daily, but we did not know each other. I did not have a face
for a name. It is hard to get the feeling of a team when you don’t know who you are
working with.” – P9, Developer.

Team members may not have met the entire team due to the cost involved in getting team
members travel to different locations, the inconveniences to organise the travel, and that manage-
ment do not perceive that physical meetings are necessary to perform the job effectively. When
team member do not know each other well, building a sense of belonging to the team can be a
challenge. Without a ‘true’ sense of belonging to a team, building trust can be difficult.

4.2 Sense of Vulnerability

A feeling of insecurity can develops within team members who are new to a project team. Such
members can be reluctant to be transparent and open with other members about their weaknesses,
and would feel afraid to admit the truth into what is really happening in the team:

“When people are new to the teams, they’re not very confident to talk openly about the
problems. They would say, “Things are fine, everything is good”. But actually things
were not [fine]. ” – P45, Senior Management.

Some development team members, particularly junior members, feel scared to make estimations
of story points, velocity, or product backlog because they presume that other members of the team
would perceive them as incompetent for making ‘wrong estimations’:

“The development team members feel scared to make estimations because they think that
they’ll be questioned if they have made wrong estimates.” – P25, Scrum Master.

Team members avoid situations that expose their ignorance to the customers, particularly on
the areas that they are expected to be the experts. They fear that the results of their ‘inappropriate’
decisions can be visible to the customers, and leave them feeling intimidated. A common way to
avoid such a situation is not to engage with the customers:

7



“The team were not engaged with the customer. The reason is always fear. Usually it’s
the fear of blame because they are often put in a situation where they have to make a
decision, and the results of the decision will be very visible. ” – P32, Senior Manage-
ment.

When a team member develops fear for admitting mistakes and weaknesses, it can be difficult
to build trust with the team. Individuals should recognise that other members of the team do not
have ill-intentions on one another, and therefore no need to be self-protective around the team.
The feeling of insecurity and fear of blames make it impossible to build trust in the team.

4.3 Poor Team Bonding

Team bonding is about team relationships that fosters a sense of belonging and a feeling of togeth-
erness within the team. Bonding brings the team together, stimulates team spirit and fosters the
team to perform as a whole [63, 68]. When team members do not work closely together, bonding
can be difficult, and building trust can be affected:

“When I don’t work with them on an everyday basis, I don’t really know them. It doesn’t
always work for me to speak directly to them. I should either build that trust, or I need
to find somebody to do that for me.” – P44, Product Owner.

Poor bonding between team members can exacerbate the frequent conflicting ideas and opinions
that arise in distributed teams that often consists of people from diverse backgrounds:

“We have conference calls and all but people are just names, someone you see on the
screen. You don’t get to bond with them, and you don’t understand them or their deci-
sions.” – P12, Developer.

Often distributed team members participate in technology-mediated distance training activities
because it is costly and impractical for geographically distributed team members to meet face-to-
face for group trainings. Coaches find it challenging to conduct effective trainings for team members
whom they do not know personally:

“Coaching someone that we have never seen his face, and never have personal connection
is very difficult [because] you need to keep a trust motivated relationship with people you
are coaching. ” – P7, Agile Coach.

Missing face-to-face interaction and continuous communication between distributed team mem-
bers results in a poor team bonding. Further, team bonding activities to promote a feeling of
togetherness are difficult for distributed teams. When members of a team do not have a strong
team bonding, building trust among them can be difficult.

4.4 Lack of Cultural Understanding

Team members from different cultural backgrounds often face difficulties to understand each other’s
cultures [70]. A lack of cultural understanding can affect the team’s effort for building trust and
other aspects of the team’s work:

8



“The project manager in the USA had great difficulty initially to understand our culture
and the way we do things. She was not comfortable with us and did not much trust us.”
– P45, Senior Management.

Some spoken words that have different meanings in different cultures can give rise to unneces-
sary conflicts between individuals, and create circumstances to loose trust among those particular
individuals:

“One of the experiences is when asked a question [to the Indian team], the answer is
always “Yes!” even though they didn’t know it. We later came to understand that “Yes”
means “Yes, I heard you”. But, here [in the USA] we always assume that “Yes!” means
“Yes, it’s done”. – P1, Developer.

Participants discuss that culture affects trusted relationships in the distributed teams, and
engendering cultural awareness among individuals of different cultures promotes an understanding
among them to focus on the similarities rather than the differences:

“One big thing required for distributed teams is cultural awareness. Culture definitely
affects the trust and team building. Get people to understand the [cultural] differences,
and get beyond the differences.” – P31, Agile Coach.

The cultural differences include the accent and rapidness of verbal communication, body lan-
guage such as head movements or hand gestures, and the actual meaning for the spoken words.
The lack of cultural understanding in a team contributes significantly to the lack of trust and poor
team bonding among members of the teams.

4.5 Missing Face-to-Face Interaction

Face-to-face interaction provides opportunity to socialize with team members, and build or sustain
trust and team relationships [14]. Participants discuss that the missing of continuous face-to-face
interaction affects trust building in distributed teams:

“I think it is really hard to maintain trust, especially harder to establish trust without
having a face-to-face interaction. If trust is not there, it is hard to succeed as a team.”
– P4, Agile Coach.

Individuals rely on multiple modes of communication in face-to-face interaction, such as para-
verbal (e.g. voice volume, tone of voice) and non-verbal (e.g. facial expression, hand gestures)
cues. Through technology-mediated communication, lack of these cues reduces the richness of the
information exchanged between the team members, and subsequently affects trust in the team:

“Lack of face-to-face meetings reduces the visibility and transparency into the status
of the project, which leads to a mood of mistrust between team members in different
locations..” – P41, Agile Coach.

9



When team members in different locations interact through technology-mediated communica-
tion, it can be difficult to gauge their level of interest and comprehension on the discussion. Some
team members may not trust that other members are attentive and fully engaged in the conversa-
tion:

“With distributed team, you’re on one side and you’re telling the team on the other side
what to do. And, you’re hoping that they are getting it, you’re hoping that they are not
surfing the net while listening to you. If they’ve switched off, you don’t even know it!”
– P44, Product Owner.

Opportunities to meet face-to-face for distributed teams, though rare, can happen during project
inceptions and when team members get to travel to a different location. Continuous face-to-face
interaction is, however, difficult for most team members. This missing of face-to-face interaction,
makes it much difficult to build trust in distributed teams.

4.6 Ineffective Communication

Scrum meetings provide avenues for members of a team to communicate with the entire team on a
daily basis, and report the impediments and update the progress of the work.
Ineffective communication among team members occurs when individuals misunderstood the infor-
mation that was exchanged, non-verbal communication such as hand gestures and facial expressions
were not recognised, or attention to subtle information such as emotion of an individual was not
noticed [8]. Ineffective communication, specifically during the Scrum meetings, can affect trust and
social bonding among team members:

“Somebody will go on sharing for a long time without much focus, or somebody will
not properly articulate their impediments. Even somebody will come really late to the
stand-up meetings. In the beginning, it was difficult to build trust.” – P39, Agile Coach.

Some team members who were collaborating remotely did not leverage efficiently the commu-
nication technologies such as video, audio, or written that were available for them. Not using the
right technology hinders effective communication in the team:

“We mostly used written communication – chats and a lot of emails. We should have
used video or voice instead of written communication. ” – P9, Developer.

Management in some organizations limits the availability of communication tools and technolo-
gies for the project team:

“We need web cameras but it’s against our organisational policy. So we don’t use web
cameras in our distributed projects.” – P24, Agile Coach.

Without suitable tools and technologies, team members in different locations can encounter
difficulties to communicate effectively. Ineffective communication affects trust building, team in-
teraction, and team bonding, particularly between members from different cultures in different
geographical locations.

10



5 Consequences of Lack of Trust

In this section, we describe the consequences of lack of trust in distributed Agile software devel-
opment based on the concepts Lack of Commitment, Ineffective Collaboration, Team Conflict, and
Poor Team Performance.

5.1 Lack of Commitment

Commitment to a team often translates into a willingness to collaborate with team members and
improved team performance [13]. Conversely, a lack of commitment reduces team performance and
leaves the team members not willing to participate in the project activities. Lack of commitment
arises when team members were dissatisfied with the outcome of a discussion, or team members
feel that they have not been heard when a decision is made. Hence, they do not trust that the
decision was effective and do not buy-in to the decision. Lack of commitment even from just one
member in the team can affect the overall performance of the team, and reduce team velocity and
productivity:

“Lots of times we missed release deadlines. It was not that we couldn’t find the solutions
but because of [lack of] trust, the team was not committed. ” – P8, Developer.

When team members feel that they have not been given adequate opportunity to express them-
selves, they become rather passive in the discussion and do not wish to contribute to the ongoing
discussions:

“Meetings were happening without any purpose, without any useful discussions, and
without any active participation from the team.” – P43, Agile Coach.

In some worst cases, team members do not show interest in delivering basic business values
to the customer. This can affect not only the ongoing project, but also future projects from that
particular customer:

“The team never prepared properly for the demos, and [the demos] weren’t ‘business
meaningful’ to anyone. There was just a lack of trust amongst the team members.
People should be honest about what’s preventing them from moving forward.” – P30,
Agile Coach.

Lack of commitment can force team members to disregard their responsibilities and reduce
collaboration with the rest of the team members. Teams should ideally move forward with complete
buy-in from every member, even those who suggested alternative ideas or disagreed to the ideas
that other members suggested.

5.2 Ineffective Collaboration

Trust motivated individuals in a cohesive team are willing to collaborate and cooperate with others
in the team. Collaboration brings together the knowledge, experience and skills of team members
to achieve the collective goals of a project [4]. Conversely, in the absence of trust, collaboration was
affected in the team. Some customers and managers only collaborated with some selected members
rather than the entire team:

11



“When a controversial decision has to be made, the client and [project] manager would
listen to developers there [in the USA] than the developers in India.” – P12, Developer.

Some team members could not collaborate with other members in the team because one side
of the team did not engaged them in the activities, such as a decision making, that ideally require
all the team members to participate:

“In a distributed [project], a decision has to be made by the teams in both locations.
But, we haven’t the ability to make our own decision. Mostly the Indian team will be
waiting for a decision from the USA team. Trust in team is crucial [for collaboration].”
– P29, Scrum Master.

Some team members were only willing to complete the bare essentials of their job, and were
reluctant to collaborate further to assist other team members collectively achieve the project goals:

“It is hard to convince the junior developers that their work is not done after writing
the code alone.” – P25, Scrum Master.

Agile methods particularly emphasize on collaboration. The Agile Manifesto states that indi-
viduals and their interactions, and customer collaboration are valuable for Agile projects [24]. One
of the principles behind the Agile Manifesto states that “business people and developers must work
together daily throughout the project” [24]. The successful realization of Agile software develop-
ment projects is closely associated with the effective collaboration between the team members, and
therefore it is imperative for team members to trust each other in order to ‘work well together’.

5.3 Team Conflict

Conflict are serious disagreements that arises from the clash of opinions, perceptions, or values in
the area where individuals are concerned about the outcome [33, 65]. A team member recognises
the differences in approaches to solving a problem and perceives that one’s approach is correct and
the best. This results in conflicts that end in discussions where the team members openly discuss
their own point of view and argue against other’s point of views. Such ‘healthy and constructive’
conflicts are in fact needed to produce effective and meaningful decisions.

Participants, however, describe that conflicts in the distributed teams often arise from the
absence of trust among team members. Such conflicts can stir emotions of an individual, and give
rise to negative behaviours such as ‘finger-pointing’ and ‘backstabbing’ between the members:

“They are being political because they seem to be your friend but they are stabbing you
at the back. There’s a big lack of trust. I find it very hard to work with the rest of the
team.” – P6, Developer.

Customers whom did not trust the development team members have unrealistic expectations
that hurt the team. Unresolved conflicts can distract team members, undermine team spirit and,
ultimately, affect team performance:

12



“The customer’s expectation is that we are available at any point of the day and night.
Maybe when we have the customer’s trust, we’ll be in a position to say, “Hey customer,
we will not be available in the middle of the night. This is hurting the team”. ” – P25,
Scrum Master.

Some team members do not return phone calls or e-mails, hoards information that need to be
shared, and do not follow-up to resolve the problems that arise in the projects. Failing to confront
conflicts that arise in the team can worsen the conflict and effect customer satisfaction:

“We let the customers know about this [problem] seven months earlier but we didn’t
[follow-up] with them. When we install the software, the problem started appearing and
the customers were shouting at us that it didn’t work. Basically, there was no trust in
the team.” – P9, Developer.

Conflicts are inevitable in a diverse team that comprises of knowledgeable individuals working
in the area of their expertise. In the absence of trust, when conflicts arise, some team members
start blaming someone for it, or completely ignore the situation that causes the conflict rather than
resolving the problem. A conflicts has to be acknowledged, managed and resolved so that it does
not negatively affect the customer satisfaction and team performance.

5.4 Poor Team Performance

A standard level of performance is expected from the members of a team on the initiative and
effort that the team members are able to demonstrate [4, 43]. An Agile team that follows the
principle to ‘satisfy the customer through early and continous delivery of valuable software’ [24],
however, expects a significantly high level of performance from its members. Poor performance of
a team means that the team has not achieved the outcomes that were collectively agreed between
the development team and the customer:

“When trust breaks down, the ability of the team is affected, the velocity of the project
goes down, [and] you will not get that linear [and] stable velocity across team members.”
– P3, Scrum Master.

Some team members were delaying their work, and some did not put in enough effort to achieve
the goals of the project:

“Here some team members have the tendency to hide the problems or delay the work.
The team is not focused on its goal. ” – P30, Agile Coach.

In some cases, poor team performance can lead to failure of a software development project.
Teams that did not collaborate and communicate effectively, and build trust in the team were not
able to meet the goals of the project:

“We were behind [schedule], not on the right track, and the project did not meet the
client’s expectation. At this level, we had to build the trust that was lacking in the first
six months of the project, and request the client to allow us to do [the project] all over
again.” – P19, Developer.

13



Lack of trust affects team performance in a varying degree. Some team members did not monitor
and provide feedback on each others performance, whereas some were not focused on the tasks,
deadlines and deliverables. Poor performance of even one member of a team can affect the overall
performance of the entire team.

6 Discussion and Related Work

In this section we discuss our findings in the light of related work. We realize that trust plays
an important role in determining the success and failure of both Agile and non-Agile projects for
collocated and distributed teams. The knowledge on what causes trust to decline, what are the
adverse effects of absence of trust and how to build trust in a team, can create an awareness on
the importance of trust in software development teams. Several studies particularly investigate the
impact of trust in non-Agile teams [5, 45, 51, 54, 60], and Agile teams [35, 48]. We are only able
to discuss selected studies due to space constaints.

On investigating mature XP teams, Robinson and Sharp [59] argue that absence of trust would
affect the sense of respect, responsibility, concern for the quality of working life and faith in the
ability of the Agile team, and members of the team would doubt that the team as a whole could
deliver business values to customers. We found that, in the absence of trust, team members
exhibited lack of commitment to the work being carried out. Some members were not engaged
in useful discussions, some members were not effectively participating in the meetings, and some
members were not prepared for the demos with the customers. The team members disregarded
their responsibilities to the customer and fellow members of the team in one way or another.

Moe and Smite [51] conducted an empirical study to understand the causes and consequences
of lacking trust in global software development in four software projects. All these projects report
that lack of trust affected team performance and resulted in a decrease in product quality and team
velocity. From our study we found that, in the absence of trust, team members were less focused
on the project goals, the projects were behind schedule, and the project deliverables did not meet
customer’s expectation.

Based on a study on customer communication in a large globally distributed Agile software
development, Korkala, Pikkarainen and Conboy [44] found that the lack of trust was one of the
reasons for the customer not involved in the implementation of distributed Agile projects. The
reseachers suggest that efficient communication is one of the most essential factors in distributed
software development. Piccoli and Ives [57] report the findings from a longitudinal study of virtual
teams that incongruence, particularly obstacles to effective communication, and reneging create the
potential for trust decline. We found that ineffective communication, particularly during the daily
meetings and demo for customers, and failure to recognize the need for different communication
tools and techniques for the team members, create circumstances for trust decline.

Through a case study of an outsourced information systems development project, Lander,
Purvis, McCray and Leigh [45] argue that building trust amongst team members in different lo-
cations is especially difficult because the individuals involved in the project often have little or no
prior experiences working together with other individuals in the team, and yet rely on one another’s
expertise and judgement for a successful project. Oza, Hall, Rainer and Grey [54] conducted a study
based on an empirical investigation of eighteen mature software companies located in India.

14



The reseachers describe several critical success factors to achieving an initial trust, and eventually
maintaining trust in software outsource relationships, and suggest that trust is considered to be
very fragile in outsourcing relationships. Our participants acknowledged that building trust between
team members from different locations in project-oriented contexts can be difficult, and therefore
some distributed teams take the necessary measures to avoid the causes for trust to decline in the
team.

7 Limitation

The inherent limitation of a Grounded Theory study is that the findings are grounded in the specific
contexts explored in the research [2, 38]. These contexts were dictated by the availability of the
Agile practitioners to participate in this study, and by our choice of research destinations. We do
not claim that our findings are universally generalisable to all distributed Agile projects, but rather
our findings accurately characterise the contexts studied.

8 Conclusions

Software companies are increasingly venturing into distributed Agile software development. Several
concerns need to be addressed to realise the benefits of integrating Agile methods in distributed
projects. Through a Grounded Theory study that was carried out over a period of three years and
gradually involved 45 Agile practitioners, several key concerns emerged from our analysis. Some
of them were common to any distributed software development, whereas some were specific for
distributed Agile software development. It was found that trust is an important concern generally
for Agile teams, and particularly for distributed Agile teams. The self-organizing nature of the
‘empowered’ Agile teams, that typically hold significant authority to perform highly interdependent
tasks, increases the importance of trust in software development. Hence, we formulate related
research questions to investigate the impact of trust in distributed teams. In this paper we report
the causes and consequences of lack of trust, and in a companion paper [19] we report the techniques
for building trust in distributed Agile teams. There is an increasing realisation that understanding
the causes and consequences of lack of trust in teams can pave ways for building trust in project-
oriented contexts, and subsequently contribute to the success of a distributed Agile project.

We acknowledge that there can be other causes and consequences of lack of trust that can be
useful and effective in their own contexts, but did not emerge from our analysis. The understanding
of trust in distributed Agile projects gained from this study could be used as a foundation for
conducting future studies involving teams working on different Agile projects in different contexts.
Further studies could also compare successful distributed Agile projects with unsuccessful projects
to consider the ramifications of trust.

9 ACKNOWLEDGMENTS

Thanks to the Agile practitioners who participated in this study. This study is supported by
Universiti Tenaga Nasional (Malaysia) PhD scholarship.

15



References

[1] N. Abbas, A. M. Gravell, and G. B. Wills. Historical roots of Agile methods: Where did Agile
thinking come from? In Agile Processes in Software Engineering and Extreme Programming,
volume 9 of Lecture Notes in Business Information Processing, pages 94–103. Springer Berlin
Heidelberg, 2008.

[2] S. Adolph, W. Hall, and P. Kruchten. A methodological leg to stand on: Lessons learned using
grounded theory to study software development. In Proceedings of the 2008 Conference of the
Center for Advanced Studies on Collaborative Research, pages 166–178, New York, NY, USA,
2008. ACM.

[3] G. Allan. The use of grounded theory as a research method: warts all. In European Conference
on Research Methodology for Business and Management Studies, pages 9–19. MCIL, 2005.

[4] G. Asproni. Motivation, teamwork, and Agile development. Agile Times, 4(1):8–15, 2004.

[5] M. A. Babar, J. M. Verner, and P. T. Nguyen. Establishing and maintaining trust in soft-
ware outsourcing relationships: An empirical investigation. Journal of Systems and Software,
80(9):1438–1449, 2007.

[6] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, Upper Saddle
River, 2000.

[7] I. Bose. Lessons learned from distributed Agile software projects: A case-based analysis.
Communications of the Association for Information Systems, 23(1):619–632, 2008.

[8] R. P. Bostrom. Successful application of communication techniques to improve the systems
development process. Information & Management, 16(5):279–295, 1989.

[9] E. Carmel. Thirteen assertions for globally dispersed software development research. In Pro-
ceedings of the Thirtieth Hawaii International Conference on System Sciences, volume 3, pages
445–452, 1997.

[10] A. Cockburn. Agile Software Development. Addison-Wesley, Indianapolis, 2002.

[11] A. Cockburn. Crystal Clear: A Human-Powered Methodology for Small Teams. Addison-
Wesley Professional, 2004.

[12] A. Cockburn and J. Highsmith. Agile software development: The people factor. Computer,
34(11):131–133, 2001.

[13] A. Crossman and L. Lee-Kelley. Trust, commitment and team working: The paradox of virtual
organizations. Global Networks, 4(4):375–390, 2004.

[14] K. Crowston, J. Howison, C. Masango, and U. Y. Eseryel. The role of face-to-face meetings in
technology-supported self-organizing distributed teams. Professional Communication, IEEE
Transactions on, 50(3):185–203, Sept. 2007.

16



[15] S. Dorairaj, J. Noble, and P. Malik. Understanding the importance of trust in distributed Agile
projects: A practical perspective. In Agile Processes in Software Engineering and Extreme
Programming, volume 48 of Lecture Notes in Business Information Processing, pages 172–177.
Springer Berlin Heidelberg, Trondheim, Norway, 2010.

[16] S. Dorairaj, J. Noble, and P. Malik. Bridging cultural differences: A grounded theory perspec-
tive. In Proceedings of the 4th India Software Engineering Conference, ISEC ’11, pages 3–10,
New York, NY, USA, 2011. ACM.

[17] S. Dorairaj, J. Noble, and P. Malik. Effective communication in distributed Agile software
development teams. In Agile Processes in Software Engineering and Extreme Programming,
volume 77 of Lecture Notes in Business Information Processing, pages 102–116. Springer Berlin
Heidelberg, 2011.

[18] S. Dorairaj, J. Noble, and P. Malik. Distribution and Agility: It’s all about trust. Technical
Report ECSTR-12-01, Victoria University of Wellington, New Zealand, January 2012.

[19] S. Dorairaj, J. Noble, and P. Malik. Understanding team dynamics in distributed Agile software
development. Technical Report ECSTR-12-02, Victoria University of Wellington, New Zealand,
January 2012.

[20] T. Dyb̊a and T. Dingsøyr. What do we know about Agile software development? IEEE
Software, 26(5):6–9, Sept/Oct 2009.

[21] C. M. Fiol and E. J. O’Connor. Identification in face-to-face, hybrid, and pure virtual teams:
Untangling the contradictions. Organization Science, 16(1):19–32, 2005.

[22] S. M. Fiore. Distributed coordination space: Toward a theory of distributed team process and
performance. Theoretical Issues in Ergonomics Science, 4(3–4):340–364, 2003.

[23] B. Fitzgerald, G. Hartnett, and K. Conboy. Customising Agile methods to software practices
at Intel Shannon. European Journal of Information System, 15(2):200–213, 2006.

[24] M. Fowler and J. Highsmith. The agile manifesto. Software Development, 9(8):28–35, 2001.

[25] D. Fox, J. Sillito, and F. Maurer. Agile methods and user-centered design: How these two
methodologies are being successfully integrated in industry. In Agile 2008 Conference, pages
63–72, 2008.

[26] S. Georgieva and G. Allan. Best practices in project management through a grounded theory
lens. Electronic Journal of Business Research Methods, 6(1):43–52, 2008.

[27] B. Glaser. Theoretical Sensitivity: Advances in Methodology of Grounded Theory. Sociology
Press, Mill Valley, CA, 1978.

[28] B. Glaser. Basics of Grounded Theory Analysis: Emergence vs Forcing. Sociology Press, Mill
Valley, CA, 1992.

17



[29] B. Glaser. Doing Grounded Theory: Issues and Discussions. Sociology Press, Mill Valley, CA,
1998.

[30] B. Glaser. The Grounded Theory Perspective III: Theoretical Coding. Sociology Press, Mill
Valley, CA, 2005.

[31] B. G. Glaser. The constant comparative method of qualitative analysis. Social Problems,
12(4):436–445, 1965.

[32] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Sociology Press, Aldine, Chicago, 1967.

[33] D. H. Gobeli, H. F. Koenig, and I. Bechinger. Managing conflict in software development
teams: A multilevel analysis. Journal of Product Innovation Management, 15(5):423–435,
1998.

[34] C. Goulding. Grounded theory: some reflections on paradigm, procedures and misconceptions.
Working Paper WP006/99, University of Wolverhampton, UK, June 1999.

[35] E. Hasnain and T. Hall. Investigating the role of trust in Agile methods using a light weight
systematic literature review. In Agile Processes in Software Engineering and Extreme Program-
ming, volume 9 of Lecture Notes in Business Information Processing, pages 204–207. Springer
Berlin Heidelberg, 2008.

[36] J. A. Highsmith,III. Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Dorset House Publishing, New York, USA, 2000.

[37] R. Hoda. Self-Organising Agile Teams: A Grounded Theory. PhD thesis, Victoria University
of Wellington, New Zealand, 2011.

[38] R. Hoda, J. Noble, and S. Marshall. Developing a grounded theory to explain the practices of
self-organizing Agile teams. Empirical Software Engineering, pages 1–31.

[39] R. Hoda, J. Noble, and S. Marshall. Balancing acts: Walking the Agile tightrope. In Proceed-
ings of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software Engineering,
pages 5–12, New York, NY, USA, 2010. ACM.

[40] R. Hoda, J. Noble, and S. Marshall. Organizing self-organizing teams. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering, pages 285–294, New
York, USA, 2010.

[41] E. Hossain, M. A. Babar, and J. Verner. Towards a framework for using Agile approaches in
global software development. In Product-Focused Software Process Improvement, volume 32 of
Lecture Notes in Business Information Processing, pages 126–140. Springer Berlin Heidelberg,
2009.

[42] S. L. Jarvenpaa, T. R. Shaw, and D. Staples. Toward contextualized theories of trust: The
role of trust in global virtual teams. Information Systems Research, 15, 2004.

18



[43] M. C. Jones and A. W. Harrison. Is project team performance: An empirical assessment.
Information & Management, 31(2):57–65, 1996.

[44] M. Korkala, M. Pikkarainen, and K. Conboy. Distributed Agile development: A case study of
customer communication challenges. In Agile Processes in Software Engineering and Extreme
Programming, volume 31 of Lecture Notes in Business Information Processing, pages 161–167.
Springer Berlin Heidelberg, 2009.

[45] M. C. Lander, R. L. Purvis, G. E. McCray, and W. Leigh. Trust-building mechanisms utilized
in outsourced IS development projects: A case study. Information & Management, 41(4):509–
528, 2004.

[46] L. Layman, L. Williams, D. Damian, and H. Bures. Essential communication practices for
Extreme Programming in a global software development team. Information and Software
Technology, 48(9):781–794, 2006. Special Issue Section: Distributed Software Development.

[47] A. Martin, R. Biddle, and J. Noble. The XP customer team: A grounded theory. In Proceedings
of the AGILE, pages 57–64, 2009.

[48] O. McHugh, K. Conboy, and M. Lang. The impact of Agile practices on trust in software
project teams. Software, IEEE, PP(99):1, 2011.

[49] O. McHugh, K. Conboy, and M. Lang. Using Agile practices to build trust in an Agile team:
A case study. In Information Systems Development, pages 503–516. Springer New York, 2011.

[50] N. B. Moe, T. Dingsoyr, and T. Dyba. Understanding self-organizing teams in Agile software
development. In ASWEC 2008, 19th Australian Conference on Software Engineering, pages
76–85, March 2008.

[51] N. B. Moe and D. Šmite. Understanding lacking trust in global software teams: A multi-
case study. In J. Münch and P. Abrahamsson, editors, Product-Focused Software Process
Improvement, volume 4589 of Lecture Notes in Computer Science, pages 20–34. Springer Berlin
Heidelberg, 2007.

[52] A. Moghaddam. Coding issues in grounded theory. Issues In Educational Research, 16:52–66,
2006.

[53] S. Nerur, R. Mahapatra, and G. Mangalaraj. Challenges of migrating to Agile methodologies.
Communications of ACM, 48:72–78, May 2005.

[54] N. V. Oza, T. Hall, A. Rainer, and S. Grey. Trust in software outsourcing relationships: An
empirical investigation of Indian software companies. Information and Software Technology,
48(5):345–354, 2006.

[55] M. Paasivaara and C. Lassenius. Could global software development benefit from Agile meth-
ods? In Proceedings of the IEEE International Conference on Global Software Engineering,
pages 109–113, Washington, DC, USA, 2006. IEEE Computer Society.

19



[56] S. Palmer and M. Felsing. A Practical Guide to Feature-Driven Development. Pearson Edu-
cation, 2001.

[57] G. Piccoli and B. Ives. Trust and the unintended effects of behavior control in virtual teams.
MIS Quarterly, 27(3):365–395, 2003.

[58] B. Ramesh, L. Cao, K. Mohan, and P. Xu. Can distributed software development be Agile?
Communication of the ACM, 49(10):41–46, 2006.

[59] H. Robinson and H. Sharp. The characteristics of XP teams. In J. Eckstein and H. Baumeister,
editors, Extreme Programming and Agile Processes in Software Engineering, volume 3092 of
Lecture Notes in Computer Science, pages 139–147. Springer Berlin / Heidelberg, 2004.

[60] R. Sabherwal. The role of trust in outsourced IS development projects. Communications of
ACM, 42:80–86, February 1999.

[61] R. S. Schreiber and P. N. Stern. Using Grounded Theory in Nursing. Springer Publishing,
Broadway, New York, 2001.

[62] K. Schwaber and M. Beedle. Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2001.

[63] L. Seiyoung and Y. Hwan-Seung. Distributed Agile: Project management in a global environ-
ment. Empirical Software Engineering, 15(2):204–217, 2010.

[64] H. Sharp and H. Robinson. Collaboration and coordination in mature eXtreme programming
teams. International Journal of Human-Computer Studies, 66(7):506–518, 2008. Collaborative
and Social Aspects of Software Development.

[65] K. K. Smith and D. N. Berg. A paradoxical conception of group dynamics. Human Relations,
40(10):633–657, October 1987.

[66] J. Stapleton. Dynamic Systems Development Method: The Method in Practice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[67] A. Strauss and J. Corbin. Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Sage Publications, 1998.

[68] S. D. Teasley, L. A. Covi, M. Krishnan, and J. S. Olson. Rapid software development through
team collocation. Software Engineering, IEEE Transactions on, 28(7):671–683, July 2002.

[69] E. Whitworth and R. Biddle. The social nature of Agile teams. In Proceedings of the AGILE,
pages 26–36, Washington, DC, USA, 2007. IEEE Computer Society.

[70] J. Winkler, J. Dibbern, and A. Heinzl. The impact of cultural differences in offshore
outsourcingcase study results from GermanIndian application development projects. Infor-
mation Systems Frontiers, 10:243–258, 2008.

20


	Introduction
	Background
	Research Method
	Context
	Data Collection
	Data Analysis
	Theoretical Coding

	Causes of Lack of Trust
	No Sense of Belonging
	Sense of Vulnerability
	Poor Team Bonding
	Lack of Cultural Understanding
	Missing Face-to-Face Interaction
	Ineffective Communication

	Consequences of Lack of Trust
	Lack of Commitment
	Ineffective Collaboration
	Team Conflict
	Poor Team Performance

	Discussion and Related Work
	Limitation
	Conclusions
	ACKNOWLEDGMENTS

