
Verifying Object-Oriented Code Using Object Propositions

Ligia Nistor Jonathan Aldrich

School of Computer Science
Carnegie Mellon University{lnistor,aldrich}@cs.cmu.edu

Abstract
The modular verification of object-oriented code is made dif-
ficult by the presence of aliasing. If there are multiple clients
depending on the properties of an object, one client may
break the property that others depend on. Knowledge of both
aliasing and predicates allows us to verify whether clients
and implementations are compliant with specifications.

We have developed a modular verification approach, by
introducing the novel abstractionobject propositions, that
combines predicates and information about object aliasing.
In our methodology, even if shared data is modified, we
know that an object invariant specified by a client holds. This
allows two references pointing to the same object to have a
consistent view of the object. Our object invariant is different
than a class invariant such as the ones in ESC/Java, as in our
system two objects of the same class are allowed to have
different invariants.

Although there are separation logic approaches that can
be used to specify similar programs, the specifications are
complex and not modular. In separation logic, the specifi-
cation of a method must describe all the heap cells that the
method touches. The exact data shared between objects will
then be exposed. With the help of access permissions, we are
able to hide the aliasing information when possible. This is
very important for software evolution because local changes
to the code in a system should not modify the specification
of other parts of the system.

1. Introduction
In this paper, we are proposing a method for modular verifi-
cation of object-oriented code in the presence of aliasing,i.e.
the existence of multiple references to the same object. The
seminal work of (Parnas 1972) describes the importance of
modular programming, where the information hiding criteria
is used to divide the system into modules. In a world where
software systems have to be continually changed in order
to satisfy new (client) requirements, the software engineer-
ing principle of modular programming becomes crucial: it
brings flexibility, by allowing changes to one module with-
out modifying the others.

The formal verification of modules should ideally fol-
low the same principle: the specification and verification of
a method should not depend on another method. To reason
about aliases, the verification system has to be aware of inter-
actions between all the references to the same object. More-
over, if two objects share data, there are situations when the
specifications of the methods using these objects should not
reveal the shared data or the internal representation of the
objects. When possible, shared data should be hidden, espe-
cially when the shared information is likely to change. Un-
fortunately, when using existing separation logic techniques
to write the specification of a method, the entire footprint of
that method has to be mentioned. By its very nature, separa-
tion logic (Reynolds 2002) will require the specification to
reveal which cells in the heap are owned by two objects. For
each method using the objects, a mention of shared data is
needed. This gives rise to very unmodular verification tech-
niques. There exist versions of higher-order separation log-
ics that try to account for modular verification of code, but
they are more complicated and difficult to automate.

Our novel approach does not suffer from these shortcom-
ings. Through the use of access permissions, we are able to
hide the shared data that two objects have in common. We
will know only that the two objects havesharedpermission
to that data. Our solution is more modular and similar sys-
tems (Bierhoff and Aldrich 2007) have been automated.

2. Overview
Our methodology uses abstract predicates (Parkinson and
Bierman 2005) over the fields of an object, a logical frame-
work and access permissions (Bierhoff and Aldrich 2007).
Access permissions were originally proposed for typestate
checking, but here we use them for full verification. They
are useful when there are multiple aliases that reference the
same object in the program. With the help of permissions,
we can track how a reference is allowed to read and/or mod-
ify the referenced object and, in the case there were other
references to the object, how those references might access
the object. The different kinds of permissions are: unique,
immutable and share.

Immutable permissions (Boyland 2003) grant read-only
access to the referenced object and guarantee that no refer-
ence has read/write access to the same object.

Unique permissions (Boyland 2003) grant read/write
access and guarantee that no other reference has any access
to the object.

Share permissions (DeLine and Fähndrich 2004) are
the trickiest: they grant read/write access to the referenced
object, but other references also have read/write access tothe
same object. Forshare permissions to be usable, they must
guarantee that they will never violate the predicate invariant
of the object.

Our main technical contribution is a novel abstraction,
called object proposition, that combines predicates with
aliasing information about objects. For eg., to express that
the objectq in Figure 1 has aunique permission to a queue
of integers in range[0, 10], we use the object propositionunique(q) in Range(0, 10).

We want our checking approach to be modular and to ver-
ify that implementations follow their design intent. To prove
that a postcondition, i.e. an abstract proposition defined in
terms of fields, of a method holds on exiting the method,
we have to keep track of the current values of the fields (in-
cluding for fields of primitive typeint). By doing this, we
can more easily deduce what object propositions are true at
the end of a method, considering that the precondition was
true in the beginning. In the same way as Fahndrich and
DeLine (2002) track a set of capabilities, i.e. at each point
in the program the type system maintains the keys of the
tracked objects that are currently live, we also have a set of
keys. Those variables and fields that have a place in the heap
will be present in the set of keys and will point to the cur-
rent value. Thus, we have two kinds of permissions: abstract,
represented by the object propositions, and concrete, repre-
sented by the field keys. We make a subtle distinction: if we
consider an objecto having a fieldf with current valuex and
the current permission having read/write access, the set will
containf → x. On the other hand, if the current permission
has read-only access, the set will containf ⇁ x , to mean
that the fieldf cannot be modified.

Let’s consider the two linked queuesq andr that share
a common tailp, in Figure 1. In separation logic, the spec-
ification of any method has to describe the entire footprint
of the method, i.e. all heap locations that are being touched
through reading or writing in the body of the method. That
is, the shared datap has to be specified in the specification
of all methods accessing any of the objectsq andr. Using
our object propositions, we have to mention onlyshare(q)
(share(r) respectively) in the specification of a method ac-
cessingq (or r). The fact thatp is shared between the two
aliases is hidden by the access permissionshare.

We give the technical details of the differences between
verifying this example using separation logic versus object
propositions.

Figure 1. Linked queues sharing the tail

3. Example
In Figure 2, we present a simple class and object propo-
sitions, that are useful for reasoning about the correctness
of client code and about whether the implementation of a
method respects the specification. Since they contain access
permissions, which represent resources that have to be con-
sumed upon usage, the object propositions are consumed
upon usage and their duplication is forbidden. Therefore, we
use linear logic (Girard 1987) to write our specifications.
Pre- and post-conditions are separated with a linear impli-
cation(and use multiplicative conjunction (⊗), additive
disjunction (⊕) and existential/universal quantifiers (where
there is a need to quantify over the parameters of the predi-
cates).

In our methodology, whenever a new object is created, the
object will satisfy the first predicate in the class. At the point
where the permission to the object is first split (either into
two share permissions, or twoimmutable ones, see Figure
6), the client can specify the invariant that he expects the
object to always satisfy. Different references pointing tothe
same object, which can be a shared or immutable object, will
always be able to rely on that invariant when calling methods
on the object.

A critical part of our work is allowing clients to depend on
a property of a shared object. In this queue example, clients
depend on the sharedLink items being in a consistent range.
Other methodologies such as Boogie (Barnett et al. 2005)
allow a client to depend only on properties of objects that
it owns and verify object invariants. Our novel verification
technique allows a client to depend on properties of objects
that it doesn’t own too.

To gain read or write access to the fields of an object,
we have tounpack it (DeLine and Fähndrich 2004). If we
unpack ashare or unique permission, we gain modifying ac-
cess, whileimmutable permissions only give us read access
to the object’s fields. After a method finishes working with
the fields of a shared object, our proof rules in Figure 7 re-
quire that the object be packed to the same predicate as be-
fore the unpacking. Since for a unique object, there is only
one reference in the system pointing to it and no risk of in-
terferences, we don’t require packing to the same predicate
for unique objects. We avoid inconsistencies by allowing
only one object proposition to be unpacked at the same time.
Why? Because otherwise an upacked shared object may not
satisfy its invariant any more, but other aliases to it will not
know this. Other aliases will rely on the invariant, which is

class Link {int val;Link next;predicate LinkPred(int x, Link l) ≡val→ v ⊗ next → o ⊗ v = x ⊗ o = lpredicate Range(int x, int y) ≡val→ v⊗ next→ o
⊗ v ≥ x⊗ v ≤ y
⊗ [share(o) in Range(x,y) ⊕ o==null]predicate NotInRange(int x, int y) ≡val→ v ⊗ next→ o ⊗ v < x⊕ v > y
⊕ [share(o) in NotInRange(x,y) ⊕ o==null]predicate UniRange(int x, int y) ≡val→ v⊗ next→ o ⊗ v ≥ x ⊗ v ≤ y
⊗ [unique(o) in UniRange(x,y) ⊕ o==null]void addModulo11(int x)share(this) in Range(0,10) (share(this) in Range(0,10){val = (val + x)% 11;if (next!=null) {next.addModulo11(x);}}void add(int z)

∀ x:int, y:int, x<y .unique(this) in UniRange(x,y)
(unique(this) in UniRange(x+z,y+z){val = val + z;if (next!=null) {next.add(z);}}}

Figure 2. Link class and range predicates

actually broken. It is thus safer to unpack a single object ata
time.

The predicateRange(int x, int y)in Figure 2 ensures that
all the elements in a linked queue starting from the current
Link are in the range[x, y]. The predicate mentionsshare(o),
thus requiring the existence of at least ashare permission (it
could beunique) to each Link of the queue. On the contrary,
the predicateUniRange(int x, int y)requires the presence
of a unique permission to all elements in the queue. These
restrictions mean that the only method that can be called
on a shared Link object satisfying invariantRange(0, 10)
is addModulo11. The specification of theaddModulo11(int
x) method is the only one that does not break the invariant.
Also, if the programmer wants to modify some value in
the queue using theadd(int z)method, the queue must be
accessed through aunique permission.

How do we use the predicates and the proof rules in
Figure 7 to prove the correctness of code? We use them in
the following manner: we try to apply the proof rules from

the beginning of a program until the end. Each expression
in the program has a designated proof rule in the static
semantics and we apply that specific rule. If we can apply
all the needed rules from the beginning until the end of the
program, it means the program is correct. If not, there could
be an error in the program....
{}Link la = new Link(3, null);
{unique(la) in LinkPred(3, null)}

{share(la) in Range(0, 10) ⊗ share(la) in Range(0, 10)}Link p = new Link(6, la);
{unique(p) in LinkPred(6, la), share(la) in Range(0, 10)}

{share(p) in Range(0, 10) ⊗ share(p) in Range(0, 10)}Link q = new Link(1, p);
{share(p) in Range(0, 10), unique(q) in LinkPred(1, p)}Link r = new Link(8, p);
{unique(q) in LinkPred(1, p), unique(r) in LinkPred(8, p)}

{unique(q) in LinkPred(1, p), share(r) in Range(0, 10)
⊗ share(r) in Range(0, 10)}r.addModulo11(9);
{unique(q) in LinkPred(1, p), share(r) in Range(0, 10)}

{share(q) in Range(0, 10) ⊗ share(q) in Range(0, 10),share(r) in Range(0, 10)}q.addModulo11(7);
{share(q) in Range(0, 10), share(r) in Range(0, 10)}...

Figure 3. Object proposition verification

When first creating objectla in Figure 3, we get aunique
permission to it, satisfying the first predicateLinkPred(3, null).
We then unpackla, make sure it satisfies the predicate
Range(0, 10), pack it and split itsunique permission into
two share permissions, as we have to pass a permission to
la to the constructor ofLink when creatingp. This unpack-
pack-split procedure takes place whenever we have to split aunique permission into twoshare ones. Sincela can be ac-
cessed throughp from now on, we do not need to mentionla
in the following object proposition sets. In this respect, our
system is an affine one (as opposed to a linear one), because
we can drop a resource if we do not need it any more.

When creating the objectq, we need to pass in ashare
permission top. We obtain it by splitting the currentunique
permission top into two share permissions. Before calling
methodaddModulo11on r, we also have to split the per-
mission tor so that ashare permission can be passed to the
method. The splitting of permissions is similar when we call
addModulo11on q.

The specification in separation logic is more cumbersome
and unable to hide shared data. To express the fact that all

values in a segment of linked elements are in the interval
[n1, n2], we need to define the following predicate :

Listseg(r, p, n1, n2) ≡ (r = p) ∨ (r → (i, s) ?
Listseg(s, p, n1, n2) ∧ n1 ≤ i ≤ n2).

This predicate states that either the segment is null, or the
val field of r points toi and thenext field points too, such
thatn1 ≤ i ≤ n2, and the elements on the segment fromo
to p are in the interval[n1, n2]. The verification of the same
code in separation logic is given in Figure 4....
{}Link la = new Link(3, null);
{Listseg(la, null, 0, 10)}Link p = new Link(6, la);
{Listseg(p, null, 0, 10)}Link q = new Link(1, p);
{Listseg(q, p, 0, 10) ? Listseg(p, null, 0, 10)}Link r = new Link(8, p);
{Listseg(q, p, 0, 10) ? Listseg(r, p, 0, 10)?
Listseg(p, null, 0, 10)}

{Listseg(q, p, 0, 10) ? Listseg(r, null, 0, 10)}r.addModulo11(9);
{Listseg(q, p, 0, 10) ? Listseg(r, null, 0, 10)}*****missing step*****
{Listseg(q, null, 0, 10) ? Listseg(r, p, 0, 10)}q.addModule11(7);
{Listseg(q, null, 0, 10) ? Listseg(r, p, 0, 10)}...

Figure 4. Separation logic verification

In separation logic, the natural pre and post-conditions
of the methodaddModulo11areListseg(this, null, 0, 10),
i.e., the method takes in a list of elements in[0, 10] and
returns a list in the same range.

Thus, before callingaddModulo11 on r, we have to
combineListseg(r, p, 0, 10) ? Listseg(p, null, 0, 10) into
Listseg(r, null, 0, 10). We observe the following problem:
in order to calladdModulo11 on q, we have to take out
Listseg(p, null, 0, 10) and combine it withListseg(q, p, 0, 10),
to obtain Listseg(q, null, 0, 10). But the specification of
the method does not allow it, hence the missing step in
Figure 4. The specification ofaddModulo11 has to be
modified instead, by mentioning that there exists some sub-
list Listseg(p, null, 0, 10) that we pass in, and which gets
passed back out again. The modification is unnatural: the
specification ofaddModulo11 should not care that it re-
ceives a list made of two separate sublists, it should only
care that it receives a list in range[0, 10].

This situation is very problematic because the specifica-
tion of addModulo11 involving sublists becomes awkward.
We can imagine an even more complicated example, where
there are three sublists that we need to pass in and out ofaddModulo11. It is impossible to know, at the time when we

write the specification of a method, on what kind of shared
data that method will be used. Separation logic approaches
will thus have a difficult time trying to verify this kind of
code, while object propositions allow us to call methods on
both lists, no manipulation of predicates being necessary.

4. Grammar
The programming language that we are using is inspired
by Feather-weight Java (Igarashi et al. 2001), extended to
include object propositions. We have retained only the most
important Java concepts for us, that are relevant for showing
our methodology. Thus, we have not taken into account
features such as inheritance, casting or dynamic dispatch that
are too complex and not important for making our point.

Figure 5 shows the syntax of our simple class-based
object-oriented language.

program PR ::= 〈CL, e〉

class decls. CL ::= class C { F Q(x) = P M}
field decls F ::= f : T

methods M ::= T m(T x) : MS = e
method specs MS ::= P1 (P2

predicates P ::= q | x | P1 binop P2 | P1 ⊗ P2

| P1 ⊕ P2| 1 | 0 | > | f → x
| f ⇁ x | ∃z.P | ∀z.P

binary ops binop ::= + | − | % | =
| ≤ | < | ≥ | >

terms t ::= x | o
| true | false | t1 or t2
| t1 and t2 | not t

expressions e ::= t | f | assign f := t
| new C(t) | to.m(t)
| if(t, e1, e2)
| let x = e1 in e2

| t1 binop t2
| unpack r from P in e
| pack r to P in e

references r ::= x | o
types T ::= C | bool | int

permissions q ::= Perm(r) in Q(r)
| unpacked(r, q) | none(r)

permission kind Perm ::= share | immutable | unique
Figure 5. Language and Permission syntax.

4.1 Permission Splitting

We need a mechanism for tracking permissions in our veri-
fication approach.

When a client has a unique permission to a shared object
and an alias capturing a shared permission to the object is
created, we want the client to still have access to the col-
lection. How can this be achieved? By saying that the client
now has a shared permission to the shared object. This mech-
anism is called permission splitting. Before method calls we

split the original permission into two, one of which is re-
tained by the caller. The splitting rules reflect the fact that
the permission assumptions are not violated: aunique per-
mission is never duplicated and noimmutable permission
co-exists with ashare permission. The splitting rules are
the following.unique(x) ⇒ share(x) ⊗ share(x)share(x) ⇒ share(x) ⊗ share(x)immutable(x) ⇒ immutable(x) ⊗ immutable(x)

This leads to the rules in Figure 6.
The next natural idea is that we would like to reverse per-

mission splits to regain the initial permission to the shared
object. This idea is calledpermission joiningand can be
allowed if we introduce the notion of fractions (Boyland
2003). We will study permission joining in our future work.

5. Proof Rules
This section describes the proof rules in Figure 7 used for
guaranteeing at compile-time that protocol violations will
not occur at runtime. The judgement to check an expression
e is of the form Γ;Π `C e : ∃x : T.P . This is read
“in valid context Γ and linear contextΠ, an expressione
executed within receiver classC has typeT and satisfies
object propositionP ”. By writing ∃x, we bound the variable
x to the result of the expressione.

Before presenting the detailed rules, we provide the in-
tuition for why our system is sound (a formal proof is the
subject of current work). The first invariant enforced by our
system is that there will never be two conflicting permissions
to the same object. The permission splitting rules can give
rise to only one of three situations, for a particular object:
there exists a unique reference to the object, all the refer-
ences to this object are immutable or all are shared. For the
first two cases, sound reasoning is easy because either alias-
ing or mutability is prohibited.

The third case, shared, follows an inductive argument,
based on the property that the invariant of a shared object
always holds whenever that object is packed. The base case
in the induction occurs when a unique object whose invariant
holds first becomes shared. In order to access an object, we
must first unpack it; by induction, we can assume its invari-
ant holds as long as the object is packed. But we know the
object is packed immediately before the unpack operation,
because the rules of our system ensure only one object can be
unpacked at a time; therefore, we know the object’s invariant
holds. Assignments to the object’s fields may later violate
the invariant, but in order to pack the object back up (which
we need to do in order to access another object) we must re-
store its invariant. For a shared object, packing must restore
the same invariant the object had when it was unpacked;
thus the invariant of an object never changes once that ob-
ject is shared, avoiding inconsistencies between aliases to
the object. This completes the inductive case for soundness
of shared objects. All of the predicates we might infer will

thus be sound because we will never assume anything more
about that object than the predicate invariant, which should
hold according to the above argument.

The rule TERM formalizes the standard logical judgement
for existential introduction. The notation[e′/x]e substitutes
e′ for occurrences ofx in e. The FIELD rule checks field
accesses analogously.

NEW checks object construction. The parameterst passed
to the object constructor have to satisfy initialization predi-
cateQ0, which has exactly the same arguments as the con-
structor of the object, and become the object’s initial field
values. The new existentially qualified object is naturallyas-
sociated with a unique permission to the root state. Theinit
judgement looks up the initialization predicate for a class.
When this object becomes shared, it will have to satisfy the
object invariant given by the programmer. This can be ac-
complished by unpacking the object fromQ0, packing it to
the invariant and then splitting the unique permission into
two shared permissions.

IF is the rule that introduces disjunctive types in the
system and checksif -expressions.

LET checks alet binding and makes sure that outdated
object propositions are not available after assignments.

The rules for packing and unpacking are PACK-SH-IMM ,
PACK-UNI, UNPACK-SH-UNI and UNPACK-IMM . When
we pack an object to ashare permission, we have to pack it
to the same object proposition that was true before the ob-
ject was unpacked. This restriction also holds forimmutable
permissions because, by definition, the object will not be
modified, so it will satisfy the object proposition that was
true before unpacking. The restriction is not necessary forunique permissions: objects that are packed tounique per-
missions can be packed to a different object proposition that
the one that was true for them before unpacking. There is a
special rule for the unpacking ofimmutable objects because
we want to emphasize that all their fields are also immutable.
This restricts the current system by requiring that the predi-
cates ofimmutable objects should only containimmutable
permissions to their fields. Although special predicates have
to be written forimmutable objects, the soundness of the
system is preserved.

Since we allow only one unpacked object at any time in
the system, we have to keep track if there currently exists an
unpacked object. We do this by having a flagok that shows
if there is another unpacked object in the system. If there
is, ok = false and we are not allowed to unpack another
object. When we apply one of the PACK rules,ok becomes
true because the only unpacked object in the system has just
been packed.

The CALL rule simply states what is the object proposi-
tion that holds about the result of the method being called.
This rule first identifies the specification of the method (us-
ing the helper judgement MTYPE) and then goes on to state
the object proposition holding for the result.

unique(r) in Q(t) ` share(r) in Q(t) ⊗ share(r) in Q(t)
(UNI-SH)share(r) in Q(t) ` share(r) in Q(t) ⊗ share(r) in Q(t)

(SH-SH)immutable(r) in Q(t) ` immutable(r) in Q(t) ⊗ immutable(r) in Q(t)
(IMM -IMM)

Figure 6. Rules for splitting permissions

The rule ASSIGN assigns an objectt to a field fi and
returns the old field value as an existentialx. For this rule
to work, the current objectthis has to be unpacked and
to not have permissionimmutable (because objects withimmutable permissions do not allow modification of their
fields).

6. Verification of Implementations
Now, we want to verify that a method implementation re-
spects the specification. Whenever we can apply the proof
rules we presented in Figure 7, we apply them. But those
proof rules do not deal with primitive types. When fields or
variables on the heap are assigned primitive types, we will
use the standard linear logic and arithmetic rules presented
in the Appendix.

We verify that the methodaddModulo11() from Figure
2 satisfies the implementation. We will assume thatthis is
the caller of the method. Since according to our system any
object is packed before calling a method,this has to be
first unpacked. When verifying a method implementation,
the first step that we must do is to skolemize the method
specification if it is universally quantified. The specification
in this case is not universally quantified so it will not be
skolemized. To be able to formally deduce the postcondition,
it is necessary that we unwrap the meaning of the predicate
Range(0,10). Also , the rules in Figure 7 do not allow
us to simultaneously read and write to a field. Instead, we
have to rewrite the assignmentval = (val + x)%11 as
let t = val in val = (t + x)%11. We obtain the following
setting:

{val → x1 ⊗ next → o1 ⊗ x1 ≥ 0 ⊗ x1 ≤ 10 ⊗share(o1) in Range(0, 10) ⊕ o1 == null}
let t = val in
{t → x1 ⊗ next → o1 ⊗ x1 ≥ 0 ⊗ x1 ≤ 10 ⊗share(o1) in Range(0, 10) ⊕ o1 == null}

val = (t + x)%11
{val → x2 ⊗ x2 = (x1 + x)%11
⊗ next → o1 ⊗ x2 ≥ 0
⊗ x2 ≤ 10 ⊗ share(o1) in Range(0, 10) ⊕ o1 ==

null}
For obtaining the object propositions in the last step, we

apply the standard linear logic and arithmetic rules from
the Appendix. Next, by applying the IF rule, unpacking of
the next Link and the CALL rule for the recursive call,

we are able to prove that the postcondition holds and the
implementation ofaddModulo11 satisfies the specification.

7. Specification for Modularity
To illustrate the modularity issues, we present here a more
realistic example than the queue example from Section 3. In
Figure 8 we depict a simulator for two queues of jobs, con-
taining large jobs (size>10) and small jobs (size<11). The
example is relevant in queueing theory, where an optimal
scheduling policy might separate the jobs in two queues, ac-
cording to some criteria. The role of the control is to make
each producer/consumer periodically take a step in the sim-
ulation. We have modeled two FIFO queues, two producers,
two consumers and a control object. Each producer needs a
pointer to the end of each queue, for adding a new job, and
a pointer to the start of each queue, for initializing the start
of the queue in case it becomes empty. Each consumer has a
pointer to the start of one queue because it consumes the ele-
ment that was introduced first in that queue. The control has
a pointer to each producer and to each consumer. The queues
are shared by the producers and consumers, thus giving rise
to a number of aliased objects withsharepermissions.

Figure 8. Simulator for queues of jobs

Now, let’s say the system has to be modified, by intro-
ducing two queues for the small jobs and two queues for

Γ ` t : T Γ; Π ` [t/x]P

Γ; Π ` t : ∃x : T.P
TERM

fi : T is a local field of C Γ; Π ` [fi/x]P

Γ; Π ` fi : ∃x : T.P
FIELD

Γ ` t : T init(C) = 〈∃f : T .Q0(f)〉
Q0(x) = P ∈ C Γ; Π ` [t/x]P

Γ; Π ` new C(t) : ∃y : C.unique(y) in Q0(t)
NEW

Γ; (Π, t = true) ` e1 : ∃x : T.P1

Γ ` t : bool Γ; (Π, t = false) ` e2 : ∃x : T.P2

Γ; Π ` if(t, e1, e2) : ∃x : T.P1 ⊕ P2

IF

Γ; Π1 ` e1 : ∃x : T1.P1

(Γ, x : T1), (Π2, P1) ` e2 : ∃y : T2.P2

Γ; (Π1, Π2) ` let x = e1 in e2 : ∃y : T2.[e1/x].P2

LET

Γ; Π `C r : T.[r1/x]P ⊗ unpacked(r, Perm(r) in Q(r1)) ⊗ ok = false
Γ; (Π′, P erm(r) in Q(r1), ok = true) `C e : E

Q(x) = P ∈ C

Γ; (Π, Π′, ok = false) `C pack r to Perm(r) in Q(r1) in e : E
PACK-SH-IMM

Γ; Π `C r : T.[r2/x]P2 ⊗ unpacked(r, unique(r) in Q1(r1)) ⊗ ok = false
Γ; (Π′, unique(r) in Q2(r2), ok = true) `C e : E

Q1(x) = P1 ∈ C Q2(x) = P2 ∈ C

Γ; (Π, Π′, ok = false) `C pack r to unique(r) in Q2(r2) in e : E
PACK-UNI

Γ; Π `C r : T.Perm(r) in Q(r1)
Γ; (Π′, [r1/x]P, ok = false, unpacked(r, Perm(r) in Q(r1)) `C e : E

Q(x) = P ∈ C Perm 6= immutable
Γ; (Π, Π′, ok = true) `C unpack r from Perm(r) in Q(r1) in e : E

UNPACK-SH-UNI

Γ; Π `C r : T.immutable(r) in Q(r1)
Γ; (Π′, [r1/x]P, ok = false, unpacked(r, immutable(r) in Q(r1)) `C e : E

Q(x) = P ∈ C all permissions present in P must be immutable
Γ; (Π, Π′, ok = true) `C unpack r from immutable(r) in Q(r1) in e : E

UNPACK-IMM

Γ ` t0 : C0 Γ ` t : T
Γ; Π ` [t0/this][t/x]P1

mtype(m, C0) = ∀x : T .∃result : Tr.P
′

1 (P2

P1impliesP ′

1

Γ; Π ` t0.m(t) : ∃ result : Tr.[t0/this][t/x]P2

CALL

classC{...M...} ∈ CL

Trm(Tx) : P1 (P2 : ∃result : Tr. = e ∈ M

mtype(m, C) = ∀x : T .∃result : Tr.P1 (P2

MTYPE

Γ; Π ` t : ∃x : Ti.P erm0(t) in Q0(r0)
Γ; Π′ ` fi : Ti.P erm′(o) in Q′(r′) ⊗ p

p = unpacked(this, Perm(this) in Q(r))
Π′ ` this.fi → o Perm 6= immutable

Γ; (Π, Π′) ` (assign fi := t) : Ti.∃x : Perm′(x) in Q′(r′) ⊗ Perm0(t) in Q0(r0) ⊗ p ⊗ this.fi → t
ASSIGN

Figure 7. Proof Rules

the large jobs, see Figure 9. Ideally, the specification of
the control object should not change, since the consumers
and the producers have the same behavior as before: each
producer produces both large and small jobs and each con-

sumer accesses only one kind of job. We will show in the
following sections that our methodology does not modify
the specification of the control object, thus allowing us to
make changes locally without influencing other code, while

separation logic approaches (Distefano and Parkinson 2008)
will modify the specification of the controller.

Figure 9. Modification of the simulator

The code in Figures 10, 11 and 12 represents the
initial running example from Figure 8, that we discussed in
the Overview section. The predicates and the specifications
of each class explain how the objects and methods should
be used and what is their expected behavior. For eg., the
Producer object has access to the two queues, it expects
the queues to be shared with other objects, but also that the
elements of one queue will stay in the range [0,10], while the
elements pf the second queue will stay in the range [11,100].

Now, let’s imagine changing the code to reflect the modi-
fications in Figure 9. The internal representation of the pred-
icates changes, but their external semantics stays the same:
the producers produce jobs and they direct them to the ap-
propriate queue, each consumer accesses only one kind of
queue (either the queue of small jobs or the queue of big
jobs), and the controller is still the manager of the system.
The predicateBothInRange() of the Producer class is ex-
actly the same. The predicateConsumeInRange(x,y) of
the Consumer class changes toConsumeInRange(x,y) ≡startJobs1→ o1⊗ startJobs2→ o2

⊗ share(o1) in Range(x,y)
⊗ share(o2) in Range(x,y).

The predicateWorkingSystem() of the Control class
does not change.

The local changes did not influence the specification
of the Control class, thus conferring greater flexibility and
modularity to the code.

The current separation logic approaches do not provide
this modularity. Distefano and Parkinson (2008) introduced
jStar, an automatic verification tool based on separation logic
aiming at programs written in Java. Although they are able
to verify various design patterns and they can define abstract

public class Producer {Link startSmallJobs, startLargeJobs;Link endSmallJobs, endLargeJobs;predicate BothInRange() ≡ startSmallJobs→ o1

⊗ startLargeJobs→ o2

⊗ share(o1) in Range(0,10)
⊗ share(o2) in Range(11,100)public Producer(Link ss, Link sl, Link es, Link el) {startSmallJobs = ss;startLargeJobs = sl;...}public void produce()share(this) in BothInRange() (share(this) in BothInRange() {Random generator = new Random();int r = generator.nextInt(100);Link l = new Link(r, null);if (r <= 10){ if (startSmallJobs == null){ startSmallJobs = l;endSmallJobs = l;}else{endSmallJobs.next = l;{endSmallJobs= l;}}else{ if (startLargeJobs == null){ startLargeJobs = l;endLargeJobs = l;}else{endLargeJobs.next = l;endLargeJobs = l;}}}}

Figure 10. Producer class

predicates that hide the name of the fields, they do not have
a way of hiding the aliasing. In all cases, they reveal which
references point to the same shared data, and this violates the
information hiding principle. By using access permissions,
we can hide what is the data that two objects share. We
present what are the specifications needed to verify the code
in Figure 8 using separation logic.

The predicate for the Producer class isProd(this, ss, es, sl, el),
where :

Prod(p, ss, es, sl, el) ≡ p.startSmallJobs → ss ?
p.endSmallJobs → es ? p.startLargeJobs → sl ?
p.endLargeJobs → el.
The precondition for theproduce() method is:
Prod(p, ss, es, sl, el) ? Listseg(ss, null, 0, 10) ?

public class Consumer {predicate ConsumeInRange(int x, int y) ≡startJobs→ o ⊗ share(o) in Range(x,y)Link startJobs;public Consumer(Link s) {startJobs = s;public void consume()
∀ x:int, y:int.share(this) in ConsumeInRange(x,y)

(share(this) in ConsumeInRange(x,y){ if (startJobs != null){System.out.println(startJobs.val);startJobs = startJobs.next;}}
Figure 11. Consumer class

Listseg(sl, null, 0, 10).
The predicate for the Consumer class is
Cons(c, s) ≡ c → s.
The precondition for theconsume() method is:
Cons(c, s) ? Listseg(s, null, 0, 10).
The predicate for the Control class is :
Ctrl(ct, p1, p2, c1, c2) ≡ ct.prod1 → p1 ?
ct.prod2 → p2 ? ct.cons1 → c1 ? ct.cons2 → c2.
The precondition formakeActive() is:
Ctrl(this, p1, p2, c1, c2) ? Prod(p1, ss, es, sl, el)
? Prod(p2, ss, es, sl, el) ? Cons(c1, sl)
? Cons(c2, ss) ? Listseg(ss, null, 0, 10)
? Listseg(sl, null, 0, 10).
The lack of modularity will manifest itself when we add

the two queues as in Figure 9.
The predicatesProd(p, ss, es, sl, el) and
Ctrl(ct, p1, p2, c1, c2) do not change, while the predicate

Cons(c, s1, s2) changes to
Cons(c, s1, s2) ≡ c.startJobs1 → s1

? c.startJobs2 → s2.
The precondition for theconsume() method becomes:
Cons(c, s1, s2) ? Listseg(s1, null, 0, 10)
? Listseg(s2, null, 0, 10).
Although the behavior of the Consumer and Producer

classes have not changed, the precondition formakeActive()
in class Control does change:

Ctrl(this, p1, p2, c1, c2) ? Prod(p1, ss1, es1, sl1, el1)
? Prod(p2, ss2, es2, sl2, el2) ? Cons(c1, sl1, sl2)
? Cons(c2, ss1, ss2) ? Listseg(ss1, null, 0, 10)
? Listseg(ss2, null, 0, 10) ? Listseg(sl1, null, 0, 10).
? Listseg(sl2, null, 0, 10)
The changes occur because the pointers to the job queues

have been modified and the separation logic specifications
have to reflect the changes. This leads to a loss of modularity.

public class Control {predicate WorkingSystem() ≡ prod1→ o1⊗ prod2→ o2

⊗ cons1→ o3⊗ cons2 → o4

⊗ share(o1) in BothInRange()
⊗ share(o2) in BothInRange()
⊗ share(o3) in ConsumeInRange(0,10)
⊗ share(o4) in ConsumeInRange(11,100)Producer prod1, prod2;Consumer cons1, cons2;public Control(Producer p1, Producer p2,Consumer c1, Consumer c2) {prod1 = p1; prod2 = p2;cons1 = c1; cons2 = c2; }public void makeActive(int i)share(this) in WorkingSystem() (share(this) in WorkingSystem() {Random generator = new Random();int r = generator.nextInt(4);if (r == 0) {prod1.produce();}else if (r == 1) {prod2.produce();}else if (r == 2) {cons1.consume();}else {cons2.consume();}if (i > 0) { makeActive(i-1);}}}

Figure 12. Control class

8. Related Work
There are two main lines of research that give partial solu-
tions for the verification of object-oriented code in the pres-
ence of aliasing: the permission-based work and the separa-
tion logic approaches.

Bierhoff and Aldrich (2007) developed access permis-
sions, an abstraction that combines typestate and object
aliasing information. Developers use access permissions to
express the design intent of their protocols in annotationson
methods and classes. Our work is a generalization of their
work, as we use object propositions to modularly check that
implementations follow their design intent. The typestate
(DeLine and Fähndrich 2004) formulation has certain limits
of expressiveness: it is only suited to finite state abstractions.
This makes it unsuitable for describing fields that contain in-
tegers and can take an infinite number of values and can sat-
isfy various arithmetical properties. Our object propositions
have the advantage that they can express predicates over an
infinite domain, such as the integers.

Access permissions allow predicate changes even if ob-
jects are aliased in unknown ways. States and fractions
(Boyland 2003) capture alias types, borrowing, adoption,
and focus with a single mechanism. In Boyland’s work, a
fractional permission means immutability (instead of shar-
ing) to ensure non-interference of permissions. We use per-

missions to keep object propositions consistent but track,
split, and join permissions in the same way as Boyland.

Boogie (Barnett et al. 2005) is a modular reusable ver-
ifier for Spec# programs. It provides design-time feedback
and generates verification conditions to be passed to an au-
tomatic theorem prover. While Boogie allows a client to de-
pend on properties of objects that it owns, we allow a client
to depend on properties of objects that it doesn’t own too.

Krishnaswami et al. (2010) show how to modularly verify
programs written using dynamically-generated bidirectional
dependency information. They introduce a ramification op-
erator in higher-order separation logic, that explains howlo-
cal changes alter the knowledge of the rest of the heap. Their
solution is application specific, as they need to find a version
of the frame rule specifically for their library. Our methodol-
ogy is a general one that can potentially be used for verifying
any object-oriented program.

Nanevski et al. (2007) developed Hoare Type Theory
(HTT), which combines a dependently typed, higher-order
language with stateful computations. While HTT offers a
semantic framework for elaborating more practical external
languages, our work targets Java-like languages and does not
have the complexity overhead of higher-order logic.

Cohen et al. (2010) use locally checked invariants to
verify concurrent C programs. In their approach, each object
has an invariant, a unique owner and they use handles (read
permissions) to cater for shared objects. The disadvantage
is their high annotation overhead and the need to introduce
ghost fields. We do not have to change the code in order to
verify our specifications.

Our work uses abstract predicates, similar to the work of
Parkinson and Bierman (2005) and Dinsdale-Young et al.
(2010). The abstraction makes it easy to change the internal
representation of a predicate without modifying the client’s
external view of it. The main mechanism is still separation
logic, with its shortcomings.

There exist a set of verification methodologies for object-
oriented programs in a concurrent setting: (Jacobs and
Piessens 2011), (Leino and Muller 2009), (J.Smans et al.
2008), (Dinsdale-Young et al. 2010). These approaches can
express externally imposed invariants on shared objects, but
only for invariants that are associated with the lock pro-
tecting that object. In many cases, it may be inappropriate
to associate such an invariant with the lock: for example,
in a singlethreaded setting, there is no such lock. Even in
multithreaded settings, a high level lock may protect a data
structure with internal sharing, in which case specifying that
sharing in the lock would break the modularity of the data
structure. Thus, these systems do not provide an adequate
solution to the modular verification problem we consider.

9. Future Work
We have made an intuitive argument that the proof rules from
Figure 7 are sound. In the future, we plan to formally prove

soundness, following the techniques used to prove a similar
system of rules (Bierhoff and Aldrich 2007) sound. Also, we
plan to explore extensions to both the language and logic.

10. Acknowledgements
We thank the reviewers for their suggestions for improving
the paper. This work was supported by CMU|Portugal grant
CMU-PT/SE/0038/2008.

References
Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,

and K. Rustan M. Leino. Boogie: A modular reusable verifier
for object-oriented programs. InFMCO, 2005.

Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking
of aliased objects. InOOPSLA, 2007.

John Boyland. Checking interference with fractional permissions.
In Static Analysis Symposium, 2003.

Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan To-
bies. Local verification of global invariants in concurrent pro-
grams. InCAV, 2010.

Robert DeLine and Manuel Fähndrich. Typestates for objects. In
ECOOP, 2004.

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew
Parkinson, and Viktor Vafeiadis. Concurrent abstract predicates.
In ECOOP, 2010.

Dino Distefano and Matthew J. Parkinson. jStar: Towards Practical
Verification for Java. InOOPSLA, 2008.

Manuel Fahndrich and Robert DeLine. Adoption and focus: prac-
tical linear types for imperative programming. InPLDI, 2002.

Jean-Yves Girard. Linear logic.Theor. Comput. Sci., 50(1):1–102,
1987.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: a minimal core calculus for Java and GJ. 2001.

Bart Jacobs and Frank Piessens. Expressive modular fine-grained
concurrency specification. InPOPL, 2011.

J.Smans, B.Jacobs, and F.Piessens. Vericool: An automatic verifier
for a concurrent object-oriented language. InFMOODS, 2008.

Neel R. Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Veri-
fying event-driven programs using ramified frame properties. In
TLDI, 2010.

K. Rustan Leino and Peter Muller. A basis for verifying multi-
threaded programs. InESOP, 2009.

Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars
Birkedal. Abstract Predicates and Mutable ADTs in Hoare Type
Theory. InESOP, 2007.

Matthew Parkinson and Gavin Bierman. Separation logic and
abstraction. InPOPL, 2005.

D.L. Parnas. On the criteria to be used in decomposing systems into
modules.Communications of the ACM, 15:1053–1058, 1972.

John Reynolds. Separation logic: A logic for shared mutable data
structures. IEEE Computer Society, 2002.

Appendix

P1;P2 ` P3

P1 ⊗ P2 ` P3

(⊗ L)

P1 ` P3 P2 ` P3

P1 ⊕ P2 ` P3

(⊕ L)

P4 ` P1 P5 ` P2

P4, P5 ` P1 ⊗ P2

(⊗ R)

P3 ` P1; P2

P3 ` P1 ⊕ P2

(⊕ R)

P1(x1) ` P2 (general x1)

∃x.P1(x) ` P2

(PRE-∃)

P1(x1) ` P2 (general x1)

∀x.P1(x) ` P2

(PRE-∀)

∃x.P1(x) ` P2

P1(x1) ` P2 (constructed x1)
(POST-∃)

∀x.P1(x) ` P2

P1(x1) ` P2 (general x1)
(POST-∀)

Figure 13. Rules for proving predicates

x1 ≤ x2;x2 ≤ x3;x1 ≤ x3 ` P

x1 ≤ x2;x2 ≤ x3 ` P
(M)

a = b; c = a + d; c = b + d ` P

a = b; c = a + d ` P
(T)

Figure 14. Arithmetic rules

