
Performance Evaluation of Natural and Surrogate Key
Database Architectures†

Sebastian Link1, Ivan Luković2, Pavle Mogin*)1

1Victoria University of Wellington,
Wellington, P.O. Box 600, New Zealand

sebastian.link@vuw.ac.nz
pmogin@ecs.vuw.ac.nz

2University of Novi Sad, Faculty of Technical Sciences,
21000 Novi Sad, Trg Dositeja Obradovica 6, Serbia

ivan@uns.ac.rs

Abstract. Keys allow a database management system to uniquely identify
tuples in a database. Consequently, the class of keys is of a great significance
for almost all data processing tasks. There are two competing approaches to
specifying keys in relational databases. These are natural and surrogate key
architectures. A natural key is an attribute subset of the relation schema that is
known to users. A surrogate key is a singleton attribute with system-generated
values that are invisible to users. In the paper, we analyze the performance of
these approaches with respect to different measures. These include the disk
storage space, the number of indices, the update complexity, as well as the
query data and expression complexity. In the analysis we use simple
mathematical models and estimates of database performance. Our results
provide new insights into the advantages and disadvantages of both approaches.

Keywords: natural key, surrogate key, database management system, database
performance.

1 Introduction

Keys are a class of database constraints that have a great importance for maintaining a
database in the consistent state. Currently, there are two competing approaches to
defining keys. These are natural and surrogate key architectures.

A natural key is a candidate key that has a logical relationship to an attribute
subset of the underlying relation schema. The existence of a natural key is known to
users and businesses. It may be composed of a number of attributes, although there
are numerous examples of single attribute natural keys. The main disadvantage of
natural keys is the susceptibility to changes both in value and structure. The change in

† This research was supported by Victoria University of Wellington, Wellington, New Zealand

Research Grant 85575
*) Corresponding author

2 Sebastian Link1, Ivan Luković2, Pavle Mogin*)1

the structure of a natural key usually results in serious problems in the database and
application maintenance, since the change has to be applied in several places. As a
consequence, the use of natural keys as primary keys is often disputed in industry.

A surrogate key is a singleton attribute whose values are (i) numeric, (ii) system
generated and (iii) used for unique identification of tuples in a relation. Its existence
and values are invisible to users. An important perceived advantage of using
surrogates as primary keys is their immutability, which is a consequence of their
separation from business logic. E. F. Codd in [3] defined a relational database
architecture based on surrogates. Each relation schema has a surrogate attribute as its
primary key. Surrogate primary keys are propagated to other relations as foreign keys.

In a recent survey of database implementation practices that we conducted in New
Zealand and Serbia a prevailing number of respondents reported the use of a surrogate
key database implementation architecture, where each relational database table has a
surrogate primary key. The ease of implementation and particularly maintainability of
database applications is often perceived as the main advantage of the surrogate key
database implementation architecture.

We believe that natural keys should be specified whenever they represent business
rules of the underlying application domain. Moreover, it appears to be difficult to
argue against the claim that the ease of application development and the immutability
against changes in the business rules are good reasons for the use of the surrogate key
architecture. However, according to our best knowledge, no comprehensive analysis
is available that studies the impact of natural and surrogate keys on the performance
of the database. The main objective of this article is to address this research gap, and
estimate the consequences of either implementation choice on:
• Update complexity,
• Query data complexity,
• Query expression complexity,
• Number of indices, and
• Disk storage occupancy.

To achieve the goal, we compare two border line approaches. In one of them, all
relation scheme primary keys are natural keys or are composed of natural primary
keys propagated from other relation schemes as foreign keys. In the other approach all
relation schemes are associated with an invisible surrogate primary key, and only
relation schemes produced by mapping entity types have also a natural candidate key.

Section two of the paper reviews related work. Section three briefly reports on the
survey of database implementation practices in industry that we conducted in 2009.
Section four examines and compares performances of two border line implementation
architectures for two characteristic database structures. The final section presents
conclusions and ideas for future work.

2 Related Work

Hall et al. [5] were among the first to consider the use of surrogates in database
conceptual modelling. The motive to do so was the ambiguity that arises when a key
value is modified. To illustrate the ambiguity, they consider the modification of a

Performance Evaluation of Natural and Surrogate Key Database Architectures† 3

personal number in a company’s database and pose the question: “Have we recorded a
change to someone’s personal number or have we recorded his dismissal and
replacement by a new employee (who happens to have the same name)?” To
overcome the ambiguity, they introduce a collection of unique immutable objects
which act as the representatives of the objects in the real world and call them
surrogates. In the conceptual database, an entity is represented by its surrogate. A key
is still needed to uniquely identify the surrogate, although a key value may be
modified. The authors do not consider implications of surrogates on database
performance.

E. F. Codd in [2] introduced new features into the relational data model to capture
more meaning of data. One of these features is the surrogate primary key, where he
builds on the results presented in [5]. Starting from the same position that users must
be allowed to change values of keys that they have defined, Codd introduces a
database wide domain, called E-domain, as the source of all surrogates. Each attribute
defined on this domain has a recognizable name and permanent, database wide unique
values. Further, he makes the use of user-controlled keys not compulsory. Since users
are expected to define joins using surrogate keys, they have to be aware of their
existence, but values have to be hidden from them. Codd does not consider the impact
of the proposed extensions on database performance.

Wierenga et all in [9] gave a precise definition of object identification schemes.
The authors introduced object identifiers which combine the ideas of natural and
surrogate keys. We do not consider this concept in our article.

A search on Google returns almost one million hits for the key phrase surrogate
key. Generally, these submissions briefly describe advantages and disadvantages of
using natural or surrogate keys. In the following text, we present a submission that we
have found most interesting.

Walker B. in [8] introduces a surrogate key architecture that relies on eight rules.
These rules follow the lines defined in [3], with the exception that entity type tables
contain beside surrogate also natural keys. Natural keys are needed to allow data
searching. The main goal of this architecture is “to make the life easier for
developers”. The author doesn’t present any quantitative analysis of the impact of
surrogate keys on database performance.

3 A Survey of Database Design and Implementation Practices

During 2009 we conducted a survey of database design and implementation practices
in industry. We made a questionnaire and asked a number of software companies and
free lance database specialist from New Zealand and Serbia to answer it. A separate
question asked participants to comment on the use of surrogate keys.

We received answers from five software companies and five independent database
specialists. The majority of respondents reported to use a surrogate key architecture
that closely follows the one defined in [2] and [5]. Only one software company
answered that they exclusively use natural keys and claimed that they didn’t
experience any problems in doing so during over more than twenty years.

The ease of implementation and particularly maintainability of database
applications were denoted as the main advantages of the surrogate key database

4 Sebastian Link1, Ivan Luković2, Pavle Mogin*)1

implementation architecture. The immutability was quoted as another important
advantage of surrogate keys.

The common justification for using the surrogate key architecture was that
application programmers do not want to think hard about database structure,
particularly not to analyse composite keys, and write SQL queries involving joins on
composite natural keys. These are even stronger reasons when developers have to fix
a problem with a mission critical system that they have not seen before.

Tools like Oracle Designer and web application frameworks like Hibernate and
Ruby on Rails stimulate the use of the surrogate key architecture by inserting
surrogates as primary keys in the database description scripts either automatically or
on designer’s request.

Some of the respondents also referred to a relational database structure, very
similar to one that would be obtained by mapping the ER diagram in Figure 1, as one
that benefits considerably from using surrogate keys.

4 Performance Estimates

In the following text we perform a comparison of the natural key and surrogate key
database implementation architecture using simple mathematical models and
performance estimates. In our analysis, we consider the following performance
criteria: the occupation of the memory space on disk, the number of keys and indices,
the update complexity, and the query data and expression complexity. We investigate
the performance differences of two ubiquitous database structures. These are the
relational maps of a chain of higher-order relationship types and a binary first-order
relationship type. Our ER notation follows the one introduced in [6].

Figure. 1.

M M

M

M

M M

M

M

E1

R1

E2

E3 E4 E5

R2 R3 R4

Performance Evaluation of Natural and Surrogate Key Database Architectures† 5

4.1 The Chain of Higher-Order Relationship Types

Let us consider the ER diagram in Figure 1. We denote an entity type as E(W, K)
where E is the name of the entity type, W is its set of attributes and K is a subset of W
which is a key for E. We denote a relationship type by R(C, V, K), where R is the
name of the relationship type, C is the set of its components, V is its attribute set and
K is its key. K is a subset of C and V, and the elements of K in C are called key
components of R, while the elements of K in V are called key attributes of R. If the set
C contains a relationship type, then R is a higher-order relationship type. Otherwise, R
is called the first-order relationship type.

Let us denote a relation schema by N(X, SCK, PK), where N is the relation schema
name, X is the set of attributes, SCK is the set of candidate keys, and PK is the
primary key. Let us also denote a referential integrity constraint by N1[Y] ⊆ N2[PK],
where N1 and N2 are relation schema names, Y ⊆ X1, PK is the relation schema N2

primary key, and Y and PK are union compatible sets of attributes.
Now we map the ER diagram in Figure 1 into two sets of relation schemes S and

S’ and two sets of referential integrity constraints I and I’ . The mapping that results in
S is a mapping based on natural keys, while the mapping that results in S’ is based on
the surrogate key architecture. If a relation schema from S or S’ is obtained by
mapping an entity type, we call it entity type relation schema. Otherwise, we call it
relationship relation schema. Let nki (i = 1, 2,…, 4) denote the natural primary key of
the entity type Ei. An ER to relational mapping of the ER diagram above will produce
the following set S of relation schemes:

S = {
E1(W1, {nk1}, nk1),
E2(W2, {nk2}, nk2),
E3(W3, {nk3}, nk3),
E4(W4, {nk4}, nk4),
E5(W5, {nk5}, nk5),
R1(V1 ∪ {nk1, nk2}, {{ nk1, nk2}}, { nk1, nk2}), R2(V2 ∪ {nk1, nk2, nk3}, {{ nk1,
nk2, nk3}}, { nk1, nk2, nk3}),
R3(V3 ∪ {nk1, nk2, nk3, nk4}, {{ nk1, nk2, nk3, nk4}}, { nk1, nk2, nk3, nk4}),
R4(V4 ∪ {nk1, nk2, nk3, nk4, nk5}, {{ nk1, nk2, nk3, nk4, nk5}}, { nk1, nk2, nk3, nk4,
nk5})

},

and the following set I of referential integrity constraints:

I = {
R1[nk1] ⊆ E1[nk1],
R1[nk2] ⊆ E2[nk2],
R2[(nk1, nk2)] ⊆ R1[(nk1, nk2)],
R2[nk3] ⊆ E3[nk3],
R3[(nk1, nk2, nk3)] ⊆ R2[(nk1, nk2, nk3)],
R3[nk4] ⊆ E4[nk4],
R4[(nk1, nk2, nk3, nk4)] ⊆ R3[(nk1, nk2, nk3, nk4)],

6 Sebastian Link1, Ivan Luković2, Pavle Mogin*)1

R4[nk5] ⊆ E5[nk5],
}.

Let us transform the schema (S, I) into a schema (S’, I’) by:
1. Introducing surrogates ski as primary keys into the entity relation schemes Ei (i =

1,…, 5), retaining their natural keys as candidate keys, and propagating surrogate
primary keys into the corresponding relationship relation schemes,

2. Replacing relationship relation schema Ri (i = 1,…, 4) composite natural keys by
surrogates skj (j = i + 5) as primary keys, propagating skl (l = 6, 7, 8) into R(l - 4)
as foreign keys, and forming candidate keys of foreign keys, and

3. Replacing composite natural keys by corresponding surrogate keys in referential
integrity constraints from I.

An additional candidate key that is composed of propagated surrogates is needed in
each relationship relation to guarantee uniqueness of tuples. By applying the above
transformation, we obtain the following set of relation schemes:
S’ = {

E1’ (W1 ∪ {sk1}, { sk1, nk1}, sk1),
E2’ (W2 ∪ {sk2}, { sk2, nk2}, sk2),
E3’ (W3 ∪ {sk3}, { sk3, nk3}, sk3),
E4’ (W4 ∪ {sk4}, { sk4, nk4}, sk4),
E5’ (W5 ∪ {sk5}, { sk5, nk5}, sk5),
R1’ (V1 ∪ {sk1, sk2, sk6}, {{ sk1, sk2}, { sk6}}}, { sk6}),
R2’ (V2 ∪ {sk3, sk6, sk7}, {{ sk3, sk6}, { sk7}}, { sk7}),
R3’ (V3 ∪ {sk4, sk7, sk8}, {{ sk4, sk7}, { sk8}}, { sk8}),
R4’ (V4 ∪ {sk5, sk8, sk9}, {{ sk5, sk8}, { sk9}}, { sk9})

},
and the following set of referential integrity constraints:
I’ = {
R1' [sk1] ⊆ E1' [sk1],
R1' [sk2] ⊆ E2' [sk2],
R2' [sk6] ⊆ R1' [sk6],
R2' [sk3] ⊆ E3' [sk3],
R3' [sk7] ⊆ R2' [sk7],
R3' [sk4] ⊆ E4' [sk4],
R4' [sk8] ⊆ R3' [sk8],
R4' [sk5] ⊆ E5' [sk5]
}.

4.1.1 Storage Occupation

In this section we estimate the storage occupation of relations in a natural key and a
corresponding surrogate key database. To simplify the analysis we suppose that:
• Tuple fields are of a fixed size, and
• Relations are stored in files of fixed size blocks.
The relationship between a given number of tuples r of the size L and the number of
blocks b of a size B is

Performance Evaluation of Natural and Surrogate Key Database Architectures† 7

b = r / f,

where f is the blocking factor, given as f = B / L.

We assume that entity relations tend to contain master record data, where typically
size(W) >> size(nk), while relationship relations tend to contain transaction data,
where size(V) = l*size(nk), and where 2 ≤ l ≤ 5 may be a reasonable estimate, and l is
a multiplier. Also, we expect that the number of tuples of each entity relation is by at
least an order of magnitude smaller than the number of tuples of the associated
relationship relation. So, we neglect the storage occupancy of entity relations in this
analysis. Further, we assume the following relationship between numbers of tuples r i
in relations over Rj (j = 1, 2, 3, 4),

r1 < r2 < r3 < r4,

where r j+1 > r j (j = 1, 2, 3) by at least an order of magnitude. To simplify the analysis,
we assume that all natural keys nk and all surrogate keys sk have the same size
(size(nk) = size(sk)) of 8 bytes. Also, we suppose attribute sets Vj (j = 1,…, 4) have the
same size size(V). Further, we assume the size of a block header size(header) is 100
bytes, and the size of a disk block B is 8 KB. The block size of 8 KB represents its
usual value today.

Table 1 displays number of disk blocks b occupied by instances over Rj and Rj’ (j
= 1, 2, 3, 4) having r1 = 104, r2 = 105, r3 = 106, and r4 = 108 tuples.

Table 1.

size(V) = 2size(nk) size(V) = 5size(nk)
Rj r j L F b L f b
R1 104 32 252 40 56 144 70
R1’ 104 40 202 50 64 126 80
R2 105 40 202 496 64 126 794
R2’ 105 40 202 496 64 126 794
R3 106 48 168 5953 72 112 8929
R3’ 106 40 202 4951 64 126 7937
R4 108 56 144 694445 80 101 990100
R4’ 108 40 202 495050 64 126 793651

The table above shows that, under given assumptions, use of surrogate keys leads
to a saving in number of disk blocks in database structures resembling chains of
higher-order relationship types longer than one. In the case of a chain with three
higher-order relationship types and size(V) = 5size(nk), the total saving is
approximately 200,000 8 KB blocks, or 20%. The amount of storage space saved
increases with the length of the chain. But, if the chain contains only one higher-order
relationship type, the use of surrogate keys leads to a small increase in the use of disk
blocks.

8 Sebastian Link1, Ivan Luković2, Pavle Mogin*)1

4.1.2 Number Indices

The use of surrogate keys introduces an additional candidate key in all relation
schemes. Contemporary database management systems automatically build a B-tree
index for each primary key and unique constraint declared.

Since a natural keys and a surrogate key of the same relation may differ with
regard to the number of components, the corresponding B-tree indexes may differ in
the height and the number of nodes for the same number of tuples.

A B-tree is a dense index whose leaves are on the same path length from the root.
A B-tree stores items of the form (k, p, a) in its nodes, where k is a tuple key or
unique value, in a non leaf node p is a pointer to a node containing key values greater
than k, otherwise p is null, and a is the address of the tuple with the key value k. Each
B-tree node, except the root, may contain between m and 2m (m > 0) items, where 2m
is the maximum number of items in a node. The root may contain between 1 and 2m
items. All items of a node a sorted according to the ascending values of k. Each B-tree
node has a header and, if it is a non leaf node, a pointer p to a node having smaller
key values than the smallest key value in the node. Each B-tree node occupies a disk
block of the size B. The value of m is calculated in the following way

m = (B – size(p) – size(header)) / 2(size(k) + size(p) + size(a)).

The number of nodes n and the height h of a B-tree depend on the number of tuples r,
the parameter m, and the extent to which nodes are filled. If all nodes contain 2m
items, the number of nodes is

n = r / 2m,

and the height is

h = log2m+1(r + 1).

Bayer and McCreight (1972) reported that, in their experiments, B-tree nodes tended
to be 67% full. Accordingly, the number of nodes of a B-tree may be estimated using
the formula

n = r / l,

where l = 2*0.67*m, while the height of a B-tree may be estimated using the
formula

h = log l+1(r + 1).

Now, we compute the number of nodes and height of B-trees in our example
natural key and surrogate key databases. We calculate the number of nodes and the
height of natural key and surrogate key indexes for relationship relations only, since
we do not expect indexes on entity relations to differ significantly, due to a smaller
number of tuples and a large parameter m. To simplify the analysis, we assume that
size(nk) (size of an entity type primary key), size(p), and size(a) are 8 bytes,
size(header) is 100 bytes, and the size of a disk block B = 8 kilo bytes. The following
table displays parameters of the primary key B-tree and the other candidate key B-tree
for instances over Rj and Rj’ (j = 1, 2, 3, 4) having r1 = 104, r2 = 105, r3 = 106, and r4 =
108 tuples.

Performance Evaluation of Natural and Surrogate Key Database Architectures† 9

Table 2.

Primary Key B-tree Other Candidate Key B-
tree Rj r j

size(k) M n h size(k) M n h

Total
nodes

R1 104 16 126 58 2 58
R1’ 104 8 168 44 2 16 126 58 2 102
R2 105 24 101 718 3 718
R2’ 105 8 168 432 3 16 126 576 3 1008
R3 106 32 84 8627 3 8627
R3’ 106 8 168 4314 3 16 126 5752 3 10066
R4 108 40 72 1006442 5 1006442
R4’ 108 8 168 431332 4 16 126 575110 4 1006442

The most important information conveyed by Table 2 is that, according to our
suppositions, the heights of the surrogate primary key indexes and natural key indexes
do not differ, although the surrogate keys have only one component, while the natural
key may have several. This fact can be attributed to the logarithmic dependence of the
tree height on the number of tuples and the large logarithm base (parameter m).

For the considered length of the chain of higher-order relationship types, the
combined effect of the surrogate key index and the other candidate key index leads to
a larger use of the memory space on disk.

4.1.3 Update Complexity

In defining semantics of updates and queries, we start from the position that users
perceive the ER diagram in Figure 1 as the representation of their database and define
their updates and queries to the database in terms of natural keys.

In this section, we consider effects of inserts, deletes, and modifications made to
entity and relationship relations separately. The separation is made because entity
relations contain master record data that are updated considerably less frequently than
transaction data contained in relationship relations. While master record tables are
expected to contain thousands of tuples, transaction tables are expected to contain
millions of tuples. Accordingly, updates of relationship relations have a considerably
greater impact on the overall database performance.

Inserts and deletes in entity relations with natural keys only are more efficiently
performed than in entity relations with surrogate keys due to the need to update an
additional index in relations with surrogate keys. The natural key modification is the
operation where performances of the two database implementations differ most
significantly. Since natural key values are visible to users, modifications of entity
relation natural key values should be cascaded in natural key databases. A natural key
modification propagates through relationship relations and may cause one or more
index updates in all relations influenced by the update. A natural key modification in
an entity relation with the surrogate key has the same effect as the modification of a
non key attribute. It doesn’t propagate, but it induces the update of an additional
index. Namely, a DBMS performs a tuple modification by deleting the old version of
the tuple and inserting the new one at the end of the last block in the physical memory

10 Sebastian Link1, Ivan Luković2, Pavle Mogin*)1

space allocated to the relation. Since the tuple address has been changed, all indexes
have to be updated.

Now, we focus our analysis on inserts, deletes, and modifications of natural key
relationship relations Ri and surrogate key relationship relations Ri’ (i = 1, 2, 3). In the
following discussion, we focus only on facts that mostly influence performance
differences of update operations against the two database implementations. We
discuss updates defined on natural key values first and then briefly comment on
updates defined on non key attribute values.

Updates of instances over Ri are accomplished by issuing solely SQL INSERT,
DELETE, and UPDATE commands. Updates of surrogate key relationship relations
require the retrieval of appropriate surrogate key values before issuing SQL update
commands. To make the last claim more obvious, we consider updates of instances of
relations over R3 and R3’ . Before an INSERT, DELETE, or UPDATE, an application
program controlling updates has to execute the following two queries:

(1) SELECT sk 6 FROM E1’ NATURAL JOIN E2’ NATURAL JOIN R1’
NATURAL JOIN E3’ NATURAL JOIN R2’ WHERE nk 1 = a1 AND nk 2
= a2 AND nk 3 = a3;

and

(2) SELECT sk 4 FROM E4’ WHERE nk 4 = a4;

where ai (i = 1, …, 4) are natural key values.
Let us consider now an insert into a relation over R3’ . The new tuple has to contain

an existing value of sk7 to satisfy the referential integrity constraint R3' [sk6] ⊆ R2'[sk6]
and an existing value of sk4 to satisfy the referential integrity constraint R3' [sk4] ⊆
E4' [sk4]. Since surrogate key values are hidden from users, the queries (1) and (2)
have to be performed.

According to the above analysis, inserting into relations with composite natural
keys has a definite advantage over inserting into relations with surrogate keys. An
additional disadvantage for inserts into surrogate key relationship relations is the need
to insert new keys into an additional B-tree.

Consider now the delete of a particular tuple from a relation over R3’ . This delete
has to be defined either in terms of a sk7 value, or a (sk6, sk4) value. Queries (1) and
(2) retrieve the needed (sk6, sk4).

Deleting a tuple from relationship relations with composite natural keys has a
definite advantage over deleting from relations with surrogate keys. An additional
disadvantage for deletes from surrogate key relationship relations is the need to delete
keys from an additional B-tree.

Consider now the modification of a particular tuple in a relation over R3’ . This
modification has to be defined either in terms of a sk7 value, or a (sk6, sk4) value.
Queries (1) and (2) retrieve the needed (sk6, sk4). Again, due to the need to retrieve
surrogate key values using queries and to update an additional B-tree, modifications
take longer in relationship relations with surrogate keys.

Now, we discuss updates defined in terms of non key attribute values. If the search
has been based on a non unique attribute value, the sequential scan algorithm is used
to fined all tuples to be updated.. In this case searching in relations over Ri’ is faster
than searching in relations over Ri for i > 2, since search performance linearly

Performance Evaluation of Natural and Surrogate Key Database Architectures†
11

depends on the number of blocks. But each delete or modification also involves B-
tree updates. Accordingly, there can not be expected a significant difference in update
performance.

4.1.4 Query Data and Expression Complexity

In this section, we analyse the following queries:
a) (Query Q.a) Retrieve values of an attribute A∈V3 for a conditional expression on

the value k1 of the natural key nk1.
b) (Query Q.b) Retrieve values of an attribute A∈V3 and an attribute B∈W1 for the

natural key value nk1 = k1.
c) (Query Q.c) Retrieve values of the natural key nk1 for a conjunctive conditional

expression on non unique attributes from the entity relation E1 and relationship
relations R1, R2, and R3.

d) (Query Q.d) Retrieve values of an attribute A∈V3 for a conditional expression on
the value b of an attribute C∈W4.

Above queries are selected to illustrate differences and similarities of the two
architectures in answering queries, but do not pretend to give a definite answer which
approach is generally better.

We use the following criteria to estimate the data complexity of a query:
• The number of joins, and
• The number of disk blocks of a relation.
We assume that the query data complexity stems mainly from the number of joins,
and then from the number of disk blocks. The number of disk blocks determines the
complexity of executing conditional expressions, and may influence the complexity of
a join algorithm. If these two simple criteria are not decisive enough, then we also
take into account complexity of the supposed join algorithm.

a) The query Q.a maps into

SELECT A FROM R3 WHERE nk1 = k1; (Q.a natural)

in the natural key database, whereas the same query maps to

SELECT A FROM R3’ NATURAL JOIN R2’ NATURAL JOIN R1’ NATURAL
JOIN E1’ WHERE nk1 = k1; (Q.a surrogate)

in the surrogate database. While the query Q.a is a single table query against the
natural key database, it requires three joins when issued against the surrogate key
database. The query is defined in terms of a natural key nk1 value that is available in
the natural key database from R3 directly, and only from the entity relation E1’ in the
surrogate key database. So, the query (Q.a surrogate) has to join the relations over E1’
and R3’ via intermediate relationship relations. Accordingly, the natural key database
has a clear performance advantage over the surrogate database.

b) The query Q.b maps into

SELECT A, B FROM E1 NATURAL JOIN R3 WHERE nk1 = k1; (Q.b natural)

for the natural key database, whereas the same query maps to

12 Sebastian Link1, Ivan Luković2, Pavle Mogin*)1

SELECT A, B FROM R3’ NATURAL JOIN R2’ NATURAL JOIN R1’
NATURAL JOIN E1’ WHERE nk1 = k1; (Q.b surrogate)

for the surrogate database. The query asks for values of attributes from relations over
E1 and R3 and maps into a multi table SQL expressions in both databases. The natural
key database allows a direct join of relations over E1 and R3, while the surrogate key
database requires joining all relations on the path from E1’ to R3’ . Accordingly, the
natural key database has a clear performance advantage over the surrogate database.

c) The query Q.c maps into

SELECT nk1 FROM R3 NATURAL JOIN R2 NATURAL JOIN R1 NATURAL
JOIN E1 WHERE B = b AND A1 = a1 AND A2 = a2 AND A3 = a3; (Q.c natural)

for the natural key database, whereas the same query maps to

SELECT nk1 FROM R3’ NATURAL JOIN R2’ NATURAL JOIN R1’
NATURAL JOIN E1’ WHERE B = b AND A1 = a1 AND A2 = a2 AND A3 = a3;

(Q.c surrogate)

for the surrogate database. The query Q.c maps into SQL expressions with the same
number of joins in both databases. Here, we estimate that a smaller number of blocks
in the relation over R3’ , compared to R3 favours the performance of the query against
the surrogate key database. The performance advantage stems from a more efficient
linear search in the relation over R3’ , but may be also influenced by a more efficient
join algorithm.

d) The query Q.d maps into

SELECT A FROM R3 NATURAL JOIN E4 WHERE C = c; (Q.d natural)

for the natural key database, whereas the same query maps to

SELECT A FROM R3’ NATURAL JOIN E4’ WHERE C = c; (Q.d surrogate)

for the surrogate database. The query Q.d maps into a SQL expressions with a single
join in both databases. Here, a slightly smaller number of blocks of E4 compared to
E4’ favours the efficiency of the linear search in the relation over E4. On the other
hand, the performance of the join is influenced by the smaller number of blocks of the
relation over R3’ (in the case of a nested loop, sort-merge, or hash join algorithm), or a
possibly smaller primary key B-tree height in the case of the single loop join
algorithm. We estimate that the query Q.d has approximately the same performance in
both databases.

Contrary to complaints reported in the survey, queries against the natural key
database in examples above do not have a greater query expression complexity, since
we used natural join. If we used inner joins, then the query (Q.c natural) would have a
greater expression complexity than the query (Q.c surrogate).

4.2 First-order Relationship Type

Let us consider the ER diagram in Figure 2 and suppose the first-order relationship
type R1 is not involved in any higher-order relationship structure.

Performance Evaluation of Natural and Surrogate Key Database Architectures†
13

Figure 2.

The structure in Figure 2 maps to a natural key and surrogate key database schema
having such sets of relation schemes T and T’ that are subsets of relation schema sets
S and S’, respectively. Instances over T and T’ satisfying the corresponding referential
integrity constraints have the following features:

a) The natural key relations occupy less storage space according to Table 1.
b) Relations over T’ contain at least one additional candidate key and B-tree index.
c) B-tree indexes in relations over T’ are of the same height as the indexes of the

corresponding relations over T, but according to Table 2 occupy more storage
space in total.

d) Inserts and deletes from an instance over R1’ take longer than the same operations
against a corresponding instance over R1, since:

i. There is still a requirement to execute two SQL SELECT operations prior to
performing actual update operations, and

ii. The additional B-tree index needs also to be updated.
e) The modification of a natural key value takes longer, since the modification has

to be cascaded to the relation over R1.
f) Queries against the natural key database execute faster than queries against the

surrogate database, since:
i. Certain queries against the surrogate key database still require more joins,

and
ii. The relations of a natural key database occupy less storage space and that

results in a more efficient linear search.

All claims above, except the last one, follow directly from the analysis performed in
the section 4.1. To justify the claim f), let us consider the following query

(Query Q.c1) Retrieve values of the natural key nk1 for a conjunctive conditional
expression on non unique attributes from the entity relation E1 and the relationship
relation R1.

The query Q.c1 is a restricted version of the query Q.c above, adjusted to fit a
database structure that corresponds to Figure 2. As in the case of the original query
Q.c, the SQL expressions of the query Q.c1 against both the natural key and surrogate
key databases contain a join and two conditional expressions. Contrary to the case of
the query Q.c, the natural key database structure occupies a smaller number of blocks,
which leads to an estimate that the query against the natural key database may
outperform the query against the surrogate key database.

The preceding analysis may be generalized to relational implementations of ER
structures involving relationship types of any arity with associated entity types.

M M E1 R1 E2

14 Sebastian Link1, Ivan Luković2, Pavle Mogin*)1

5 Conclusion and Future Work

In this paper, we have compared two relational database architectures: one that is
based on natural keys with one that is based on surrogate keys. Utilizing simple
mathematical reasoning we have obtained the following insights:
• The natural key architecture performs considerably better when updates to

relationship relations are considered.
• The modification of natural key values is a potentially great disadvantage of the

natural key architecture.
• If deep hierarchies of higher-order relationship relations are present, then the

query performance of neither of the architectures is superior to the other.
• Queries against first-order relationship relations perform better with respect to the

natural key architecture than they do with respect to the surrogate key
architecture.

The majority of queries and updates in real life databases are defined in terms of
natural keys. Accordingly, queries against relations in the surrogate key architecture
require at least one join with an entity relation, but may involve several joins along
the join path. Therefore, the natural key architecture can be expected to have a
performance advantage due to the smaller number of joins needed.

If a query requires the same number of joins in both architectures, then the storage
occupation has a deciding impact on the performance. In such cases, long chains of
higher-order relationship relations favour the surrogate key architecture, while short
chains of relationship relations favour the natural key architecture.

The natural key architecture does not benefit considerably from indexes on foreign
keys. If databases are update-intense, then it may be advisable not to use them. In
such situations, e.g. in OLTP databases, the performance advantage depends on the
ratio of the number of modifications of natural key values and the number of updates
of relationship relations.

References

1. Bayer R. and McCreight E. (1972): Organization and Maintenance of Large
Ordered Indexes, Acta Informatica, Vol.1, 1972, pp.173-189.

2. Codd E. F. (1979): Extending the Relational Data Model to Capture More
Meaning, ACM TODS, 4(4): 397-434.

3. Date C., Darwen H., and Mcgoveran D.(1998): Relational Database Writings
1994-1997, Addison Wesley, 1998.

4. Fagin R. (1981): A Normal Form for Relational Databases That Is Based on
Domians and Keys, ACM TODS 6(3): 387-415

5. Hall P., Owlett, J. and Todd, S. (1976). Relations and Entities, Proc. IFIP TC-2
Working Conference on Modelling in Data Base Management Systems, G. M.
Nijssen (ed.), pp 201-220, Horth-Holland.

6. Thalheim B. (2000). Entiry-Relationship Modeling – Foundation of Database
Technology, Springer Verlag, Berlin, New York , 2000.

Performance Evaluation of Natural and Surrogate Key Database Architectures†
15

7. Toman D., Weddell G. E. (2008): On Keys and Functional Dependencies as First-
Class Citizens in Description Logics. J. Autom. Reasoning 40(2-3): 117-132.

8. Walker B. (2006) Why Use Surrogate keys, SearchSQLServer.com,
http://searchsqlserver.techtarget.com/.../0,295582,sid87_gci1156604,00.html
Accessed 05.01.2010.

9. Wieringa R., De Jonge W. (1995): Object Identifiers, Keys, and Surrogates:
Object Identifiers Revisited. Theory and Practice of Object Systems, 1(2):101-
114.

10. Wikipedia, Surrogate Key (http://en.wikipedia.org/wiki/Surrogate_key). Accessed
05.01.2010.

