Performance Evaluation of Natural and Surrogate Key
Database Architectures

Sebastian Link Ivan Lukovi?, Pavle Mogifi*

Wictoria University of Wellington,
Wellington, P.O. Box 600, New Zealand
sebastian.link@vuw.ac.nz
pmogin@ecs.vuw.ac.nz
2University of Novi Sad, Faculty of Technical Sciesc
21000 Novi Sad, Trg Dositeja Obradovica 6, Serbia
ivan@uns.ac.rs

Abstract. Keys allow a database management system to ugiqdehtify
tuples in a database. Consequently, the classyaf ikeof a great significance
for almost all data processing tasks. There are dampeting approaches to
specifying keys in relational databases. Thesenataral and surrogate key
architectures. A natural key is an attribute sulo$ehe relation schema that is
known to users. A surrogate key is a singletonbaitie with system-generated
values that are invisible to users. In the paper,awalyze the performance of
these approaches with respect to different measiiesse include the disk
storage space, the number of indices, the updatelesity, as well as the
query data and expression complexity. In the aimlyse use simple
mathematical models and estimates of database rperfice. Our results
provide new insights into the advantages and deaidges of both approaches.

Keywords: natural key, surrogate key, database managemstansydatabase
performance.

1 Introduction

Keys are a class of database constraints thatdngveat importance for maintaining a
database in the consistent state. Currently, thezetwo competing approaches to
defining keys. These are natural and surrogateakahyitectures.

A natural keyis a candidate key that has a logical relationgbi@n attribute
subset of the underlying relation schema. The exest of a natural key is known to
users and businesses. It may be composed of a nwhbéributes, although there
are numerous examples of single attribute natuegsk The main disadvantage of
natural keys is the susceptibility to changes ltalue and structure. The change in

T This research was supported by Victoria UniversftyVellington, Wellington, New Zealand
Research Grant 85575

") Corresponding author



2 Sebastian Link1, Ivan Lukovi¢2, Pavle Mogin*)1

the structure of a natural key usually resultsariasis problems in the database and
application maintenance, since the change has tppked in several places. As a
consequence, the use of natural keys as primaryikeyften disputed in industry.

A surrogate keyis a singleton attribute whose values are (i) mionéii) system
generated and (iii) used for unique identificatafrtuples in a relation. Its existence
and values are invisible to users. An importantcpieed advantage of using
surrogates as primary keys is their immutabilityhich is a consequence of their
separation from business logic. E. F. Codd in [8firkd a relational database
architecture based on surrogates. Each relatioensalihas a surrogate attribute as its
primary key. Surrogate primary keys are propagadesther relations as foreign keys.

In a recent survey of database implementation joescthat we conducted in New
Zealand and Serbia a prevailing number of respdsdeported the use of a surrogate
key database implementation architecture, wherl ezlational database table has a
surrogate primary key. The ease of implementatiwhparticularly maintainability of
database applications is often perceived as the adantage of the surrogate key
database implementation architecture.

We believe that natural keys should be specifiednglrer they represent business
rules of the underlying application domain. Moregvie appears to be difficult to
argue against the claim that the ease of applicat&velopment and the immutability
against changes in the business rules are gooon®e&sr the use of the surrogate key
architecture. However, according to our best kndgée no comprehensive analysis
is available that studies the impact of natural smdogate keys on the performance
of the database. The main objective of this artigl® address this research gap, and
estimate the consequences of either implementatioite on:

« Update complexity,

e Query data complexity,

* Query expression complexity,
*  Number of indices, and

» Disk storage occupancy.

To achieve the goal, we compare two border line@gghes. In one of them, all
relation scheme primary keys are natural keys ercmmposed of natural primary
keys propagated from other relation schemes agyfokeys. In the other approach all
relation schemes are associated with an invisibteogate primary key, and only
relation schemes produced by mapping entity types lalso a natural candidate key.

Section two of the paper reviews related work. iBadhree briefly reports on the
survey of database implementation practices instigiuthat we conducted in 2009.
Section four examines and compares performancigoaborder line implementation
architectures for two characteristic database stres. The final section presents
conclusions and ideas for future work.

2 Related Work

Hall et al. [5] were among the first to considee thse of surrogates in database
conceptual modelling. The motive to do so was théiguity that arises when a key
value is modified. To illustrate the ambiguity, yheonsider the modification of a



Performance Evaluation of Natural andSurrogate Key Database Architecturest 3

personal number in a company’s database and pespigstion: “Have we recorded a
change to someone’s personal number or have werdextohis dismissal and
replacement by a new employee (who happens to lla@esame name)?” To
overcome the ambiguity, they introduce a collectanunique immutable objects
which act as the representatives of the objectshén real world and call them
surrogatesIn the conceptual database, an entity is reptedeyy its surrogate. A key
is still needed to uniquely identify the surrogasdthough a key value may be
modified. The authors do not consider implicatioofs surrogates on database
performance.

E. F. Codd in [2] introduced new features into rhlational data model to capture
more meaning of data. One of these features isuh®gate primary key, where he
builds on the results presented in [5]. Startimgrfthe same position that users must
be allowed to change values of keys that they hdefined, Codd introduces a
database wide domain, calleddomain as the source of all surrogates. Each attribute
defined on this domain has a recognizable namgandanent, database wide unique
values. Further, he makes the use of user-cordribgs not compulsory. Since users
are expected to define joins using surrogate kéyesy have to be aware of their
existence, but values have to be hidden from tl@&dd does not consider the impact
of the proposed extensions on database performance.

Wierenga et all in [9] gave a precise definitionatfect identification schemes.
The authors introduced object identifiers which bime the ideas of natural and
surrogate keys. We do not consider this conceptirarticle.

A search on Google returns almost one million fotsthe key phrassurrogate
key. Generally, these submissions briefly describeaathges and disadvantages of
using natural or surrogate keys. In the followiagtt we present a submission that we
have found most interesting.

Walker B. in [8] introduces a surrogate key arattiiee that relies on eight rules.
These rules follow the lines defined in [3], withetexception that entity type tables
contain beside surrogate also natural keys. Nakegt are needed to allow data
searching. The main goal of this architecture is thake the life easier for
developers”. The author doesn’'t present any quaiviit analysis of the impact of
surrogate keys on database performance.

3 A Survey of Database Design and Implementation Practices

During 2009 we conducted a survey of database desid implementation practices
in industry. We made a questionnaire and askedhaauof software companies and
free lance database specialist from New ZealandSmmbdia to answer it. A separate
guestion asked participants to comment on the Lisermgate keys.

We received answers from five software companielsfize independent database
specialists. The majority of respondents reportedse a surrogate key architecture
that closely follows the one defined in [2] and.[®)nly one software company
answered that they exclusively use natural keys eladmed that they didn't
experience any problems in doing so during overentioan twenty years.

The ease of implementation and particularly maiahility of database
applications were denoted as the main advantagebeofsurrogate key database



4 Sebastian Link1, Ivan Lukovi¢2, Pavle Mogin*)1

implementation architecture. The immutability wasotpd as another important
advantage of surrogate keys.

The common justification for using the surrogatey karchitecture was that
application programmers do not want to think hafibua database structure,
particularly not to analyse composite keys, anden8QL queries involving joins on
composite natural keys. These are even strongsomsavhen developers have to fix
a problem with a mission critical system that thaye not seen before.

Tools like Oracle Designer and web application ®amrks like Hibernate and
Ruby on Rails stimulate the use of the surrogatg &echitecture by inserting
surrogates as primary keys in the database ddscriptripts either automatically or
on designer’s request.

Some of the respondents also referred to a rekdtidatabase structure, very
similar to one that would be obtained by mappirgyER diagram in Figure 1, as one
that benefits considerably from using surrogateskey

4 Performance Estimates

In the following text we perform a comparison oéthatural key and surrogate key
database implementation architecture using simplathematical models and
performance estimates. In our analysis, we consiter following performance
criteria: the occupation of the memory space ok,dls&e number of keys and indices,
the update complexity, and the query data and szjme complexity. We investigate
the performance differences of two ubiquitous dasebstructures. These are the
relational maps of a chain of higher-order relahup types and a binary first-order
relationship type. Our ER notation follows the émeoduced in [6].

E:

E>

Figure. 1.



Performance Evaluation of Natural andSurrogate Key Database Architecturest 5

4.1 The Chain of Higher-Order Relationship Types

Let us consider the ER diagram in Figure 1. We tleram entity type a&(W, K)
whereE is the name of the entity typ@/is its set of attributes ari€lis a subset ofv
which is a key forE. We denote a relationship type B(C, V, K), whereR is the
name of the relationship typ€,is the set of its componenig,is its attribute set and
K is its key.K is a subset o€ andV, and the elements & in C are called key
components oR, while the elements df in V are called key attributes Bf If the set
C contains a relationship type, thBris a higher-order relationship type. OtherwiRe,
is called the first-order relationship type.

Let us denote a relation schemaNiX, SCK PK), whereN is the relation schema
name, X is the set of attributesSCK is the set of candidate keys, aR& is the
primary key. Let us also denote a referential intggonstraint byN,[Y] O No[PK],
whereN; andN, are relation schema namé&s[d X;, PK is the relation schemis,
primary key, and’ andPK are union compatible sets of attributes.

Now we map the ER diagram in Figure 1 into two sétselation schemeS and
S’ and two sets of referential integrity constraingsdl’. The mapping that results in
Sis a mapping based on natural keys, while the imapthat results ir§’ is based on
the surrogate key architecture. If a relation schenom S or S’ is obtained by
mapping an entity type, we call it entity type tela schema. Otherwise, we call it
relationship relation schema. Lek (i = 1, 2,..., 4) denote the natural primary key of
the entity typeE;. An ER to relational mapping of the ER diagramabwill produce
the following setS of relation schemes:

S={
Ey(Wy, {nki}, nky),
Eo(Wa, {nkg}, nky),
Es(Wa, {nks}, nky),
E4(W4! {nk4}! nk4)!
ES(WS! {nkS}! nkS)!
Ru(V1 O {nky, nke}, {{ nky, nko}}, { nky, nie}), RV O {nky, nko, nka}, {{ nky,
nke, nkgl}, { nky, nle, nka}),
R3(V3 0 {nkll nkz, nkg, nk4}, {{ nkl! nkz, nkg, nk4}}l { nkl! nkz, nkg, nk4})i
R;LS;“ u {nklr nk2| nk3| nk4, nk5}! {{ nkl! nk2| nk3| nk4! nk5}}, { nkl! nk2| nk3| nk41
n
2

and the following seit of referential integrity constraints:

I ={

Ri[nky] O Ei[nky],

Ri[nky] O Eo[nky],

Ro[(nky, nky)] O Ry[(nky, nky)],

Ry[nks] O E3[nkg],

Rs[(nky, nky, nks)] T Ro[(Nnky, Nk, nks)],

Ra[nky] O E4[nky],

Ry[(nky, nky, nks, nky)] O Re[(nky, Nk, Nk, Nky)],



6 Sebastian Link1, Ivan Lukovi¢2, Pavle Mogin*)1

?4[”'%] 0 Es[nks],

Let us transform the schenf () into a schemaS, I") by:

1. Introducing surrogatesk as primary keys into the entity relation scherBeg =
1,..., 5, retaining their natural keys as candidate kapsl, propagating surrogate
primary keys into the corresponding relationshiptien schemes,

2. Replacing relationship relation scheRai = 1,..., 4 composite natural keys by
surrogatesk (j =i + 5) as primary keys, propagatisg (I =6, 7, 8) into Ry . 4
as foreign keys, and forming candidate keys ofifpré&eys, and

3. Replacing composite natural keys by correspondimgpgate keys in referential
integrity constraints frorh

An additional candidate key that is composed oppgated surrogates is needed in

each relationship relation to guarantee uniquenésaples. By applying the above

transformation, we obtain the following set of tela schemes:

S’ ={

By (Wi O {ski}, { sk, nki}, ski),

B’ (W2 U {sk}, { sk, nko}, sk),

Es" (Ws U {skg}, { sks, nks}, sks),

B (W, O {skg}, { sk, nki}, sky),

Es' (Ws U {sks}, { sks, nke}, sks),

Ry’ (V1 O {sk, sk, ske}, {{ ski, sk}, { ske}}}, { sks}),
Ry’ (V2 U {ske, sk, sk}, {{ sk, ske}, { sk}, { ske}),
R’ (Vs O {sk, sk, ske}, {{ ski, ska}, { sk}}, { skg}),

} Ry’ (Va O {sks, sk, sko}, {{ sk, ske}, { ske}}, { ske})

and the following set of referential integrity ctragnts:

I ={

Ry’ [sk] O Ey' [sk],

Ry’ [sk] U E' [sk,

Ry’ [sk] U Ry [skql,

Ry’ [sk] O Eg' [skal,

Ry’ [sk] O Ry [sk],

Ry’ [ski] O E4' [sk],

Ry’ [sky] O Rs' [skl,

}R4' [sks] O Es' [sk]

4.1.1 Storage Occupation

In this section we estimate the storage occupatigalations in a natural key and a
corresponding surrogate key database. To simpidyanalysis we suppose that:

e Tuple fields are of a fixed size, and

* Relations are stored in files of fixed size blocks.

The relationship between a given number of tuplesthe sizd. and the number of
blocksb of a sizeB is



Performance Evaluation of Natural andSurrogate Key Database Architecturest 7

b=[r/f],
wheref is the blocking factor, given ds [ B /L.

We assume that entity relations tend to contairtenascord data, where typically
siz§W) >> siz€nk), while relationship relations tend to contaimsaction data,
wheresizgV) =I*siz€nk), and where < | <5 may be a reasonable estimate, bisd
a multiplier. Also, we expect that the number gflés of each entity relation is by at
least an order of magnitude smaller than the nurobeiples of the associated
relationship relation. So, we neglect the storagmipancy of entity relations in this
analysis. Further, we assume the following relatiom between numbers of tuplgs
in relations oveR (j = 1,2, 3,4),

M1 <TIy<I3<Try

wherer,, >1; (j =1, 2, 3) by at least an order of magnitude. To simplify &nalysis,
we assume that all natural keylsand all surrogate keyk have the same size
(siz€nK) = sizgsK) of 8 bytes. Also, we suppose attribute 3&t§ = 1,..., 4) have the
same sizaizgV). Further, we assume the size of a block hesidgheade} is 100
bytes, and the size of a disk bldgls 8 KB. The block size 08 KB represents its
usual value today.

Table 1 displays number of disk blodkeccupied by instances ov@randR;’ (j
=1, 2,3, 4) havingr, = 10%, r, = 10°, r3 = 10°, andr, = 10 tuples.

Table 1.
R " sizgV) = 2siz€nk) siz€V) = 5siz€nk)
L L L F b L f b

R, 10 32 252 40 56 144 70
R/ 10 40 202 50 64 126 80
R, 100 40 202 496 64 126 794
R, 100 40 202 496 64 126 794
Rs 10° 48 168 5953 72 112 8929
Ry 10° 40 202 4951 64 126 7937
R, 10° 56 144 694445 80 101 990100
R, 10° 40 202 495050 64 126 793651

The table above shows that, under given assumptisesof surrogate keys leads
to a saving in number of disk blocks in databasacsires resembling chains of
higher-order relationship types longer than oneth@ case of a chain with three
higher-order relationship types ansiz§V) = 5siz€nk), the total saving is
approximately200,000 8KB blocks, or20% The amount of storage space saved
increases with the length of the chain. But, if ¢thain contains only one higher-order
relationship type, the use of surrogate keys léadssmall increase in the use of disk
blocks.



8 Sebastian Link1, Ivan Lukovi¢2, Pavle Mogin*)1

4.1.2 Number Indices

The use of surrogate keys introduces an additicenadidate key in all relation
schemes. Contemporary database management systermmatcally build a B-tree
index for each primary key and unique constraimiated.

Since a natural keys and a surrogate key of the satation may differ with
regard to the number of components, the correspgriglitree indexes may differ in
the height and the number of nodes for the saméauof tuples.

A B-tree is a dense index whose leaves are onatime path length from the root.
A B-tree stores items of the forrk, @, a) in its nodes, wherkis a tuple key or
unique value, in a non leaf nodeés a pointer to a node containing key values great
thank, otherwisep is null, anda is the address of the tuple with the key vaduEach
B-tree node, except the root, may contain betwe@nd2m (m > 0) items, where 2m
is the maximum number of items in a node. The no@y contain betweehand2m
items. All items of a node a sorted according ®akcending values kf Each B-tree
node has a header and, if it is a non leaf nogejr&terp to a node having smaller
key values than the smallest key value in the nBdeh B-tree node occupies a disk
block of the sizéB. The value omis calculated in the following way

m=L(B —sizdp) —sizdheade}) / 2(siz€k) + siz&p) + siz€a)) .

The number of nodesand the height of a B-tree depend on the number of tuples
the parametem, and the extent to which nodes are filled. Ifraltles contai@m
items, the number of nodes is

n=r/2m
and the height is
h =logame(r + 1).

Bayer and McCreight (1972) reported that, in tlesiperiments, B-tree nodes tended
to be 67% full. Accordingly, the number of nodesad3-tree may be estimated using
the formula

n=[r/l],

wherel =[ 2*0.67m], while the height of a B-tree may be estimatedgishe
formula

h=llog . (r + 1) 1.

Now, we compute the number of nodes and heightwé8s in our example
natural key and surrogate key databases. We ctdhla number of nodes and the
height of natural key and surrogate key indexesdtationship relations only, since
we do not expect indexes on entity relations téedgignificantly, due to a smaller
number of tuples and a large parametem o simplify the analysis, we assume that
siz€nk) (size of an entity type primary kewiz€p), andsizga) are8 bytes,
siz€heade} is 100 bytes, and the size of a disk bldgk 8 kilo bytes. The following
table displays parameters of the primary key B-tieg the other candidate key B-tree
for instances oveR andR’ (j =1, 2, 3, 4) havingr, = 10%, r, = 10°, r3 = 10°, andr, =
1CPtuples.



Performance Evaluation of Natural andSurrogate Key Database Architecturest 9

Table 2.

R [ Primary Key B-tree Other Cant<r1(iedeate Key B- Total

size() M n h sizel) M = ks
R, | 10 16 126 58 2 58
R, | 10 8 168 44 2 16 126 58 2 102
R, | 10° 24 101 718 3 718
R, | 10° 8 168 432 3 16 126 576 3 1008
Ry | 10° 32 84 8627 3 862
Ry | 1¢° 8 168 4314 3 16 126 5752 3 10066
R, | 1€ 40 72 1006442 5 1006442
R, | 1¢ 8 168 431332 4 16 126 575110 4 1006442

The most important information conveyed by Tablés 2hat, according to our
suppositions, the heights of the surrogate prirkagyindexes and natural key indexes
do not differ, although the surrogate keys have onke component, while the natural
key may have several. This fact can be attributettie logarithmic dependence of the
tree height on the number of tuples and the lazgarithm base (paramete.

For the considered length of the chain of higheeorrelationship types, the
combined effect of the surrogate key index andother candidate key index leads to
a larger use of the memory space on disk.

4.1.3Update Complexity

In defining semantics of updates and queries, &g fitom the position that users
perceive the ER diagram in Figure 1 as the reptaten of their database and define

their updates and queries to the database in t&rmegtural keys

In this section, we consider effects of insertdetds, and modifications made to
entity and relationship relations separately. Thpasation is made because entity
relations contain master record data that are egdadnsiderably less frequently than
transaction data contained in relationship relatioWhile master record tables are
expected to contain thousands of tuples, transadtibles are expected to contain
millions of tuples. Accordingly, updates of relatship relations have a considerably
greater impact on the overall database performance.

Inserts and deletes in entity relations with ndtkeys only are more efficiently
performed than in entity relations with surrogatyk due to the need to update an
additional index in relations with surrogate keyhe natural key modification is the
operation where performances of the two databagdeimentations differ most
significantly. Since natural key values are visilbdeusers, modifications of entity
relation natural key values should be cascadedtural key databases. A natural key
modification propagates through relationship reladi and may cause one or more
index updates in all relations influenced by thelatp. A natural key modification in
an entity relation with the surrogate key has thmes effect as the modification of a
non key attribute. It doesn’t propagate, but ituoels the update of an additional
index. Namely, a DBMS performs a tuple modificatlmndeleting the old version of
the tuple and inserting the new one at the entiefést block in the physical memory



10 Sebastian Link1, Ivan Lukovi¢2, Pavle Mogin*)1

space allocated to the relation. Since the tuptkess$ has been changed, all indexes
have to be updated.

Now, we focus our analysis on inserts, deletes, randifications of natural key
relationship relation® and surrogate key relationship relatidtis(i = 1, 2, 3). In the
following discussion, we focus only on facts thabstty influence performance
differences of update operations against the twiabdee implementations. We
discuss updates defined on natural key values &inst then briefly comment on
updates defined on non key attribute values.

Updates of instances ov& are accomplished by issuing solely SQL INSERT,
DELETE, and UPDATE commands. Updates of surrogaterklationship relations
require the retrieval of appropriate surrogate kelues before issuing SQL update
commands. To make the last claim more obvious,omsider updates of instances of
relations ovelR; andR;'. Before an INSERT, DELETE, or UPDATE, an applioati
program controlling updates has to execute theviolig two queries:

(1) SELECT sk, FROM E;’ NATURAL JOIN E,; NATURALJOIN R/
NATURAL JOIN E; NATURALJOIN R’ WHEREnk,= a, AND nk,
= a,AND nk,= a,;

3

and
(2) SELECT sk, FROM E,; WHEREnnk, = a,;

47

wherega, (i =1, ..., 4) are natural key values.

Let us consider now an insert into a relation dr The new tuple has to contain
an existing value odk; to satisfy the referential integrity constraitt[sks] 0 R,'[ske]
and an existing value afk, to satisfy the referential integrity constralR{f [sk;] [

E, [sk]. Since surrogate key values are hidden from ushes queries (1) and (2)
have to be performed.

According to the above analysis, inserting intatiehs with composite natural
keys has a definite advantage over inserting ietations with surrogate keys. An
additional disadvantage for inserts into surrog@te relationship relations is the need
to insert new keys into an additional B-tree.

Consider now the delete of a particular tuple framelation oveRs'. This delete
has to be defined either in terms oflavalue, or a ks, sk;) value. Queries (1) and
(2) retrieve the neededlg, sk;).

Deleting a tuple from relationship relations witbngposite natural keys has a
definite advantage over deleting from relationshwsurrogate keys. An additional
disadvantage for deletes from surrogate key relakip relations is the need to delete
keys from an additional B-tree.

Consider now the modification of a particular tuptea relation oveRs'. This
modification has to be defined either in terms dcfkavalue, or a gk, sk;) value.
Queries (1) and (2) retrieve the needsld, (sk;). Again, due to the need to retrieve
surrogate key values using queries and to updatedditional B-tree, modifications
take longer in relationship relations with surregkeys.

Now, we discuss updates defined in terms of nondteipute values. If the search
has been based on a non unique attribute valuesetipgential scan algorithm is used
to fined all tuples to be updated.. In this cassrad@ng in relations oveR’ is faster
than searching in relations ov& for i > 2, since search performance linearly



Performance Evaluation of Natural andSurrogate Key Database Architecturest
11

depends on the number of blocks. But each deleteadfification also involves B-
tree updates. Accordingly, there can not be expeztegnificant difference in update
performance.

4.1.4Query Data and Expression Complexity

In this section, we analyse the following queries:

a) (Query Q.a) Retrieve values of an attribAféV; for a conditional expression on
the valuek; of the natural kewyk;.

b) (Query Q.b) Retrieve values of an attribétgV; and an attribut®OW; for the
natural key valuaék; = k;.

c) (Query Q.c) Retrieve values of the natural kéy for a conjunctive conditional
expression on non unique attributes from the emétgtionE; and relationship
relationsRy, Ry, andRs.

d) (Query Q.d) Retrieve values of an attribeV; for a conditional expression on
the valueb of an attributeCOW,.

Above queries are selected to illustrate differenaad similarities of the two
architectures in answering queries, but do notepigtto give a definite answer which
approach is generally better.

We use the following criteria to estimate the datmplexity of a query:

e The number of joins, and

*  The number of disk blocks of a relation.

We assume that the query data complexity stemslynaim the number of joins,

and then from the number of disk blocks. The nund§etisk blocks determines the

complexity of executing conditional expressiong] amay influence the complexity of

a join algorithm. If these two simple criteria avet decisive enough, then we also

take into account complexity of the supposed jégo@thm.

a) The query Q.a maps into
SELECTA FROMR; WHEREnNk; =kg; (Q.a natural)
in the natural key database, whereas the same magy to

SELECTA FROMR; NATURAL JOIN R, NATURAL JOINR;" NATURAL
JOINE; WHEREnNk; =k;; (Q.a surrogate)

in the surrogate database. While the query Q.a stgle table query against the
natural key database, it requires three joins wissned against the surrogate key
database. The query is defined in terms of a niakerank; value that is available in
the natural key database frdRg directly, and only from the entity relatida’ in the
surrogate key database. So, the query (Q.a sueolgas to join the relations ovier
andRy' via intermediate relationship relations. Accordynghe natural key database
has a clear performance advantage over the suerdgtdbase.

b) The query Q.b maps into
SELECTA, BFROME; NATURAL JOIN Rg WHEREnNkK; =ky; (Q.b natural)

for the natural key database, whereas the samg quag’s to



12 Sebastian Link1, Ivan Lukovi¢2, Pavle Mogin*)1

SELECTA, BFROMR;' NATURAL JOINR,’ NATURAL JOIN R/
NATURAL JOIN E;” WHEREnNk; =kg; (Q.b surrogate)

for the surrogate database. The query asks foesalfiattributes from relations over
E; andR; and maps into a multi table SQL expressions i llatabases. The natural
key database allows a direct join of relations dweandR;, while the surrogate key
database requires joining all relations on the fiaim E;’ to Rs'. Accordingly, the

natural key database has a clear performance ady@oter the surrogate database.

c) The query Q.c maps into

SELECTnk; FROMR; NATURAL JOIN R, NATURAL JOIN R; NATURAL
JOINE; WHEREB =b AND A; =a; AND A, =a, AND Az =az; (Q.c natural)

for the natural key database, whereas the samg quag’s to

SELECTnk, FROMR;' NATURAL JOIN R’ NATURAL JOIN R/’
NATURAL JOIN E;’ WHEREB =b AND A; =a; AND A, =a, AND Az = ag;
(Q.c surrogate)

for the surrogate database. The query Q.c map$SiQtoexpressions with the same
number of joins in both databases. Here, we estitthait a smaller number of blocks
in the relation oveR;', compared tdR; favours the performance of the query against
the surrogate key database. The performance adpastams from a more efficient
linear search in the relation ovey', but may be also influenced by a more efficient
join algorithm.

d) The query Q.d maps into

SELECTA FROMR; NATURAL JOIN E; WHEREC =¢; (Q.d natural)
for the natural key database, whereas the samg quag’s to

SELECTA FROMR;' NATURAL JOIN E;/ WHEREC =¢; (Q.d surrogate)

for the surrogate database. The query Q.d mapsai®QL expressions with a single
join in both databases. Here, a slightly smallember of blocks o, compared to
E, favours the efficiency of the linear search in te&ation overg,. On the other
hand, the performance of the join is influencedh®/smaller number of blocks of the
relation overR;’ (in the case of a nested loop, sort-merge, or Jmstalgorithm), or a
possibly smaller primary key B-tree height in thase of the single loop join
algorithm. We estimate that the query Q.d has apmrately the same performance in
both databases.

Contrary to complaints reported in the survey, tpaserngainst the natural key
database in examples above do not have a greatgy gupression complexity, since
we used natural join. If we used inner joins, thenquery (Q.c natural) would have a
greater expression complexity than the query (@rmgate).

4.2 First-order Relationship Type

Let us consider the ER diagram in Figure 2 and es@phe first-order relationship
typeR; is not involved in any higher-order relationshipusture.



Performance Evaluation of Natural andSurrogate Key Database Architecturest
13

=

Figure 2.

The structure in Figure 2 maps to a natural key surdogate key database schema
having such sets of relation schermeand T’ that are subsets of relation schema sets
SandS’, respectively. Instances ovEandT’ satisfying the corresponding referential
integrity constraints have the following features:

a) The natural key relations occupy less storage speoerding to Table 1.

b) Relations ovell’ contain at least one additional candidate keyBxticte index.

c) B-tree indexes in relations ovér are of the same height as the indexes of the
corresponding relations ovér, but according to Table 2 occupy more storage
space in total.

d) Inserts and deletes from an instance d&éitake longer than the same operations

against a corresponding instance dvgrsince:

There is still a requirement to execute two SQL BEET operations prior to
performing actual update operations, and
ii. The additional B-tree index needs also to be update

e) The modification of a natural key value takes langince the modification has
to be cascaded to the relation oRgr

f) Queries against the natural key database execsier flhan queries against the
surrogate database, since:

i. Certain queries against the surrogate key datastdbeequire more joins,
and

ii. The relations of a natural key database occupy dem®ge space and that
results in a more efficient linear search.

All claims above, except the last one, follow dibedrom the analysis performed in
the section 4.1. To justify the claim f), let usealer the following query

(Query Q.cl) Retrieve values of the natural kéy for a conjunctive conditional
expression on non unique attributes from the emétgtionE; and the relationship
relationR;.

The query Q.cl is a restricted version of the qu@ry above, adjusted to fit a
database structure that corresponds to Figure 2n Aize case of the original query
Q.c, the SQL expressions of the query Q.cl aghinist the natural key and surrogate
key databases contain a join and two conditionptessions. Contrary to the case of
the query Q.c, the natural key database structcepmes a smaller number of blocks,
which leads to an estimate that the query agaimstnatural key database may
outperform the query against the surrogate keybdaz

The preceding analysis may be generalized to oslaltiimplementations of ER
structures involving relationship types of any\avitith associated entity types.



14 Sebastian Link1, Ivan Lukovi¢2, Pavle Mogin*)1

5 Conclusion and Future Work

In this paper, we have compared two relational lukega architectures: one that is
based on natural keys with one that is based orogate keys. Utilizing simple
mathematical reasoning we have obtained the foligwisights:

e The natural key architecture performs consideradyter when updates to
relationship relations are considered.

e The modification of natural key values is a pot@hfigreat disadvantage of the
natural key architecture.

» If deep hierarchies of higher-order relationshifatiens are present, then the
query performance of neither of the architectusesuperior to the other.

* Queries against first-order relationship relatipasform better with respect to the
natural key architecture than they do with respgextthe surrogate key
architecture.

The majority of queries and updates in real liftalases are defined in terms of
natural keys. Accordingly, queries against relaiamthe surrogate key architecture
require at least one join with an entity relatibot may involve several joins along
the join path. Therefore, the natural key architectcan be expected to have a
performance advantage due to the smaller numheiraf needed.

If a query requires the same number of joins imlasthitectures, then the storage
occupation has a deciding impact on the performalmceuch cases, long chains of
higher-order relationship relations favour the sgate key architecture, while short
chains of relationship relations favour the natieg} architecture.

The natural key architecture does not benefit cmrably from indexes on foreign
keys. If databases are update-intense, then it meagdvisable not to use them. In
such situations, e.g. in OLTP databases, the pedioce advantage depends on the
ratio of the number of modifications of natural kegtues and the number of updates
of relationship relations.

References

1. Bayer R. and McCreight E. (1972): Organization avidintenance of Large
Ordered Indexedicta Informatica, Vol.1, 1972, pp.173-189.

2. Codd E. F. (1979): Extending the Relational Datad®loto Capture More
Meaning, ACM TODSA4( 4):397-434.

3. Date C., Darwen H., and Mcgoveran D.(1998): RetatioDatabase Writings
1994-1997 Addison Wesley, 1998

4. Fagin R. (1981): A Normal Form for Relational Daabs That Is Based on
Domians and Keys, ACM TODS 6(3): 387-415

5. Hall P., Owlett, J. and Todd, S. (1976). Relatiansl EntitiesProc. IFIP TC-2
Working Conference on Modelling in Data Base Mamaget SystemsG. M.
Nijssen (ed.), pp 201-220, Horth-Holland.

6. Thalheim B. (2000). Entiry-Relationship Modeling Feundation of Database
Technology, Springer Verlag, Berlin, New York , 200



Performance Evaluation of Natural andSurrogate Key Database Architecturest
15

7. Toman D., Weddell G. E. (2008): On Keys and Fumaidependencies as First-
Class Citizens in Description Logics. J. Autom. &sang 40(2-3): 117-132.

8. Walker B. (2006Why Use Surrogate keySearchSQLServer.com,
http://searchsqglserver.techtarget.com/.../0,2958@%7 gci1156604,00.html
Accessed 05.01.2010.

9. Wieringa R., De Jonge W. (1995): Object Identifiekeys, and Surrogates:
Object Identifiers Revisited. Theory and PractideGbject Systems, 1(2):101-
114.

10.Wikipedia, Surrogate Keyhftp://en.wikipedia.org/wiki/Surrogate KeyAccessed
05.01.2010.




