Verifying Object-Oriented Code Using Object Propositions

Ligia Nistor Jonathan Aldrich

School of Computer Science
Carnegie Mellon University

{Inistor,aldrich}@cs.cmu.edu

Abstract The formal verification of modules should ideally fol-
low the same principle: the specification and verification of

ficult by the presence of aliasing. If there are multiplerge @ Method should not depend on another method. To reason
depending on the properties of an object, one client may about aliases, the verification system has to be aware of inte

break the property that others depend on. Knowledge of both actioqs betwegn all the references to the same object. More-
aliasing and predicates allows us to verify whether clients over, if two objects share data, there are situations when th

and implementations are compliant with specifications. specifications of the methods using these objects should not

We have developed a modular verification approach, by reveal the shared data or the internal representation of the
introducing the novel abstractiombject propositionsthat ~ CPIECts. When possible, shared data should be hidden, espe-

combines predicates and information about object aliasing Ci2!ly when the shared information is likely to change. Un-
In our methodology, even if shared data is modified, we fortunately, when using existing separation logic teche
know that an object invariant specified by a client holdssThi {0 Write the specification of a method, the entire footprint o
allows two references pointing to the same object to have athat method has to be mentioned. By its very nature, separa-
consistent view of the object. Our objectinvariantis digiet 10" logic (Reynolds 2002) will require the specification to

than a class invariant such as the ones in ESC/Java, as in oufeveal which cells in the heap are owned by two objects. For
system two objects of the same class are allowed to haveeach method using the objects, a mention of shared data is
different invariants. needed. This gives rise to very unmodular verification tech-

Although there are separation logic approaches that can"idues. There exist versions of higher-order separatign lo
be used to specify similar programs, the specifications are €S that try to account for modular _ver|f|cat|on of code, but
complex and not modular. In separation logic, the specifi- they are more complicated and difficult to automate.
cation of a method must describe all the heap cells that the OUr novel approach does not suffer from these shortcom-
method touches. The exact data shared between objects wil

The modular verification of object-oriented code is made dif

ings. Through the use of access permissions, we are able to

then be exposed. With the help of access permissions, we ard!ide the shared data that two objects have in common. We
able to hide the aliasing information when possible. This is Will know only that the two objects hawharedpermission

very important for software evolution because local change (© that data. Our solution is more modular and similar sys-
to the code in a system should not modify the specification (€Ms (Bierhoff and Aldrich 2007) have been automated.

of other parts of the system.

2. Overview

1. Introduction Our methodology uses abstract predicates (Parkinson and
In this paper, we are proposing a method for modular verifi- Bierman 2005) over the fields of an object, a logical frame-
cation of object-oriented code in the presence of aliasieg, work and access permissions (Bierhoff and Aldrich 2007).
the existence of multiple references to the same object. TheAccess permissions were originally proposed for typestate
seminal work of (Parnas 1972) describes the importance ofchecking, but here we use them for full verification. They
modular programming, where the information hiding crieri are useful when there are multiple aliases that refererece th
is used to divide the system into modules. In a world where same object in the program. With the help of permissions,
software systems have to be continually changed in orderwe can track how a reference is allowed to read and/or mod-
to satisfy new (client) requirements, the software enginee ify the referenced object and, in the case there were other
ing principle of modular programming becomes crucial: it references to the object, how those references might access
brings flexibility, by allowing changes to one module with- the object. The different kinds of permissions are: unique,
out modifying the others. immutable and share.

Immutable permissions (Boyland 2003) grant read-only
access to the referenced object and guarantee that no refer-
ence has read/write access to the same object.

Unigue permissions (Boyland 2003) grant read/write
access and guarantee that no other reference has any access
to the object.

Share permissions (DeLine and Fahndrich 2004) are Figure 1. Linked queues sharing the tail
the trickiest: they grant read/write access to the refexdnc
object, but other references also have read/write accéiss to 3. Example
same object. Foshare permissions to be usable, they must

guarantee that they will never violate the predicate imrari ~ In Figure 2, we present a simple class and object propo-
of the object. sitions, that are useful for reasoning about the correstnes

Our main technical contribution is a novel abstraction, Of client code and about whether the implementation of a

called object proposition that combines predicates with ~method respects the specification. Since they contain sicces
aliasing information about objects. For eg., to express tha Permissions, which represent resources that have to be con-
the objecty in Figure 1 has anique permission to a queue Sumed upon usage, the object propositions are consumed
of integers in rangd0, 10], we use the object proposition —Upon usage and their duplication is forbidden. Therefoee, w
unique(q) in Range(0, 10). use linear logic (Girard 1987) to write our specifications.

We want our checking approach to be modular and to ver- Pre- and post-conditions are separated with a linear impli-
ify that implementations follow their design intent. Topeo ~ cation — and use multiplicative conjunctionzy, additive
that a postcondition, i.e. an abstract proposition defimed i disjunction (¢) and existential/universal quantifiers (where
terms of fields, of a method holds on exiting the method, there is a need to quantify over the parameters of the predi-
we have to keep track of the current values of the fields (in- cates).
cluding for fields of primitive typent). By doing this, we In our methodology, whenever a new object is created, the
can more easily deduce what object propositions are true atobject will satisfy the first predicate in the class. At thénpo
the end of a method, considering that the precondition wasWhere the permission to the object is first split (either into
true in the beginning. In the same way as Fahndrich and two share permissions, or twdmmutable ones, see Figure
DeLine (2002) track a set of capabilities, i.e. at each point 6), the client can specify the invariant that he expects the
in the program the type system maintains the keys of the object to always satisfy. Different references pointingtte
tracked objects that are currently live, we also have a set of Same object, which can be a shared or immutable object, will
keys. Those variables and fields that have a place in the heaglways be able to rely on that invariant when calling methods
will be present in the set of keys and will point to the cur- ©0n the object.
rent value. Thus, we have two kinds of permissions: abstract A critical part of our work is allowing clients to depend on
represented by the object propositions, and concreteg+epr @ property of a shared object. In this queue example, clients
sented by the field keys. We make a subtle distinction: if we depend on the sharddnk items being in a consistent range.
consider an objeethaving a fieldf with current value: and Other methodologies such as Boogie (Barnett et al. 2005)
the current permission having read/write access, the siet wi allow a client to depend only on properties of objects that
containf — z. On the other hand, if the current permission it owns and verify object invariants. Our novel verification
has read-only access, the set will contgiiR~ z , to mean technique allows a client to depend on properties of objects
that the fieldf cannot be modified. that it doesn’t own too.

Let's consider the two linked queugsandr that share To gain read or write access to the fields of an object,
a common taip, in Figure 1. In separation logic, the spec- We have tounpack it (DelLine and Fahndrich 2004). If we
ification of any method has to describe the entire footprint Unpack ahare or unique permission, we gain modifying ac-
of the method, i.e. all heap locations that are being touchedcess, Whilémmutable permissions only give us read access
through reading or Writing in the body of the method. That to the object’s fields. After a method finishes Working with
is, the shared data has to be specified in the specification the fields of a shared object, our proof rules in Figure 7 re-
of all methods accessing any of the objegtandr. Using quire that the object be packed to the same predicate as be-
our obiect propositionS, we have to mention Osih)are(q) fore the unpacking. Since for a unique Object, there is Only
(share(r) respectively) in the specification of a method ac- one reference in the system pointing to it and no risk of in-
cessingg (or r). The fact thaip is shared between the two terferences, we don't require packing to the same predicate
aliases is hidden by the access permisstaine. for unique objects. We avoid inconsistencies by allowing

We give the technical details of the differences between only one object proposition to be unpacked at the same time.

verifying this example using separation logic versus dbjec Why? Because otherwise an upacked shared object may not
propositions. satisfy its invariant any more, but other aliases to it wit n

know this. Other aliases will rely on the invariant, which is

class Link { the beginning of a program until the end. Each expression

int val; in the program has a designated proof rule in the static
Link next; semantics and we apply that specific rule. If we can apply

all the needed rules from the beginning until the end of the

predicate LinkPred(int x, Link 1) = program, it means the program is correct. If not, there could

val>v® nert —o® v=z® o=l be an error in the program.

predicate Range(int x, int y) =
val— v® next— o {}
®@uv2r® v <y

Link la = Link (3, 11);
® [share(o) in Range(x,y) & o==null] . @ new Link(null)

{unique(la) in LinkPred(3,null)}

predicate NotInRange(int x, int y) =
val— v @ next—o ® v<xD v >y
@ [share(o) in NotInRange(x,y) & o==null]

{share(la) in Range(0, 10) ® share(la) in Range(0,10)}
Link p = new Link(6, la);
{unique(p) in LinkPred(6,la),share(la) in Range(0,10)}

pre:iia:eugn:lzi:gj (oln;g) X; >1n;:: é) VE< {share(p) in Range(0,10) ® share(p) in Range(0,10)}
[unique (o) in UniRanse(x.v) =Y 1 Link q = new Link(1, p);
© tuniquefo) in UniRange(x,y) & o==nu {share(p) in Range(0,10), unique(q) in LinkPred(1,p)}

Link r = new Link(8, p);

void addModulo1l(int x) {unique(q) in LinkPred(1,p), unique(r) in LinkPred(8,p)}

share(this) in Range(0,10) —o
share(this) in Range(0,10)

{val = (val + x)% 11;

if (next!=null) {next.addModuloll(x);}

}

{unique(q) in LinkPred(1,p),share(r) in Range(0, 10)
® share(r) in Range(0,10)}

r.addModulo11(9) ;
{unique(q) in LinkPred(1, p),share(r) in Range(0,10)}

void add(int z)
V x:int, y:int, x<y .unique(this) in UniRange(x,y)
—o unique(this) in UniRange(x+z,y+z)
{val = val + z;
if (next!=null) {next.add(z);}
}

{share(q) in Range(0,10) ® share(q) in Range(0, 10),
share(r) in Range(0,10)}

q.addModulo11(7) ;
{share(q) in Range(0,10),share(r) in Range(0,10)}

Figure 3. Object proposition verification

Figure 2. Link class and range predicates i . . —
¢ gep When first creating objeét: in Figure 3, we get anique

permission to it, satisfying the first predicdtéenk Pred(3, null).
actually broken. It is thus safer to unpack a single objeat at We then unpacka, make sure it satisfies the predicate
time. Range(0,10), pack it and split itaunique permission into

The predicat&kange(int x, int y)n Figure 2 ensuresthat two share permissions, as we have to pass a permission to
all the elements in a linked queue starting from the current /a to the constructor ofink when creating. This unpack-
Link are in the rangér, y]. The predicate mentioshare(o), pack-split procedure takes place whenever we have to split a
thus requiring the existence of at leashare permission (it unique permission into twahare ones. Sincéa can be ac-
could beunique) to each Link of the queue. On the contrary, cessed throughfrom now on, we do not need to mentién
the predicatdJniRange(int x, int yyequires the presence in the following object proposition sets. In this respectt o
of a unique permission to all elements in the queue. Thesesystem is an affine one (as opposed to a linear one), because
restrictions mean that the only method that can be called we can drop a resource if we do not need it any more.
on a shared Link object satisfying invariaRznge(0, 10) When creating the objegt, we need to pass in share
is addModulo11 The specification of thaddModulo11(int permission tg. We obtain it by splitting the curreninique
x) method is the only one that does not break the invariant. permission tgp into two share permissions. Before calling
Also, if the programmer wants to modify some value in methodaddModulollon r, we also have to split the per-
the queue using thadd(int z)method, the queue must be mission tor so that ashare permission can be passed to the
accessed throughumique permission. method. The splitting of permissions is similar when we call
How do we use the predicates and the proof rules in addModulollong.

Figure 7 to prove the correctness of code? We use them in The specification in separation logic is more cumbersome
the following manner: we try to apply the proof rules from and unable to hide shared data. To express the fact that all

values in a segment of linked elements are in the interval
[n1,n2], we need to define the following predicate :

LiStS@g(T‘,p, nl;”?) (7’ p) \ (7" - (Z,S) *
Listseg(s,p,n1,n2) Any <i < ns).

write the specification of a method, on what kind of shared
data that method will be used. Separation logic approaches
will thus have a difficult time trying to verify this kind of
code, while object propositions allow us to call methods on

This predicate states that either the segment is null, or theboth lists, no manipulation of predicates being necessary.

val field of r points toi and thenext field points too, such
thatn; < ¢ < ns, and the elements on the segment from
to p are in the intervaln,, ns]. The verification of the same
code in separation logic is given in Figure 4.

{

Link la = new Link(3, null);
{Listseg(la,null,0,10)}

Link p = new Link(6, la);
{Listseg(p,null,0,10)}

Link q = new Link(1, p);
{Listseg(q,p,0,10) x Listseg(p, null,0,10)}

Link r = new Link(8, p);
{Listseg(q,p,0,10) x Listseg(r,p,0,10)x
Listseg(p, null,0,10)}

{Listseg(q,p,0,10) x Listseg(r,null,0,10)}
r.addModulo11(9) ;
{Listseg(q,p,0,10) x Listseg(r,null,0,10)}
*****missing stepkkkxx
{Listseg(q,null,0,10) * Listseg(r,p,0,10)}
q.addModulel1(7) ;
{Listseg(g,null,0,10) x Listseg(r,p,0,10)}

Figure 4. Separation logic verification

In separation logic, the natural pre and post-conditions
of the methocaddModulollare Listseg(this, null, 0, 10),

i.e., the method takes in a list of elements[in10] and
returns a list in the same range.

Thus, before callingaddModuloil on r, we have to
combine Listseg(r, p,0,10) = Listseg(p, null, 0,10) into
Listseg(r,null,0,10). We observe the following problem:
in order to calladdModulo11 on ¢, we have to take out
Listseg(p,null, 0,10) and combine it with.istseg(q, p, 0, 10),
to obtain Listseg(q, null, 0,10). But the specification of
the method does not allow it, hence the missing step in
Figure 4. The specification cdddModuloll has to be

modified instead, by mentioning that there exists some sub-

list Listseg(p, null, 0,10) that we pass in, and which gets

passed back out again. The modification is unnatural: the

specification ofaddModulo11 should not care that it re-

4. Grammar

The programming language that we are using is inspired
by Feather-weight Java (lgarashi et al. 2001), extended to
include object propositions. We have retained only the most
important Java concepts for us, that are relevant for stgpwin
our methodology. Thus, we have not taken into account
features such as inheritance, casting or dynamic displaath t
are too complex and not important for making our point.

Figure 5 shows the syntax of our simple class-based
object-oriented language.

program PR := (CLe)
class decls. CL = classC{F Q) =P M}
field decls F == f:T
methods M = TmTz):MS=e¢
method specs MS = P, —o P,
predicates P = gq|z|Pibinop P2 | Pi ® P»
| PAOR[10[T|f—=
| f—2|32.P|Vz.P
binaryops binop = +| — |%]| =
L <l<l>]>
terms t == z]o
| true|false|t; orto
| t1andts |nott
expressions e == t|f|assign f:=t¢
| new C(t)|to.m(?)
| if(t,e1,e2)
| letz=e;iney
| t1 binop t2
| unpackr from P ine
| packrto P ine
references r o= z|o
types T == C(|bool |int
permissions q Perm(T) in Q(T)

unpacked(r, q) | none(r)
share | immutable | unique

permission kind Perm

Figure 5. Language and Permission syntax.

4.1 Permission Splitting
We need a mechanism for tracking permissions in our veri-

ceives a list made of two separate sublists, it should only fication approach.

care that it receives a list in rang 10].

When a client has a unique permission to a shared object

This situation is very problematic because the specifica- and an alias capturing a shared permission to the object is

tion of addModulo11 involving sublists becomes awkward.

created, we want the client to still have access to the col-

We can imagine an even more complicated example, wherelection. How can this be achieved? By saying that the client
there are three sublists that we need to pass in and out ofnow has a shared permission to the shared object. This mech-

addModulo11. Itis impossible to know, at the time when we

anism is called permission splitting. Before method calls w

split the original permission into two, one of which is re-
tained by the caller. The splitting rules reflect the fact tha
the permission assumptions are not violatednéque per-
mission is never duplicated and n@éamutable permission
co-exists with ashare permission. The splitting rules are
the following.

unique(z) = share(x) ® share(x)

share(x) = share(z) ® share(x)

immutable(z) = immutable(z) ® immutable(z)

This leads to the rules in Figure 6.

The next natural idea is that we would like to reverse per-
mission splits to regain the initial permission to the shbare
object. This idea is callegermission joiningand can be
allowed if we introduce the notion of fractions (Boyland
2003). We will study permission joining in our future work.

5. Proof Rules

thus be sound because we will never assume anything more
about that object than the predicate invariant, which sthoul
hold according to the above argument.

The rule TErRM formalizes the standard logical judgement
for existential introduction. The notatide’ /z]e substitutes
¢’ for occurrences of in e. The FELD rule checks field
accesses analogously.

NEw checks object construction. The parametgrassed
to the object constructor have to satisfy initializatioegtir
cate(Qq, which has exactly the same arguments as the con-
structor of the object, and become the object’s initial field
values. The new existentially qualified object is naturally
sociated with a unique permission to the root state.:Htie
judgement looks up the initialization predicate for a class
When this object becomes shared, it will have to satisfy the
object invariant given by the programmer. This can be ac-
complished by unpacking the object fragy, packing it to
the invariant and then splitting the unique permission into

This section describes the proof rules in Figure 7 used for two shared permissions.

guaranteeing at compile-time that protocol violations| wil

IF is the rule that introduces disjunctive types in the

not occur at runtime. The judgement to check an expressionsystem and checkg-expressions.

e is of the formI;II F¢ e : 3z : T.P. This is read
“in valid contextI" and linear contexil, an expressior

LET checks det binding and makes sure that outdated
object propositions are not available after assignments.

executed within receiver class has typeT and satisfies

object propositionP”. By writing 3z, we bound the variable pack-UNI, UNPACK-SH-UNI and WNPACK-IMM. When
 to the result of the expressien we pack an object to ghare permission, we have to pack it
Before presenting the detailed rules, we provide the in- to the same object proposition that was true before the ob-
tuition for why our system is sound (a formal proof is the ject was unpacked. This restriction also holdsifemutable
SUbjeCt of current Work). The first invariant enforced by our permissions because, by definition, the Object will not be
system is that there will never be two conflicting permission modified, so it will satisfy the object proposition that was
to the same object. The permission splitting rules can give true before unpacking. The restriction is not necessary for
rise to only one of three situations, for a particular object ynique permissions: objects that are packecitique per-
there exists a unique reference to the object, all the refer-missions can be packed to a different object proposition tha
ences to this object are immutable or all are shared. For thethe one that was true for them before unpacking_ There is a
first two cases, sound reasoning is easy because either aliasspecial rule for the unpacking afimutable objects because
ing or mutability is prohibited. we want to emphasize that all their fields are also immutable.
The third case, shared, follows an inductive argument, This restricts the current system by requiring that the ipred
based on the property that the invariant of a shared objectcates ofimmutable objects should only contaimmutable
always holds whenever that object is packed. The base casgermissions to their fields. Although special predicategha
in the induction occurs when a unique object whose invariant to be written forimmutable objects, the soundness of the
holds first becomes shared. In order to access an object, Wesystem is preserved.
must first unpack it; by induction, we can assume its invari- Since we allow only one unpacked object at any time in
ant holds as long as the object is packed. But we know the the system, we have to keep track if there currently exists an
object is packed immediately before the unpack operation, unpacked object. We do this by having a ftdgthat shows
because the rules of our system ensure only one object can bg there is another unpacked object in the system. If there
unpacked at a time; therefore, we know the object's invarian s ok = false and we are not allowed to unpack another
holds. Assignments to the object’s fields may later violate object. When we apply one of thex&x rules,ok becomes
the invariant, but in order to pack the object back up (which ¢ye because the only unpacked object in the system has just
we need to do in order to access another object) we must reheen packed.
store its invariant. For a shared object, packing must resto The CaLL rule simply states what is the object proposi-
the same invariant the object had when it was unpacked;tion that holds about the result of the method being called.
thus the invariant of an object never changes once that ob-This rule first identifies the specification of the method (us-
ject is shared, avoiding inconsistencies between aliases t jng the helper judgement W PE) and then goes on to state
the object. This completes the inductive case for soundnessthe object proposition holding for the resuilt.
of shared objects. All of the predicates we might infer will

The rules for packing and unpacking amdr -SH-1MM,

: ; - - - - — (UNI-SH)
unique(r) in Q(t) - share(r) in Q(t) & share(r) in Q(t)

share(r) in Q(t) - share(r) in Q() ® share(r) in Q(t) (S-51)

: - = : - — - — (IMM-IMM)
immutable(r) in Q(t) - immutable(r) in Q(t) ® immutable(r) in Q(t)

Figure 6. Rules for splitting permissions

The rule ASSIGN assigns an object to a field f; and we are able to prove that the postcondition holds and the
returns the old field value as an existentialFor this rule implementation ofidd M odulol1 satisfies the specification.
to work, the current objecthis has to be unpacked and
to not have permissioimmutable (because objects with 7. Specification for Modularity
immutable permissions do not allow modification of their

fields) To illustrate the modularity issues, we present here a more

realistic example than the queue example from Section 3. In
o) Figure 8 we depict a simulator for two queues of jobs, con-
6. \Verification of Implementations taining large jobs (size>10) and small jobs (size<11). The
Now, we want to verify that a method implementation re- €xample is relevant in queueing theory, where an optimal
spects the specification. Whenever we can apply the proofscheduling policy might separate the jobs in two queues, ac-
rules we presented in Figure 7, we apply them. But those cording to some criteria. The role of the control is to make
proof rules do not deal with primitive types. When fields or €ach producer/consumer periodically take a step in the sim-
variables on the heap are assigned primitive types, we will ulation. We have modeled two FIFO queues, two producers,
use the standard linear logic and arithmetic rules predente two consumers and a control object. Each producer needs a

in the Appendix. pointer to the end of each queue, for adding a new job, and
We verify that the methoddd M odulo11() from Figure a pointer to the start of each queue, for initializing thetsta
2 satisfies the implementation. We will assume tttat is of the queue in case it becomes empty. Each consumer has a

the caller of the method. Since according to our system any pointer to the start of one queue because it consumes the ele-
object is packed before calling a methad;s has to be ment that was introduced first in that queue. The control has
first unpacked. When verifying a method implementation, & pointer to each producer and to each consumer. The queues
the first step that we must do is to skolemize the method are shared by the producers and consumers, thus giving rise
specification if it is universally quantified. The specificat ~ to a number of aliased objects wiharepermissions.
in this case is not universally quantified so it will not be
skolemized. To be able to formally deduce the postcondition
it is necessary that we unwrap the meaning of the predicate
Range(0,10) Also , the rules in Figure 7 do not allow
us to simultaneously read and write to a field. Instead, we
have to rewrite the assignment! = (val + z)%11 as
let t = val in val = (t + 2)%11. We obtain the following Queue of large job
setting: size > 10
{val = z1 ® next =01 ® 11200 2, <10®
share(o1) in Range(0,10) @ o; == null}
let t = wval in
{t =21 @ next 01 ® 11200 21 <10®
share(o1) in Range(0,10) ® o1 == null} Prod2 Cons
val = (t + z)%11 Queue of small jobs
{val = 2 ® x2 = (1 +2)%11 size < 11
® next — 01 ® x9 >0
® 2 <10 ® share(o1) in Range(0,10) & 01 ==
null}
For obtaining the object propositions in the last step, we Figure 8. Simulator for queues of jobs
apply the standard linear logic and arithmetic rules from
the Appendix. Next, by applying thes Irule, unpacking of Now, let's say the system has to be modified, by intro-
the next Link and the Q\LL rule for the recursive call, ducing two queues for the small jobs and two queues for

Control

Prod1 Cons

PHt:T I;IF [t/z]P fi : Tisalocal fieldof C T;I1F [fi/x]P
It 3z T.P ERM k- fi: e T.P
LHt:T init(C) = 3f: T.Qo(f))
Qo) =PeC Tt [t/z|P
;11 + new C(f) : Jy : C.unique(y) in Qo(¥)
I;(II,t = true) ey : dx : T. P
Pkt:bool T;(Il,¢t =false)beo: Tz :T.Ps
I if(t,er,e2): Jx: T.PL @ Pa

FIELD

NEW

IF

I Fey:dx:Th.Py
(F,x : T1)7 (HQ,Pl) = €2 Hy : TQ.PQ

[; (IT1,II2) F let x = e1 inea : Jy : Th.[er/x]. P2 LET

I ke r: T.7/Z] P ® unpacked(r, Perm(r) in Q(77)) ® ok = false
T; (IT', Perm(r) in Q(71), ok = true) Fc e: E
Q@) =PeC

PACK-SH-IMM
T; (I, I, ok = false) ¢ pack r to Perm(r) in Q(77) ine: E

;I ke r: T.[F2/T) P2 ® unpacked(r, unique(r) in Q1(71)) ® ok = false
T; (I, unique(r) in Q2(72), ok = true) Fc e: E
Q1(§)=P1€C QQ(E)ZPQEC

T; (I, I, ok = false) k¢ pack r to unique(r) in Q2(73) ine: E

PACK-UNI

;I ke 7 T.Perm(r) in Q(77)
T; (IU, [F1/Z) P, ok = false,unpacked(r, Perm(r) in Q(71)) Fc e: E
Q@) =P eC Perm # immutable

UNPACK-SH-UNI
T; (I, I, ok = true) k¢ unpack r from Perm(r) in Q(¥1) ine: E

;I Fe r: T.immutable(r) in Q(77)
; (I, [F1/7) P, ok = false,unpacked(r,immutable(r) in Q(71)) Fc e : E

r
Q) =PeC all permissions present in P must be immutable
UNPACK-IMM

T; (I1, I, ok = true) k¢ unpack 7 from immutable(r) in Q(71) ine : E

FFtoZCo I'H¢t:T
;I [to/this][t/T] Py
mtype(m, Co) = Vz : T.3result : T,.P] — P>
PrimpliesP;
D511+ to.m(t) : Iresult: T;.[to/this][t/T| P
_ clasg{..M..} e CL B
Trm(Tz) : Pr — Py : Jresult : Tr. =e€ M

mtype(m,C) =V : T.3result: T,..P, — P,

CALL

MTYPE

;I E ¢ : 3z T . Permo(t) in Qo(7To)
[- fi : Ty.Perm/(0) in Q' (77) @ p
p = unpacked(this, Perm(this) in Q(T))
Il' + this.fi — o Perm # immutable

[(ILI1) F (assign fi :=t) : T;.3x : Perm/(z) in Q' (") ® Permo(t) in Qo(T0) ® p® this.fi — t

ASSIGN

Figure 7. Proof Rules

the large jobs, see Figure 9. Ideally, the specification of sumer accesses only one kind of job. We will show in the
the control object should not change, since the consumersfollowing sections that our methodology does not modify
and the producers have the same behavior as before: eacthe specification of the control object, thus allowing us to
producer produces both large and small jobs and each conimake changes locally without influencing other code, while

separation logic approaches (Distefano and Parkinson2008 public class Producer {

will modify the specification of the controller. Link startSmallJobs, startlLargeJobs;
Link endSmallJobs, endLargelJobs;

predicate BothInRange() = startSmallJobs— o
® startLargeJobs— 02
® share(o1) in Range(0,10)
® share(o2) in Range(11,100)

Queues of large job
size > 10

Control

public Producer(Link ss, Link sl, Link es, Link el) {
startSmallJobs = ss;
startLargeJobs = sl;

..}

Prod1

Prod2 Cons public void produce()

share (this) in BothInRange() —o
share(this) in BothInRange() {

v Random generator = new Random();

int r = generator.nextInt(100);

Queues of small jobs

size < 11
Link 1 = new Link(r, null);
if (r <= 10)
{ if (startSmallJobs == null)
{ startSmallJobs = 1;
Figure 9. Modification of the simulator endSmallJobs = 1;}
else
The code in Figures 10, 11 and 12 represents the {endSmallJobs.next = 1;
initial running example from Figure 8, that we discussed in {endSmallJobs= 1;}

the Overview section. The predicates and the specifications }

of each class explain how the objects and methods should else

be used and what is their expected behavior. For eg., the { if (startlargeJobs == null)

Producer object has access to the two queues, it expects { startLargeJobs = 1;

the queues to be shared with other objects, but also that the endlargeJobs = 1;}

elements of one queue will stay in the range [0,10], while the elsiendLar cJobs . next

elements pf the second queue will stay in the range [11,100]. endLargeJobs '= 1:}
Now, let's imagine changing the code to reflect the modi-

fications in Figure 9. The internal representation of thelpre }

icates changes, but their external semantics stays the sameg

the producers produce jobs and they direct them to the ap-

propriate queue, each consumer accesses only one kind of

gueue (either the queue of small jobs or the queue of big

jobs), and the controller is still the manager of the system. Figure 10. Producer class

The predicat®othInRange() of the Producer class is ex-

actly the same. The predica@®@nsumeInRange(x,y) Of

|
=

1]
=

the Consumer class change<CtmsumeInRange (x,y) = predicates that hide the name of the fields, they do not have
startJobsl— 0;® startJobs2— o9 a way of hiding the aliasing. In all cases, they reveal which
® share(o;) in Range(x,y) references point to the same shared data, and this viotetes t
® share(o2) in Range(x,y). information hiding principle. By using access permissjons
The predicateiorkingSystem() of the Control class we can hide what is the data that two objects share. We
does not change. present what are the specifications needed to verify the code
The local changes did not influence the specification in Figure 8 using separation logic.
of the Control class, thus conferring greater flexibilitydan The predicate for the Producer clas®isod(this, ss, es, sl, el),
modularity to the code. where :

The current separation logic approaches do not provide Prod(p, ss, es, sl, el) = p.startSmallJobs — ss *
this modularity. Distefano and Parkinson (2008) introdlice p.endSmallJobs — es * p.startLargeJobs — sl x
jStar, an automatic verification tool based on separatigiclo p.endLargeJobs — el.
aiming at programs written in Java. Although they are able The precondition for theroduce () method is:
to verify various design patterns and they can define alistrac ~ Prod(p, ss, es, sl,el) * Listseg(ss,null,0,10) %

public class Consumer {
predicate ConsumeInRange(int x, int y) =
startJobs— 0 ® share(o) in Range(x,y)

Link startJobs;

public Consumer(Link s) {
startJobs = s;

public void consume ()
V x:int, y:int.share(this) in ConsumeInRange (x,y)
—o share(this) in ConsumeInRange(x,y)
{ if (startJobs != null)
{System.out.println(startJobs.val);
startJobs = startJobs.next;}

Figure 11. Consumer class

Listseg(sl,null, 0, 10).
The predicate for the Consumer class is
Cons(c,s) = ¢ — s.
The precondition for theonsume () method is:
Cons(c,s) = Listseg(s,null,0,10).
The predicate for the Control class is :
Ctri(ct,pl,p2,cl, c2) = ct.prodl — pl %
ct.prod2 — p2 * ct.consl — cl * ct.cons2 — c2.
The precondition fomakeActive() is:
Ctrl(this,pl,p2,cl,c2) * Prod(pl,ss,es, sl,el)
* Prod(p2, ss,es, sl,el) x Cons(cl, sl)
* Cons(c2,ss) = Listseg(ss,null,0,10)
* Listseg(sl,null, 0, 10).
The lack of modularity will manifest itself when we add
the two queues as in Figure 9.
The predicate®rod(p, ss, es, sl, el) and
Ctrl(ct,pl,p2, cl, ¢2) do not change, while the predicate
Cons(c, s1,s2) changes to
Cons(c, sl,s2) = c.startJobsl — sl
* c.startJobs2 — s2.
The precondition for theonsume () method becomes:
Cons(c, s1,82) * Listseg(sl,null,0,10)
* Listseg(s2,null,0,10).

Although the behavior of the Consumer and Producer

classes have not changed, the preconditiond@eActive ()
in class Control does change:
Ctri(this,pl,p2,cl,c2) * Prod(pl,ssl,esl,sll, ell)
* Prod(p2, ss2,es2,s12,el2) = Cons(cl,sll, si2)
* Cons(c2,ssl,ss2) * Listseg(ssl,null,0,10)
* Listseg(ss2,null,0,10) x Listseg(sll,null,0,10).
* Listseg(sl2,null,0,10)

public class Control {
predicate WorkingSystem() = prodl— 01® prod2— o3

® consl— 03 cons2 — 04
® share(o1) in BothInRange ()
® share(o2) in BothInRange ()
® share(o3) in ConsumeInRange (0,10)
® share(o4) in ConsumeInRange(11,100)

Producer prodl, prod2;

Consumer consl, cons2;

public Control(Producer pl, Producer p2,
Consumer cl1, Consumer c2) {

pl; prod2 = p2;

cl; c2; }

prodil
consl = cons2 =
public void makeActive(int i)
share(this) in WorkingSystem() —o
share(this) in WorkingSystem() {
Random generator = new Random();
int r = generator.nextInt(4);
if (r == 0) {prodl.produce();}
else if (r == 1) {prod2.produce();}
else if (r == 2) {consl.consume();}
else {cons2.consume() ;}
if (i > 0) { makeActive(i-1);}
}
}

Figure 12. Control class

8. Related Work

There are two main lines of research that give partial solu-
tions for the verification of object-oriented code in thegpre
ence of aliasing: the permission-based work and the separa-
tion logic approaches.

Bierhoff and Aldrich (2007) developed access permis-
sions, an abstraction that combines typestate and object
aliasing information. Developers use access permissimns t
express the design intent of their protocols in annotations
methods and classes. Our work is a generalization of their
work, as we use object propositions to modularly check that
implementations follow their design intent. The typestate
(DeLine and Fahndrich 2004) formulation has certain limits
of expressiveness: it is only suited to finite state abstrast
This makes it unsuitable for describing fields that contain i
tegers and can take an infinite number of values and can sat-
isfy various arithmetical properties. Our object proposis
have the advantage that they can express predicates over an
infinite domain, such as the integers.

Access permissions allow predicate changes even if ob-
jects are aliased in unknown ways. States and fractions
(Boyland 2003) capture alias types, borrowing, adoption,

The changes occur because the pointers to the job queueand focus with a single mechanism. In Boyland’s work, a
have been modified and the separation logic specificationsfractional permission means immutability (instead of shar
have to reflect the changes. This leads to a loss of modularity ing) to ensure non-interference of permissions. We use per-

missions to keep object propositions consistent but track, soundness, following the techniques used to prove a similar

split, and join permissions in the same way as Boyland. system of rules (Bierhoff and Aldrich 2007) sound. Also, we
Boogie (Barnett et al. 2005) is a modular reusable ver- plan to explore extensions to both the language and logic.

ifier for Spec# programs. It provides design-time feedback

and generates verification conditions to be passed to an au10. Acknowledgements

tomatic theorem prover. While Boogie allows a client to de- \ya thank the reviewers for their suggestions for improving

pend on properties of objects that it owns, we allow a client paper. This work was supported by Cdrtugal grant
to depend on properties of objects that it doesn’t own t00. ~MU-PT/SE/0038/2008.

Krishnaswami et al. (2010) show how to modularly verify
programs wri_tten usin_g dynamiqally-generated pi.dire_ftalo References
dependency information. They introduce a ramification op-
erator in higher-order separation logic, that explains hew
cal changes alter the knowledge of the rest of the heap. Their
solution is application specific, as they need to find a versio
of the frame rule specifically for their library. Our methddo
ogy is a general one that can potentially be used for vegfyin
any object-oriented program.

Nanevski et al. (2007) developed Hoare Type Theory
(HTT), which combines a dependently typed, higher-order Erni_e Cohen, Michgl Moskal, Wolfrqm Sphulte_, and Stephan To-
language with stateful computations. While HTT offers a bies. Local verification of global invariants in concurrent pro-
semantic framework for elaborating more practical externa ~ 9rams: INCAV, 2010.
languages, our work targets Java-like languages and does noRobert DeLine and Manuel Fahndrich. Typestates for objects. In
have the complexity overhead of higher-order logic. ECOOR 2004.

Cohen et al. (2010) use locally checked invariants to Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew
verify concurrent C programs. In their approach, each abjec Parkinson, and Viktor Vafeiadis. Concurrent abstract predicates.
has an invariant, a unique owner and they use handles (read In ECOOR 2010.
permissions) to cater for shared objects. The disadvantagé)ino Distefano and Matthew J. Parkinson. jStar: Towards Practical
is their high annotation overhead and the need to introduce Verification for Java. IDOPSLA 2008.
ghost fields. We do not have to change the code in order toManuel Fahndrich and Robert DeLine. Adoption and focus: prac-
verify our specifications. tical linear types for imperative programming. RLDI, 2002.

Our work uses abstract predicates, similar to the work of Jean-Yves Girard. Linear logi@heor. Comput. Sgi50(1):1-102,
Parkinson and Bierman (2005) and Dinsdale-Young et al. 1987.

(2010). The abstraction makes it easy to change the internalatsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. Boogie: A modular reusable verifier
for object-oriented programs. FMCO, 2005.

Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking
of aliased objects. IODOPSLA 2007.

John Boyland. Checking interference with fractional permissions.
In Static Analysis Symposiy003.

representation of a predicate without modifying the clgent weight Java: a minimal core calculus for Java and GJ. 2001.
external view of it. The main mechanism is still separation Bart Jacobs and Frank Piessens. Expressive modular fine-graine
logic, with its shortcomings. concurrency specification. ROPL, 2011.

There exist a set of verification methodologies for object- j gmans, B.Jacobs, and F.Piessens. Vericool: An automatic verifier

oriented programs in a concurrent setting: (Jacobs and for a concurrent object-oriented language FMOODS 2008.
Piessens 2011), (Leino and Muller 2009), (J.Smans et al'Neel R. Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Veri-

2008), (Dinsdale-Y_oung et 5_"- 20_10)- These approaf:heS can fying event-driven programs using ramified frame properties. In
express externally imposed invariants on shared objeats, b Tp|, 2010.

only for invariants that are associated with the lock pro- \ gistan Leino and Peter Muller.
tecting that object. In many cases, it may be inappropriate {hreaded programs. BSOR 2009.

to associate such an invariant with the lock: for example_, Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars

in a_singlethreade_d setting, there is no such lock. Even in Birkedal. Abstract Predicates and Mutable ADTs in Hoare Type
multithreaded settings, a high level lock may protect a data Theory, INESOR 2007.

struqturg with internal sharing, in which case _spemfyimgt Matthew Parkinson and Gavin Bierman. Separation logic and
sharing in the lock would break the modularity of the data _pciraction. IPOPL, 2005.

structure. Thus, these systems do not provide an adequat
solution to the modular verification problem we consider.

A basis for verifying multi-

%.L. Parnas. On the criteria to be used in decomposing systems into
modules.Communications of the ACM5:1053—-1058, 1972.

John Reynolds. Separation logic: A logic for shared mutable data
9. Future Work structures. IEEE Computer Society, 2002.

We have made an intuitive argument that the proof rules from
Figure 7 are sound. In the future, we plan to formally prove

Appendix

Pl;PQ = P3

P o Br B (@Y

P+ P P+ Py
P ® P+ Ps

(@L)

Pi- P, Pk Py
P, PsF PL® P,

(®R)

Pi(xz1)F Py (general x1)

(PRET)

Pi(z1)F Py (general x1)
V!L‘Pl(a?) H P2

(PREY)

EJ}.Pl (LI,‘) F P2
Pi(z1) F Py (constructed xy)

(POsS¥F3)

VI.Pl (l‘) = P2
Pi(z1) F Py (general 1)

(POSTY)

Figure 13. Rules for proving predicates

z1 < wojx9 Swgyaxy gk P

vy <xoyx2 <23 P M)
a=bc=a+dyjc=b+d+ P (T
a=bc=a+d+ P

Figure 14. Arithmetic rules

