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Abstract
The ability to express confinement properties of objects is crucial
in the context of component-oriented software development. Re-
cently, several techniques based on type systems have been de-
veloped to express and check confinement properties for object-
oriented programs. Unfortunately, learning these often quite com-
plex type systems is a burden to programmers. Furthermore, with-
out inference techniques, they require nontrivial code annotations.
In this paper, we propose a very lightweight approach to add encap-
sulation support to a Java-like language. We annotate class declara-
tions and new statements to express which classes instantiate new
components and which objects are confined to their surrounding
component. To check encapsulation we developed a modular static
analysis based on an abstract interpretation of single components.
Successfully analyzed components will never break confinement
regardless of the program they are used in.

1. Introduction
Combining components to form complex software systems is a
very challenging task: components may interfere with each other,
cause unexpected side-effects and introduce bugs that are hard to
find, because they only appear in the complete system but not when
the components are considered individually. Especially if the com-
ponents come from different origins e.g. third party libraries, for
which one may not even have the sources, the effects of sticking
them together are hard to predict. The main reason for these prob-
lems is that current object-oriented programming languages work
with classes, objects and references but have a weak notion of com-
ponents (or none at all). A programming language with a compo-
nent model which defines clear component boundaries and allows
the confinement of the internal representation, eases the develop-
ment of component-oriented software.

Recently different solutions to get confinement and aliasing un-
der control have been proposed. The most promising ones are own-
ership types and ownership domains [2, 3, 6, 11, 13, 14, 16, 31],
which use static type checking to control aliasing of objects in the
internal representation. Type systems that are expressive enough to
support common programming patterns are quite complex and re-
quire the normal type information to be extended with parametric
ownership annotations, which is very challenging for the average
programmer. To reduce the annotation burden, type inference has
been used [1, 3, 6, 7, 19, 25, 27], but the programmer still has to
understand the complex type systems.

In this paper, we propose a very lightweight approach to en-
sure confinement, which lets the programmer express the desired
confinement when creating objects. Our approach is the first one
for ensuring confinement in the box model, which is not based on
type systems but on abstract interpretation of components. We use
a small Java-like language with a lightweight component model

which is a slightly simplified version of the box model [27–29].
We developed a static, modular analysis based on abstract inter-
pretation of boxes, to ensure the confinement of components. The
analysis takes the implementation of a box and executes it together
with its most-general client. The most-general client is an abstrac-
tion of all possible clients and creates all possible traces through the
box. If the execution succeeds, the box never exposes any confined
object regardless of the program that uses the box.

The remainder of the paper is structured as follows. In Section 2
we describe syntax, semantics and confinement properties of our
language. In Section 3 we present the abstract interpretation and
abstract semantics. The abstract interpretation is used to define a
confinement analysis for components (Section 4). Section 5 dis-
cusses related work and Section 6 contains our conclusion.

2. Language and Concrete Semantics
We present a confinement analysis for components based on a
simplified version of the box model [28]. The box model extends
the object-oriented programming world of classes, objects, object-
local state and methods with the notion of a box. A new component
instance, called a box, is implicitly created when a new object of
a so-called box class is instantiated (a class is called a box class if
annotated by box). The object created along with the box is called
the box owner. A box is essentially a dynamically created group of
objects containing its owner and all objects created by objects in
the box. An object can be created as confined to a box b adding the
annotation confined to the creation expression. It is not allowed
to reference confined objects from outside of b. The owner and the
other non-confined objects of the box are called boundary objects.
Boundary objects may be referenced from everywhere.

The most important property of the box model is that confined
objects stay confined to the box and no reference to these objects
will ever leave the box. This guarantees that all accesses to the box
are done via methods of the boundary objects and therefore their
effects are under the control of the box instance. Such boxes are
called encapsulated:

DEFINITION 1 (Encapsulated box).
A box is called encapsulated iff confined objects cannot be refer-
enced from the outside.

Figure 1 presents a linked list class with iterators as a code
example. Figure 2 shows a box of this class, after a client added two
elements and created and moved an iterator. The code differs from
Standard Java by two annotations. First, the list class is annotated
with box. This means that each instantiation of this class also
creates a new box. Second, the creation of Node objects in the add
method is annotated with confined. This ensures, that the objects
created here are confined to the box and these objects are never
exposed.



box class List {
Node head;
void add(Object o) {

Node t = head;
head = new confined Node(t,o);

}
Iterator iter() {

Iterator i = new Iterator(head);
return i;

}
}

class Node {
Node next;
Object value;
Node (Node n, Object o) {

next = n;
value = o;

}
Node next() {...}
Object value() {...}

}

class Iterator {
Node current;
Iterator (Node n) {

current = n;
}
Object next() {

Node t = current;
current = current.next();
return t.value();

}
}

Figure 1. An implementation of List component
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Figure 2. Box structure of a program using the list component

2.1 Syntax
For the formal definition of the analysis, we use a small object-
oriented Java-like language, whose syntax is shown in Figure 3.
Programs consist of class declarations and a main statement that
instantiates a box class. Class declarations are annotated with box
for box classes and helper for normal classes. Statements in our
language are labeled. The new statement takes an annotation about
the confinement of the new object and the return statement is
only allowed as the last statement of a method body. We currently
do not support nested boxes, i.e., a new box is always created
outside the current box. Owners may not be confined. Fields are
object private, i.e. they can only be accessed on this. For the rest
of the paper we assume that all labels, variables (except this),
fields and formal parameters are unique. For readability, we drop
the keywords helper and boundary as well as the labels, if they
are not explicitly needed.

P := CD {C x; x = new C(); x.m(null)}
CD := cm class C [extends C]{C f; M}
M := C m (C x) {C x; S}
S := [S S]l

| [x = e;]l

| [x = new nm C();]l

| [x = x.m(x);]l1,l2

| [x = this.f;]l

| [this.f = e;]l

| [if (x) {S} else {S}]l
| [return x;]l

| ε (empty statement)
e := x | null

Annotations
cm := box | helper
nm := confined | boundary

l ∈ L (unique labels)
C ∈ class names
x ∈ variable names
f ∈ field names
m ∈ method names

Figure 3. Abstract syntax of our language

2.2 Semantics
In this section, we sketch the concrete semantics of our language.
We use a small step semantics, which aborts the program execution
whenever encapsulation is broken. We use the following notations,
x denotes sets with elements xi, S(x) looks up the value of x in the
topmost stack frame of the stack S andH(øid) looks up objects in
the heap.

2.2.1 Program State
A program state (cf. Figure 4) is either a pair of heap and stack or
the abortion state. Heaps are mappings from object identifiers to
objects and stacks consist of frames mapping variables to values.

To track confinement of objects, each object has a reference to
the owner of the box, it belongs to. The owner is set during creation
of the object and does not change. Furthermore, each object stores
a boolean flag, describing whether it is confined. With this flag and
the owner, we can decide if passing an object reference is allowed.
Additionally, each object stores its exposed status. An exposed
object is a boundary object, which has been passed as parameter
or return value to an object in a different box, i.e., a reference left
the owning box. This flag is write-only in the concrete semantics,
but it simplifies the definition of the abstraction for the analysis.
Values are either object identifiers or null.

We say that a program state is valid, if it is a reachable state in
some program.

2.2.2 Semantic Rules
The concrete semantics checks confinement dynamically such that
a program can never violate encapsulation. Execution terminates in
state >abort whenever a violation would occur.

Most semantic rules are standard and modify heap and stack
as usual. The interesting rules are the ones that guarantee the
confinement. These are the rules for calls and returns (Figure 5).
For calls, we have to distinguish between internal calls (the this-
object and the receiver are in the same box) and external calls (the
call passes a box border). The distinction is done in the function
samebox by comparing the owners of the receiver object and this.



σ ::= (H,S) | >abort program state
H ::= oid 7→ o heap
S ::= ε | [this 7→ oid, x 7→ v] · S stack
o ::= (oid, C, conf, exp, f 7→ v) object
v ::= oid | null values

oid object identifiers
f fields of an object
x local variables and method parameters
C type of the object
conf, exp confinement, exposure status

Figure 4. Concrete program states

CALL-INTERNAL
samebox((H,S), this, x2) C = type(H(S(x2)))

p = params(C, m) y = localVars(C, m)
S ′ = [p 7→ S(x), y 7→ null, this 7→ S(x2)] · S

(H,S), x1 = x2.m(x);⇒
(H,S ′), body(C, m) x1=retValCm;

CALL-EXTERNAL
¬samebox((H,S), this, x2)

confined(H(S(xi))) = false for all xi ∈ x

H′ = expose(x, (H,S)) C = type(H(S(x2)))
p = params(C, m) y = localVars(C, m)

S ′ = [p 7→ S(xi), y 7→ null, this 7→ S(x2)] · S
(H,S), x1 = x2.m(x);⇒

(H′,S ′), body(C, m) x1=retValCm;

CALL-EXTERNAL-ABORT
¬samebox((H,S), this, x2)

confined(H(S(xi))) = true for some xi ∈ x

(H,S), x1 = x2.m(x);⇒ >abort

Figure 5. Call-rules of the concrete semantics

For internal calls, a new stack frame with the actual parameters and
this set to the receiving object is created and pushed on top of
the existing stack. The execution continues with the method body.
When executing the return statement at the end of the method body,
the return value is stored in the special variable retValCm, which is
then copied into the variable x1. Like all other variables retValCm
has to be unique, therefore we have a variable retValCm for each
method m in each class C.

For external calls, the rules additionally check confinement. If
some of the objects that are passed as actual parameters have the
confined flag set, i.e., have been created with the confined an-
notation, the execution is aborted (CALL-EXTERNAL-ABORT). Other-
wise, the function expose is used to set exposed flag of the all actual
parameters to true and the execution continues like in the internal
case.

For the execution of return statements across box borders, we
do the same checks for the return value (not shown).

2.2.3 Characterizing Encapsulation
Based on the semantics, we can state precisely when a box is
encapsulated. Let B be a box class. A codebase CD of B is a set
of classes such that

1. B ∈ CD

2. CD is declaration closed, i.e., all classes used in CD are
declared in CD.

3. There is no proper subset of CD satisfying (1.) and (2.).

In the following, we assume that a box class is always given with
a particular codebase. A program P comprises a box class B, if P
is a context correct extension of CD where CD is the assumed
codebase of B.

DEFINITION 2 (Encapsulated box class). A box class B is called
encapsulated if the boxes created from B are encapsulated.

COROLLARY 1 (Encapsulated box class). A box class B is encap-
sulated iff there is no program P comprising B such that >abort is
reachable from P ’s initial state.

3. Abstract Semantics
The defined language enforces confinement at runtime. In order to
detect bugs as early as possible, and to guarantee that programs will
not abort due to a confinement error, a static approach to enforce
confinement is needed. Additionally, in the context of component-
oriented software development, it is useful to give guarantees not
only about the behavior of whole programs, but also about sin-
gle components. This simplifies the reuse of components, because
combining components does not have side-effects for the confine-
ment.

The idea is to statically guarantee that a box class B does not
break the confinement property in any context. To achieve this,
we put B into a context that first creates an instance b of B and
then generates all possible traces through it. We call this context
the most-general client (MGC). The MGC is a non-deterministic
program that can call any method on any of the exposed objects
of b. As parameters for the method calls, the MGC uses either
objects that have been exposed by the box, or objects instantiated
from classes of MGC. In the classes of the MGC, all method
implementations behave non-deterministically as well.

The states of the program MGC + B can be partitioned into a
part that belongs to b, the box state, and the rest. The box state
contains all objects belonging to b and all stack frames, in which
this references an object in b.

The last problem for static analysis is that the space of possible
box states is infinite, because the most general client can generate
infinitely many different traces with an unbounded number of ob-
jects and call stacks of an unbounded size. In order to make the
analysis computable, we have to abstract this infinite state space to
a finite one.

This leads to an analysis based on an abstract interpretation of
the MGC + B program. The analysis takes as input the codebase
of B and is implicitly parameterized with the box class B. The
component is executed with an abstract semantics on the abstract
state space. If the abstract execution does not reach the abortion
state, we can conclude that for every program the box will never
violate encapsulation.

In the following, we describe the abstraction and the abstract se-
mantics in more detail. A comprehensive presentation is contained
in [20].

3.1 Abstract State
To deal with the infinite concrete state space, we have to abstract
concrete program states as defined in Figure 4 to abstract box states.
The definition of an abstract box state is given in Figure 6. The main
idea of the abstraction is to consider only one (abstract) object per
creation site, i.e., one per new-statement.1 This means that e.g. a

1 This is a common approach for static analysis of heap manipulating pro-
grams, cf. [10, 24, 33, 34].



B ::= (Ha,Sa) | >abort abstract box state
Ha ::= l 7→ oa abstract box heap
Sa ::= this 7→ vt, x 7→ va abstract stack
oa ::= (C, conf, exp, f 7→ va) abstract object
va ::= l | null | extRef abstract values
vt ::= l | extRef | ⊥ this values
l ::= lo | ln labels

ln labels of new statements
lo label of the owner object
f fields of an object
x local variables and method parameters
C type of the object
conf, exp confinement, exposure status

Figure 6. Abstract box states

list with several node objects which are all created by the same
statement, has only one abstract node in the abstract state (cf. Fig-
ure 7). This leads to a finite number of so-called abstract objects.
As object identifier, we use the label of the creation statement. Be-
cause the owner object is always created by some code outside the
box, we do not have a new-statement for this object. Therefore we
use the special label lo for the owner. Besides these labels, an ab-
stract value is either null or the special reference extRef, which
represents references to objects outside the box. This allows to ab-
stract all objects of the program context and is necessary to make
the analysis modular. In consequence of this abstraction, we have a
finite set of values.

The second idea to approximate possible concrete behavior is to
use sets of abstract values for fields, parameters and local variables.
We write va to denote sequences of sets of values. This is needed,
because in the concrete states the field f of objects created at the
same statement can reference different objects. Similarly in the
abstract stack, the value of an abstract variable can correspond to
several concrete values. An exception is made for this, to allow
the precise tracking in which object a method is executed. If this
has the value extRef, the control flow is currently in an object
outside the box. The value ⊥ never occurs during the execution
of a box, but it simplifies the definition of the abstraction functions
(see below).

Abstract objects are defined as tuples of a confinement and an
exposure status, the object’s type and a mapping of fields to sets of
abstract values. Abstract heaps are mappings from labels to abstract
objects. To avoid infinite call stacks, we use a flat mapping of
local variables (parameters) to sets of values as abstraction for the
concrete stack. We use Sa(x) and Ha(l) to look up values in the
stack and heap respectively and [x 7→ va]Sa and [l 7→ o]Ha for
updates of the stack and the heap.

Galois Connection
To use abstract interpretation we have to relate valid concrete pro-
gram states and abstract box states. Because our analysis is mod-
ular, i.e., it analyzes the codebase of a single component, all func-
tions defined below are implicitly parametrized with the box class
B of the component. First, we define a representation function β,
which maps a valid concrete program state to an abstract box state
and then use β to construct an abstraction function α and a con-
cretization function γ. With α and γ we then define a Galois con-
nection, which relates sets of concrete valid program states to sets
of abstract box states.

We first need some auxiliary definitions. The set Iσ contains
the object identifiers of objects in the concrete heap of the state σ,

whose owners are of type B, i.e. all identifiers of objects belonging
to a box of box class B. We assume a function cs that takes a con-
crete object identifier and returns the label of the new statement,
at which the corresponding object has been instantiated2. Concrete
values are abstracted by the function abstractv . References to ob-
jects that are not part of some box of the box class B are abstracted
to extRef, other references are abstracted to the corresponding label
returned by cs, and null stays null.

For heap abstraction, all concrete objects of a heap H, which
have been created with the same label and are part of a box of
box class B are merged into a single abstract object. This is done
by the function abstracto, which takes a set of concrete objects
and returns an abstract object, which is exposed if at least one
concrete object was exposed and whose fields store the union of
the abstraction of the concrete values.

abstracto(σ, o) = (C, c, ea, f 7→ va)

where o = (oid, C, c, e, f 7→ v), ea =
∨
oi∈o exposed(oi) and

va = ∪oi∈o abstractv(σ, oi(f)). Using these functions the ab-
straction of a heap can be defined as

abstractH(σ) = l 7→

{
abstracto(σ, o) l ∈ cs(Iσ)

(C, c, false, f 7→ {}) otherwise

where cs(Iσ) = {cs(oid)|oid ∈ Iσ}, o are all concrete objects in
σ created at label l, C and c are given by the new statement with
label l. Objects (C, c, false, f 7→ {}) can be seen as placeholders
for objects that have not (yet) been created.

The concrete stack is abstracted by the function abstractS . Let
Fσ denote the set that contains all stack frames of the state σ, which
correspond to some execution inside the box, i.e., frames with a
value for this contained in Iσ . In the abstract stack the value of
a variable x is the union of the abstraction of all values of x in all
stack frames of Fσ . An exception is made for this, which gets the
abstract value of the topmost stack frame, if the frame is contained
in Fσ and extRef otherwise.

The representation function β is defined as

β(>abort) = >abort
β(σ) = (abstractH(σ), abstractS(σ))

Note that concrete program states may contain multiple instances
of the same box, which will be abstracted to a single abstract box.

For the Galois connection we choose (Pσ,⊆) where Pσ is the
power set over all valid concrete program states as the complete
lattice. To define a complete lattice on the abstract state space, we
define a partial order ≤ on box states. B1 ≤ B2 means that B2 is
less precise about the values of fields and variables (parameters)
and about the exposed status of objects.

(Ha,Sa) ≤ (H′a,S ′a) ⇔ Ha ≤ H′a ∧ Sa ≤ S ′a
B ≤ >abort for all B

H1
a ≤ H2

a ⇔ H1
a(l) ≤ H2

a(l)
S1
a ≤ S2

a ⇔ S1
a(x) ⊆ S2

a(x) for all variables x,
S1
a(this) = S2

a(this) or S1
a(this) = ⊥

o1 ≤ o2 ⇔ e1 ⇒ e2,
o1(f) ⊆ o2(f) or extRef ∈ o2(f)

where oi = (C, c, e, f 7→ vai) for i = 1, 2. Using ≤ we define
a subset relation on sets of box states that takes the precision into
account.

B ⊆′ B′ ⇔ ∀Bi ∈ B,∃Bj ∈ B′ : Bi ≤ Bj

2 The creation site could be added as an additional component to the repre-
sentation of concrete objects.
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Figure 7. Abstract state of the list box in Figure 2

It is straightforward to show that (PB,⊆′) withPB being the power
set over the abstract state space is a complete lattice.

We define the abstraction and concretization functions in terms
of the representation function β.

α : Pσ → PB
γ : PB → Pσ
α(σ) = {β(σi) | σi ∈ σ}
γ(B) = {σ | β(σ) ∈ B}

This gives us the Galois connection (Pσ, α, γ,PB) over (Pσ,⊆)
and (PB,⊆′).

3.2 Abstract Semantics
The abstract reduction function⇒∗a takes a set of abstract box states
and returns a set of pairs each consisting of an abstract state and a
(potentially empty) statement, describing the remaining execution.
⇒∗a is defined in terms of an abstract transformer function ⇒a

which executes a statement S on a single abstract state.

B, S ⇒∗a
⋃
i

(B′i, S′i)

where Bi, S ⇒a (B′i, S′i) for all Bi ∈ B.
The abstract transformers are flow-insensitive. Like the concrete

semantics, the abstract semantics aborts the execution whenever the
confinement of an object would be violated.

The most important rules are the rules for handling calls and
returns that result in leaving a box and the rules for entering a box.
Call and return rules are shown in Figure 8.

To execute a call to a method m (A-CALL), the call is executed on
each possible receiver.

If the receiver is a label, the call stays inside the box (A-CALL-
INTERNAL). The receiver becomes the new value for this and the
actual parameters are passed on the stack; the execution continues
with the method body. Note that we always add new parameter
values to already existing ones. This is required, because in the
abstract semantics we merge different invocations of a method.

Whenever a call is directed at the outside of the box, the receiver
of the call is extRef. This leads to the execution of the rule (A-
CALL-EXTERNAL). Like in the concrete semantics we check that
the parameter objects are not confined, and we expose all abstract
objects that are referenced by the actual parameters. We then enter
a state (H′a,S ′a) with extRef as this object, which signals that the
control flow has left the box, i.e., the control passed to the MGC. If
some of the actual parameters are confined objects, the execution is
aborted (A-CALL-EXTERNAL-ABORT). As we do not know anything
about the return value of an external call and because it is possible
that the return value is a reference to an object in a different
box, the rule uses x = extRef as the next statement. We do not
have to consider other return values from the MGC, because we
defined the lattice for box states such that a set containing extRef

is always greater than one without. External references are the
cause for breaking the confinement. Thus, extRef is the worst case
scenario that may happen to the executing component. Because our
analysis has to guarantee the absence of confinement errors, this
is a conservative approximation, which reduces the state space the
analysis has to handle.

Whenever the control flow is in the MGC (A-CALLBACK), the
MGC can initiate a callback to any method of any exposed object
or the MGC executes a return statement that returns back to the
component. The function exposed returns the labels of all exposed
objects, and the function methods looks up method bodies and
parameters of a class. For each possible call we add extRef to all
parameters.

The handling of the return statement is slightly more compli-
cated, as we do not know to which object the control passes, be-
cause the abstract stack does not record the different method in-
vocations. Therefore we return to all objects that could have initi-
ated the call. The return of an internal call (A–RETURN-INTERNAL)
puts the return value on the stack and the execution continues in all
objects, which contain a call to the returning method somewhere
in the code. It is obvious that this behavior produces more traces
through the component than the concrete semantics. This is one of
the points at which the analysis can be made more precise.

In case of a return from a call by the MGC (A-RETURN-
EXTERNAL), i.e., the control flow leaves the box after the return,
we have to ensure that the return value is not confined and we have
to expose it. Like in the case for calling a method on an external
object, the outside world may continue the execution with arbitrary
callbacks or directly return into the component again. If the return
value is confined, returning it would break the confinement, there-
fore we enter the abortion state (A-RETURN-EXTERNAL-ABORT).

The initial state Binit of a box maps the label lo to the owner
object (B, false, true, f 7→ null), all other labels to placeholders
and all variables of the stack to an empty set of values, and this
has the value extRef. Thus, the callback rule can be executed as the
first reduction. Binit is the abstraction of all valid concrete states in
which the owner has been created, but no method has been called
on it yet.

3.3 Properties of the abstract semantics
We can show that this abstract semantics is consistent with the con-
crete semantics, meaning that whenever a concrete program state σ
can be reduced with a statement S to a state σ′, the corresponding
abstract state B can be abstractly reduced with the same statement
to a set of abstract box states B′ and the resulting abstract states
are abstractions of the resulting concrete states. This gives us the
well-known picture of abstract interpretations:

σ σ′

B B′

⊆

⇒

⇒∗a

α
γ

THEOREM 1 (Consistency). Let (Pσ, α, γ,PB) be the Galois
connection from 3.1. The abstract transition function ⇒∗a is con-
sistent with the concrete transition function⇒, i.e. for all σ ∈ Pσ
and statements S

γ((B′) ⊇′ σ′ and α(σ), S ⇒∗a (B′, S′)

holds, where σ′ are the resulting states of executing S on σ

σ′ = {σ′i | ∀σi ∈ σ, σi, S ⇒ σ′i, S
′}



A-CALL
va = Sa(y) \ {null}

((Ha,Sa), x = y.m(x);)⇒a ∪i{(Ha,Sa), x = vai.m(x);}

A-CALL-INTERNAL
va 6= extRef C = type(H(va)) p = params(C, m) S ′a = [this 7→ va, p 7→ Sa(p) ∪ Sa(x)]Sa

((Ha,Sa), x = va.m(x);)⇒a {((Ha,S ′a), body(C, m) x = retValCm;)}

A-CALL-EXTERNAL
confined((Ha,Sa), xj) = false for all xj ∈ x H′a = expose((Ha,Sa), x) S ′a = [this 7→ extRef]Sa

((Ha,Sa), x = extRef.m(x);)⇒a {(H′a,S ′a), x = extRef;}

A-CALL-EXTERNAL-ABORT
confined((Ha,Sa), xj) = true for some xj ∈ x

((Ha,Sa), x = extRef.m(x);)⇒a >abort

A-CALLBACK
Sa(this) = extRef

l = exposed(Ha) (Sj , pj) = methods(type(Ha(li))) Sja = [this 7→ li, pj 7→ extRef ∪ Sa(pj)]Sa for all j

((Ha,Sa), x = extRef;)⇒a ∪li∈l{((Ha,S
j
a), Sj x = extRef;)} ∪ {((Ha,Sa), return extRef; x = extRef;)}

A-RETURN-INTERNAL

Sia = [this 7→ thisi, retValCm 7→ Sa(x1)]Sa
m = inMethod(j) this = {l | Ha(l) not a placeholder object and m ∈ methods(type(Ha(l)))}

((Ha,Sa), [return x1;]j x2 = retValCm;)⇒a ∪thisi∈this{((Ha,S
i
a), x2 = retValCm;)}

A-RETURN-EXTERNAL
confined((Ha,Sa), x1) = false H′a = expose((Ha,Sa), x1) S ′a = [this 7→ extRef]Sa

((Ha,Sa), return x1; x2 = extRef;)⇒a {((H′a,S ′a), x2 = extRef;)}

A-RETURN-EXTERNAL-ABORT
confined((Ha,Sa), x1) = true

((Ha,Sa), return x1; x2 = extRef;)⇒a >abort

Figure 8. Call and Return Rules of the Abstract Semantics

Knowing that ⇒∗a is consistent with the concrete semantics,
we can directly derive the confinement criterion, which enables a
modular analysis of confinement.

COROLLARY 2 (Confinement Criterion). If the abortion state
>abort is not reachable from the initial state Binit, a box class
is encapsulated.

The following section describes an analysis based on the ab-
stract interpretation to check for confinement of boxes.

4. Reachable State Analysis and Implementation
To check if a box is encapsulated, we use a reachable state analysis
based on the presented abstract semantics. For the analysis, we
use a dynamic flow graph representation of the box class and its
codebase. This simplifies the definition of the analysis, because
we do not have to explicitly deal with configurations containing
statements. The relation flow contains the pair of labels (l, l′) if
the statement at label l′ can be executed after the statement at l.
The label 0 is the label for the MGC. Due to exposing objects
and subtyping, new pairs can be added to the relation during the
analysis.

Using flow we can define for each label a set of entry and exit
states. Exit states are the results of executing a reduction step on
the entry states and entry states are the exit states of the previous

statements. This gives us the following equation system to solve:

entry(0) = {Binit}
⋃
{exit(l′)|(l′, 0) ∈ flow}

exit(0) = entry(0)
entry(l) =

⋃
{exit(l′)|(l′, l) ∈ flow}

exit(l) = B with entry(l), statement at l⇒∗a B
Because the state space is finite and the abstract semantics never
removes values from fields or variables, a least fixpoint for these
sets exists.

To check the confinement, we calculate all entry and exit sets.
If the abortion state >abort is not part of any set, the box is encap-
sulated. If some entry or exit set contains>abort, the component is
either not encapsulated or the abstraction is not detailed enough to
produce a precise result.

We have written a prototypical implementation of the analysis
and experimented with different examples. The implementation is
a straightforward translation of the abstract reduction function and
a fix point iteration for the equation system into about 1200 lines of
Haskell. Although the implementation has not been optimized and
does not use all possibilities given by the definition of⊆′ to reduce
the state space, it runs quite fast on our examples. In the future we
will study bigger components and see how far the implementation
scales. The tool can write graph representations of all states in the
entry and exit sets to files. The graphs are automatically laid out by
graphviz and can help the programmer to find bugs which prevent
encapsulation. Figure 9 shows an example of such a graph, to fit on
the paper an extra line break in the stack has been inserted into



the automatically generated layout. Currently, programs have to
be translated into abstract syntax by hand before the analysis can
handle them, but we are thinking of an implementation for Java
bytecode.

The language supported by the tool contains an additional con-
finement feature. Methods can be declared box local. Such local
methods cannot be called across box boundaries. This restricts the
set of callable methods on exposed objects, and allows e.g. to hide
methods that may break box invariants.

5. Related Work
To statically guarantee the confinement of objects at runtime, own-
ership types ([3, 6, 11, 13, 14] and others) have been developed.
Ownership type systems impose the owners-as-dominators disci-
pline, i.e. all accesses to encapsulated objects are done via the
owner object, and in contrast to our approach do not support multi-
object interfaces for ownership contexts like the iterator pattern.
To handle this problem, extensions to the ownership types have
been proposed. One is to use an owners-as-mutators discipline like
the Universe type system [18] does. This discipline allows to ex-
pose multiple objects for each ownership context, but all modifi-
cations of the owned objects have to be done via the owner. This
approaches cannot handle patterns, in which boundary objects di-
rectly modify the representation objects. Other proposals allow to
store dynamic aliases to owned objects on the stack [12] or allow
Java’s inner member classes to access encapsulated objects of their
parent classes [6].

Ownership domains (OD) [2] are a generalization of the own-
ership types systems. Objects are not directly owned by other ob-
jects, but by domains, which in turn are owned by objects. Each
object can have an arbitrary number of domains, which can be ei-
ther public or private. Objects in public domains can be accessed by
other domains. This is similar to our approach with boundary and
confined objects, which can be seen as two domains with a fixed
accessibility relation between them, whereas in OD the program-
mer can use link declarations to control accessibility. OD gives the
programmer a very fine-grained control to express the confinement,
but needs a lot of annotations. We think, that for most components
distinguishing confined and boundary objects together with a fixed
accessibility relation is powerful enough.

To lower the annotation burden, type inference algorithms for
ownership type systems and OD have been developed. One kind of
these algorithms works on un-annotated code and infers the owner-
ship structure by static analysis [3, 17] or by observing the runtime
behavior [19]. We think, while this approach helps understanding
un-annotated code, it is not well suited for new code, because the
programmer does not express the desired ownership structure di-
rectly, but has to check if the inferred one matches his desire. Other
inference algorithms take partially annotated code and propagate
the annotations through the rest of the system [1, 7, 25, 27]. While
this approach lowers the annotation burden significantly, the pro-
grammer still has to understand the underlying type system, which
is a challenging task for average programmers. We think that our
approach is easier to employ.

Several works have extended the generic type system of Java
to express ownership information [16, 30, 31]. This approach inte-
grates well with the existing type system, but gives the programmer
an even more complex type system to handle than the generic one
already is.

An annotation free ownership system based on virtual classes
is presented in [8], it uses the lexically nesting of virtual classes
as ownership hierarchy. While this approach looks interesting for
languages with virtual classes, which use nested inner classes to
describe families of classes, because it comes with very low cost,

it is not suited for languages like Java with a nearly flat class
structure.

The box model presented in this paper is a simpler version of
the ones in [27–29]. These papers describe box models that support
hierarchical box structures and the confinement is guaranteed by an
ownership domain type system, whose annotations can partially be
inferred.

The fundamental techniques for modular static analysis and a
classification for different kinds of analysis are described in [15].
Our analysis fits into the category of worst-case analysis. The idea
of abstracting the context of a component to the most general
client has been used in [32] before. The allocation site abstraction
for heaps [9, 23] has been used in numerous points-to-analysis
[10, 33, 34] and others.

Close to our work are the ideas in [26]. This work presents a
framework using abstract interpretation to infer class invariants.
The used abstraction and the resulting semantics are similar to our
setting if all classes are box classes. It also shows how the abstract
semantics can be split into the context part and the part inside the
object and approximates the interactions between an object and its
context by regular expressions, whereas we only support the most
general client. It would be interesting to refine the most general
client in a similar way, because this would certainly lead to a more
precise analysis.

The encapsulation property allows to control the escaping of
references to confined objects. This is similar to the goals of es-
cape analysis, which try to detect objects that do not leave a certain
scope. In [21, 22] an escape analysis based on abstract interpreta-
tion is given. The analysis guarantees that an object does not escape
from a method or a thread. The difference to our work is that our
confinement border is given by the structure of the heap and evolves
during program execution, whereas theirs is determined mainly by
the stack. Like in our work, they use an object allocation abstraction
for the heap. Similar works have been presented in [5].

6. Conclusion and Future Work
In this paper we presented a modular, static analysis for checking
the confinement property of the box model. Using the defined
abstraction we get a reachable state analysis for a box in the context
of the most general client. If no box used in a program reaches
the abortion state in the analysis, the whole program fulfills the
confinement property.

Even if the abstraction removes a lot of information about object
identity and the most general client creates a lot of impossible
traces through the box, we think that this analysis is powerful
enough for a lot of components. We implemented a first prototype
of the analysis, which substantiates this assumption. In the future
we will explore bigger examples. It will be interesting to study, if
e.g. recency-abstractions for heaps [4] or the techniques described
in [24] give significantly better results for components as they
appear in the real code.

In the future, we will extend the language with hierarchical
boxes, such that patterns like sets using a list component as in-
ternal representation can be expressed in a more natural way. Fur-
thermore, we may extend the language with annotations for fields
and variables. This would enable us to provide better feedback to
the programmer by comparing the annotations with the calculated
states, or we could use the annotations to get a more precise anal-
ysis, which is sound under the assumption that the invariants im-
posed by the annotations are satisfied.
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