
Organizing Self-Organizing Teams

Rashina Hoda
School of Engineering and

Computer Science
Victoria University of

Wellington
Wellington, New Zealand

rashina@ecs.vuw.ac.nz

James Noble
School of Engineering and

Computer Science
Victoria University of

Wellington
Wellington, New Zealand
kjx@ecs.vuw.ac.nz

Stuart Marshall
School of Engineering and

Computer Science
Victoria University of

Wellington
Wellington, New Zealand
stuart@ecs.vuw.ac.nz

ABSTRACT
Agile methods are gaining popularity in software engineering. Ag-
ile teams are described as “self-organizing”, but how Agile teams
actually organize themselves is not well understood. Through Groun-
ded Theory research involving 24 Agile practitioners across 14
software organizations in New Zealand and India, we have found
that some team members adopt particular roles to help their teams
self-organize. These roles — Mentor, Coordinator, Translator,
Champion, Promoter, and Terminator — help teams learn Agile
practices, liaise with customers, maintain management support, and
remove ineffective team members. Understanding these roles will
help software teams become self-organizing, and should guide Ag-
ile coaches in working with Agile teams.

Categories and Subject Descriptors
K.6.1 [Project and People Management]: Management techniques;
K.6.3 [Software Management]: Software Development Process

General Terms
Management, Human Factors, Theory

Keywords
Software Engineering, Self-organizing teams, Agile software de-
velopment

1. INTRODUCTION
Agile software development has gained popularity in the soft-

ware engineering industry [9, 36] as well as in the research com-
munity [18, 33, 36]. Although several research studies have ex-
plored the social aspects of Agile teams [14, 33, 36, 42], there has
been no substantial research on the self-organizing nature of Ag-
ile teams across multiple projects, organizations, and cultures. Our
goal in this paper is to understand the self-organizing nature of Ag-
ile teams and the roles that facilitate self-organization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE 2010, Cape Town, South Africa
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Self-organizing teams are at the heart of Agile software develop-
ment [16, 27, 32, 40], and self-organization is one of the 12 princi-
ples behind the Agile Manifesto [27]. Self-organizing teams man-
age their own work, and organize around the details of the tasks
[16], and can greatly influence team effectiveness [33]. The Agile
Manifesto [27] claims that the best architectures, requirements, and
designs emerge from self-organizing teams.

Leadership in Agile teams is distributed, providing subtle con-
trol and direction to the team [5, 12, 46] in contrast to centralized
management in traditional teams [10, 20, 29]. Scrum Masters [41]
and XP Coaches [8] are seen facilitators, and do not directly orga-
nize the team [19, 35]. This leaves a critical question unanswered:
How do self-organizing Agile teams organize themselves?

In answer to this question, we found that Agile team members
adopt 6 roles, specifically to support their team’s self-organization:
Mentor, Coordinator, Translator, Champion, Promoter, and Ter-
minator. We conducted a Grounded Theory study involving 24
Agile practitioners in 14 different software organizations in New
Zealand and India. The projects employed Scrum, or combina-
tions of Scrum and XP (eXtreme Progamming), two of the most
popular and widely adopted Agile methods [37]. We conducted
several rounds of face-to-face semi-structured interviews, observa-
tions, and data analysis over 2 years. In order to get a rounded per-
spective, we interviewed a wide range of project participants about
their experiences working on Agile projects.

2. BACKGROUND AND RELATED WORK
Agile software development methods follow an iterative and in-

cremental style of development where collaborative self-organizing
teams dynamically adjust to changing customer requirements [1,
18, 32]. The Agile Manifesto [27] defines the four basic values
of Agile methods as: individuals and interactions over process
and tool; working software over comprehensive documentation;
customer collaboration over contract negotiation; responding to
change over following a plan. That is, while there is value in
the items on the right, we value the items on the left more. Self-
organizing teams are one of the twelve principles behind the Man-
ifesto [27].

There are various methods that seek to embody the Agile Mani-
festo including Scrum [41], XP (eXtreme Programming) [8], Crys-
tal [15], FDD (Feature Driven Development) [38] and DSDM (Dy-
namic Software Development Method) [44], and Adaptive Soft-
ware Development [25]. Scrum and XP are considered to be the
most widely adopted Agile methods in the world [37]. XP focuses
on developmental practices, while Scrum mainly covers project
management [18].

2.1 Self-Organizing Teams in Agile
Agile teams are self-organizing teams [13, 16, 27, 32, 40]. Self-

organizing teams are composed of “individuals [that] manage their
own workload, shift work among themselves based on need and
best fit, and participate in team decision making.” [26]. Self-
organizing teams organize repeatedly to meet new challenges [16].
They manage their own work and organize around the details of
their tasks. Self-organizing teams must have common focus, mu-
tual trust, and respect [16].

Sharp and Robinson [43] note that mature XP teams are highly
collaborative and self-organising in nature. Self-organization can
also directly influence team effectiveness as found in another study
[33] as self-management brings decision making authority to the
level of operational problems, which increases the speed and accu-
racy of problem solving.

Takeuchi and Nonaka [46] describe self-organizing teams as ex-
hibiting autonomy, self-transcendence, and cross-fertilization. Moe
et al. [35] use one of these aspects — autonomy — to represent
the concept of self-organizing teams and explore barriers to self-
organization on a single project. Their study identifies division
of work based on specialized skills as the most important barrier
to self-organization. Moe et al. note that Scrum emphasizes self-
organizing teams but does not provide clear guidelines on how they
should be implemented [33].

2.2 Facilitation versus Leadership
Agile methods require that the role of the project manager needs

to change from being a controller and planner to becoming a fa-
cilitator and collaborator [36]. It is recommended that managers
on Agile projects must be ready to relinquish some control [7, 36,
46]. In a OOPSLA panel discussion [5] Poppendieck notes “I dis-
tinguish management tasks - getting the maximum value from the
dollar - from leadership tasks - helping people to excel. Leaders
are required. Managers are optional.”

Self-organizing teams should not be leaderless, uncontrolled teams
[16, 46]. Leadership in self-organizing teams is meant to be light-
touch and adaptive [7], providing feedback and subtle direction [5,
12, 46]. Leaders of Agile teams are often compared to coaches of
sports teams — responsible for setting direction, aligning people,
obtaining resources, and motivating the teams [5]. Agile projects
have job titles such as Scrum Masters [41] and (XP) Coaches [19]
instead of traditional managers.

According to the Scrum and XP guidelines, a Scrum Master is
responsible for protecting the team from any disruptions to their
tasks that may be caused by outside sources [33, 39, 41] such as
unrealistic demands from the customers. They ensure that the team
is fully functional and productive and that all Scrum processes are
being followed [41]. A Scrum Master is seen as a facilitator and
does not organize or manage the team [40]. Similarly, an XP Coach
is meant to lead the team towards self-organization by leaving the
team alone as early as possible [19].

3. RESEARCH CONTEXT AND METHOD

3.1 Participants and Projects
We interviewed 24 Agile practitioners from 14 different software

organizations in 2 countries — New Zealand and India — to which
we had access. We chose our participants from two cultures, not
knowing how or if culture would play a part in the results.

In order to get a rounded perspective of Agile projects, we inter-
viewed and observed project participants employed as Agile Coaches
(Scrum Masters and XP Coaches), Developers, Designers, Testers,
Business Analysts, Product Owners, and Senior Management. All

the teams we studied used Agile development methods, primarily
Scrum. The teams used Agile practices such as iterative develop-
ment, release and iteration planning, test-driven development, daily
stand-up meetings, frequent delivery of software, and continuous
integration. Table 1 shows participant and project details.

The average project duration varied from 1 to 48 months and the
team sizes varied from 4 to 15 people on different projects. The
products and services offered by the participants’ organizations in-
cluded web-based applications, front and back-end functionality,
and local and off-shored software development services. Half the
participants were practicing in India and half in New Zealand. The
organizational sizes varied from 10 to 300,000 employees. In or-
der to respect their confidentiality, we refer to our participants by
numbers P1 to P24.

3.2 Grounded Theory
Grounded Theory (GT) is the systematic generation of theory

from data acquired by a rigorous qualitative research method [21,
22]. GT was developed by sociologists Glaser and Strauss [23].

We chose to use GT as our research method for several reasons.
Firstly, Agile methods focus on people and interactions and GT,
used as a qualitative research method, allows us to study social in-
teractions and behaviour. Secondly, GT is suited to areas of re-
search which have not been explored in great detail before, and the
research literature on self-organizing Agile teams is scarce. Using
GT, we have applied a rigorous research method to study practi-
cal applications of Agile methods and to analyze and explain the
results. Finally, GT is being increasingly used to study the social
nature of Agile teams [14, 30, 48]. Using Glaser’s approach, we
started out with a general area of interest — Agile project manage-
ment — rather than beginning with a research problem [17].

3.3 Data Collection
We collected data by conducting face-to-face, semi-structured

interviews with Agile practitioners using open-ended questions. The
interviews were approximately an hour long and were scheduled at
the practitioners’ workplaces or mutually agreed public locations.
The interview questions focused on the participants’ experiences of
working with Agile methods and in particular around their roles on
Agile projects. For example, we asked about the challenges partic-
ipants faced in Agile projects and the strategies they used to over-
come them. The answers varied with the individual participants,
however, as we later discovered during analysis, self-organizing
teams emerged as the largest and most common concern. Then, fur-
ther analysis indicated that participants played characteristic roles
to facilitate self-organizing teams.

The data collected through interviews were strengthened by our
observation of several Agile practices on at least two projects in
New Zealand and a couple in India. We attended and observed Ag-
ile practices such as daily stand-up meetings (co-located and dis-
tributed), release planning, iteration planning, and demostrations.
We conducted data collection and analysis iteratively so that con-
stant comparison of data helped guide future interviews and the
analysis of interviews and observations fed back into the emerging
results.

3.4 Data Analysis
We open coded the data by analyzing the interview transcripts in

detail [2, 24]. To explain the GT data analysis method, we present
an example of working from interview transcripts to results for one
of the roles, Mentor.

We began by collating key points from each interview transcript
[24]. We then assigned a code to each key point. A code is a phrase

Participant Agile Position Agile Method Org.
Size* Country Domain Team

Size
Project
Duration Iteration

P1 Agile Coach Scrum & XP XL NZ Telecom &
Transportation 6 to 15 12 4

P2 Agile Coach Scrum & XP L NZ Social Services 4 to 10 3 to 12 2
P3, P4, P5 Developer × 3 Scrum & XP S NZ Environment 4 to 6 12 1
P6 Product Owner Scrum XS NZ Entertainment 6 to 8 9 4

P7, P8, P9, P10
Business Analyst,
Tester, Developer
× 2

Scrum M NZ Health 7 9 2

P11 Agile Coach Scrum & XP S NZ Government
Education 4 to 9 4 2

P12 Senior Manage-
ment Scrum & XP S NZ E-commerce 4 2 4

P13, P14, P20
Senior Manage-
ment, Developer ×
2

Scrum & XP S India
Software De-
velopment &
Consultancy

5 6 2

P15, P16, P17, P18 Agile Coach × 4 Scrum & XP
(Own Version) M India

Software
Product Devel-
opment

7 to 8 3 to 6 2

P19 Agile Coach Scrum & XP L India Telecom 8 to 15 3 4

P21 Agile Coach Scrum & XP S India IT & Agile
Training 7 to 8 48 3

P22 Agile Trainer Scrum XS India Agile Training 7 8 3

P23 Designer Scrum & XP S India Web-based ser-
vices 5 1 2

P24 Agile Coach Scrum & XP M India Financial
Services 8 to 11 36 2

Table 1: Participant and Project Details. Project duration is in months, while iterations are in weeks.
(* Organizational Size: XS < 50, S < 500, M < 5000, L < 50,000, XL > 100,000 employees)

that summaries the key point in 2 or 3 words.

Interview quotation: “We had [Coach] as well at the time [the
team started Agile practices] so...It made it easy...having [Coach]
there as a backup...[it has] been really good to have that guidance
from [Coach].” — P8, Tester, NZ

Key Point: “Coach providing guidance in initial stages”

Code: Providing initial guidance (P8, NZ)

The codes arising out of each interview were constantly com-
pared against the codes of the same interview, and those from other
interviews and observations. This is GT’s constant comparison
method [22, 23]. In the example, other similar codes were “pro-
viding support (P18, IN)” and “showing people through Agile pro-
cess (P2, NZ)”. Using the constant comparison method we grouped
these codes to produce a higher level of abstraction, called concepts
in GT.

Concept: Providing initial guidance and support

Other concepts that emerged include teaching Agile practices,
removing misconceptions, getting the team confident in the use of
Agile methods, and encouraging continued adherence to the method.
Finally we repeated the constant comparison method on concepts
to produce a third level of abstraction called Categories.

Category: Mentor

A Mentor is one particular individual in the Agile team that as-
sumes the responsibility of providing guidance on the chosen Agile
method. Figure 1.A illustrates how the category Mentor emerged
from the underlying concepts and 1.B shows the levels of data ab-
straction using GT.

Since the codes, concepts, and categories emerge directly from
the data, which in turn is collected directly from the real world, the

Figure 1: A: Emergence of the category Mentor from concepts.
B: Levels of Abstraction in Grounded Theory.

resulting theory is grounded within the context of the data [4]. The
other categories emerged in a similar fashion, but we are unable to
illustrate this process for all of them for space reasons. The result-
ing categories form the grounded theory of Agile self-organizing
teams. Because Grounded Theory is a very specific, qualitative re-
search method, we do not claim our results to be universally appli-
cable: rather, they accurately characterize the context studied [4].

In the following section we present the categories of our the-
ory, the Mentor, Coordinator, Translator, Champion, Promoter,
and Terminator roles that facilitate self-organizing teams. We have
selected quotations drawn from our interviews that shed particu-
lar light on these categories and that are spread across participants,
geographically and by their organizational title. The discussion is
grounded further by underlying key points, codes, and concepts
from our interviews and observations, that we cannot describe in
detail for space reasons.

Role Definition Played by Interacts with

Mentor
Guides and supports the team initially, helps them become confident
in their use of Agile methods, and encourages continued adherence to
Agile practices.

Agile Coach Team

Coordinator Acts as a representative of the self-organizing Agile team to co-
ordinate communication and change requests from customers.

Developer,
Business Analyst

Team,
Customers

Translator
Understands and translates between the business language used by
customers and the technical terminology used by the team, in an effort
to improve communication between the two.

Business Analyst Team,
Customers

Champion
Champions the Agile cause with the senior management within their
organization in order to gain support for the self-organizing Agile
team.

Agile Coach Senior
Management

Promoter
Promotes Agile with customers and attempts to secure their involve-
ment and collaboration to support the efficient functioning of the self-
organizing Agile team.

Agile Coach Customers

Terminator
Identifies team members threatening the proper functioning and pro-
ductivity of the self-organizing Agile team and engages senior man-
agement support in removing such members from the team.

Agile Coach Team, Senior
Management

Table 2: Roles Facilitating Self-Organizing Agile Teams

4. RESULTS
The contribution of this paper — the key result of our study —

is that we have found that team members adopt 6 roles to facilitiate
their team’s self-organisation. These roles are defined in Table 2.
A team member may play one or more of these self-organisational
roles, along with e.g. serving as a devloper: many team members
play only development roles (developer, tester, analyst) and do not
take on these organisational roles. The roles are not restricted to
Agile Coaches, but may be played by Developers and Business An-
alysts. The roles we identified are the same across both participant
cultures, as we demonstrate by quotes from participants from both
countries below.

4.1 Mentor
Guides and supports the team initially, helps them become con-

fident in their use of Agile methods, and encourages continued ad-
herence to Agile practices.

Software development teams initially find Agile practices very
different to their previous non-Agile work experiences. Mentoring
a team in the initial stages of transitioning into Agile is extremely
important. Teams may perceive the Agile practices to be simple
enough to comprehend, but when it comes to actually implement-
ing them on a daily basis, they need guidance and support which
comes in the form of the Mentor:

“It’s more important that you get everything right at
the start. Because the process itself is not that compli-
cated [but] doing things along the lines of the process
is a little bit harder than the process itself...So with [the
Mentor] it was kind of to teach us how Agile works and
shape our mindset and make sure everyone knows how
to work under the Agile umbrella.” — P10, Developer,
NZ

Sometimes, a Mentor steps in to remove misconceptions about
Agile among team members. As one of the Mentors disclosed:

“We were establishing from the start and...It’s mainly
been showing people through that process...It’s a mat-
ter of overcoming and explaining the misconceptions.”
— P2, Coach, NZ

The initial stages of transitioning into becoming a self-organizing
Agile team can be very difficult. Many participants described the

transitioning phase as ‘a war’, ‘challenge’ , ‘struggle’, and ‘diffi-
cult’ (P12, P15, P16, P18, P20). During the initial stages of tran-
sitioning, the team’s existing work environment and practices must
be changed to become Agile. Often the team members perceive
this change as a criticism of their personal skills and retreat into a
defensive corner, shunning the changes brought on by the introduc-
tion of Agile methods. A Mentor is quick to identify these insecu-
rities among team members and proactively tries to clear the air of
negativity from the team by encouraging them to focus on the re-
evaluation of their work environment instead of their own personal
skills:

“All the dirty doings get exposed. Hand holding peo-
ple at that time...trying to take away the finger pointing
and let people understand that what is being critiqued
is their environment and not their working...People go
into defensive mode...that’s when whole negativity comes
in and all Agile practices are thrown out to the wind!...
[encourage] focusing on what essential good practices,
fundamental framework which has to be put in place.”
— P18, Agile Coach, India

The role of the Mentor also includes getting the team confident
in their use of Agile practices by getting them used to success,
one iteration after another. The Mentor realizes the importance of
positive reinforcement and instills a sense of achievement in the
team by guiding them towards successfully completing iterations
and gaining positive feedback from the client:

“When you get the team used to success, that’s where
a change happens in them. You’ll have a team that
starts...they haven’t done this before, they don’t quite
know how to do it. You need to show them...that they
have achieved something, that they had a client pre-
sentation and the software worked...And with the next
iteration...they get a little bit more confidence...And af-
ter a few such validation cycles, then they start to get
confident.” — P1, Coach, NZ

Several participants noted that members of the emerging self-
organizing team face the danger of becoming relaxed and reverting
to their old non-Agile ways of working (P6, P13, P22, P18). An
important aspect of the Mentor role is to highlight the importance
of continued adherence to Agile practices. The following quote de-
scribes a project where the Mentor was let go after the management

perceived the team to be self-organizing and no longer in need of
support. This turned out to be a huge mistake. In the absence of a
Mentor, the team lost the importance of retrospectives.

“In the [retrospective] that we do they are so much
quicker now than it used to be when we had [the Men-
tor] with us...[the Mentor] didn’t have a vested in-
terest in the product, she had a vested interest in the
team...And now it is almost like lip service...we don’t
do self-evaluation as well as we used to.” — P8, Tester,
NZ

As the tester pointed out in the above quotation, the Mentor has
a vested interest in their Agile team, as opposed to the product the
team is building. It is important to maintain the Mentor role to
support an Agile team.

The role of the Mentor is usually taken up by experienced Agile
Coaches, who display a firm understanding of both Agile methods
and their teams’ issues. Most Mentors were available to their teams
on a full time basis.

4.2 Coordinator
Acts as a representative of the self-organizing Agile team to co-

ordinate communication and change requests from customers.
We found that while the common conception that Agile teams

are self-managing was largely true. There is a need for a single
representative for the team to co-ordinate between the team and the
customer representatives. In one of the Indian projects, the Co-
ordinator role was played by a developer who helped co-ordinate
across geographic and time boundaries with off-shored customers:

“Initially we avoided [having team leads]...but some-
times, because we are working offshore [it is] good to
have one person who can communicate. Not a team
lead in the sense not telling people what to do [but]
more like coordinator — talks to everybody.” — P13,
Senior Management, India

The Coordinator interacts with the team on a regular and inti-
mate level and co-ordinates communication between the team and
the customers:

“We assign a customer representative who interacts
with the team...but then passes on the feedback from
the customer to the team and vice versa.” P24, Coach,
India

In case of New Zealand teams, the business analyst on the team
acted as the Coordinator, representing the team to their customers
and co-ordinating communication efforts.

“...it makes sense to have a [Co-ordinator] in the mid-
dle...if you have some sort of problem, you don’t have
five people asking the same question at the other end;
which normally business people don’t like...so having
[the Business Analyst] as a [the Coordinator], it’s work-
ing for us.” — P10, Developer, NZ

We observed that the Coordinator also helps co-ordinate change
requests made by the customers. Responding to change [18, 27] is
an integral part of Agile methods and a Coordinator helps in deal-
ing with changes in a systematic way, so that the team can respond
to them effectively:

“[the Coordinator] still needs to get all the require-
ments to us, so whenever the business owner wants to
make a change...we can plan a little bit ahead; [The
Coordinator] might say ‘OK guys, this might come in
the next couple of sprints, think about it and figure out
how to handle it’. So that’s kind of cool.” — P10,
Developer, NZ

The team needs a clear list of requirements (Scrum’s product
backlog) prioritized by the customer representative before they can
begin their development iteration. The Coordinator also clarifies
the priority of features from customers.

“If [the Coordinator is] not there things sort of stop
spinning. A lot of the time we have to come back to
him: ‘Is this important? Is this prioritised?...when the
client says ‘Oh, that’s all priority’ we have to go back
and say ‘Which?! What do you mean?!’ So then [the
Coordinator] has to go back and say ‘you can’t have
all priority!’” — P9, Developer, NZ

The Coordinator role was played by a developer that interfaced
with off-shored customers for an Indian team and by a business
analyst facing the customers as a team representative for a New
Zealand team, despite the presence of the Agile Coach who contin-
ued to play the Mentor role.

4.3 Translator
Understands and translates between the business language used

by customers and the technical terminology used by the team, in an
effort to improve communication between the two.

The next role that supports self-organizing Agile teams is the
Translator. Most of our participants observed that there is a huge
gap in the technical terminology that the development team is used
to and the business language that the customers use. They found
the need for translation between the two languages in order to en-
sure proper communication of product requirements from the cus-
tomer representatives and clarification of issues from the develop-
ment team side. The Translator role emerged to address and resolve
this issue.

“(Laughs) The client always expects that the informa-
tion they sent to the development team will be enough...We
have meetings with them and obviously there are some
gaps in the language and in the jargon...I think...technical
language is a problem for business people obviously.”
— P4, Developer, NZ

Self-organizing Agile teams are responsible for collaborating ef-
fectively and frequently with customer representatives to elicit prod-
uct requirements. In Scrum and XP, the customer uses story cards
to specify product features in their own non-technical language,
driven by business value. These story cards are meant to be broken
down into tasks by the Agile team using their own technical ter-
minology. Translating the story cards written in business language
into technical specifications for development is not easy, and can
lead to loss of information, as one of our New Zealand participants
recounted:

“The biggest issues with the development team ...the
translation of what the client wants into something the
[development team can] create. So you have a story
card with some features on it. Okay, so how to turn that
story card into part of a website? Development have

their own interpretations of what is that they are sup-
posed to be doing...[The] frequent working software
that we get in front of the client and we say ‘this is
what we think you want’ and they say ‘that’s not even
close!’” — P12, Senior Management/Coach, NZ

“ If you give people information with a technical bent,
and they’re business people, they switch off...Everything...has
to be described in terms of business value...sometimes
it feels hard or unnatural for a technical person to have
to go to that length, and that’s where skills as an ana-
lyst come in.” — P11, Senior Management, NZ

The above observations were confirmed by a customer represen-
tative (a Scrum Product Owner) in New Zealand, who expressed
their need for a Translator to explain the Agile development team’s
actions.

“I was really struggling with [Agile vendor] and what
they were doing, my knowledge isn’t as technical, and
really needed somebody...to give me some insight into
what they were doing...they [Agile vendor] are very
smart developers...but not really putting themselves in
the user’s shoes or the client’s shoes, so some things
fell through the cracks because we didn’t have a good
[Translator]” — P6, Product Owner, NZ

The role of the Translator was also evident in translating busi-
ness requirements for the Agile development teams used to tech-
nical specifications. In order to ensure the effective running of the
team, this gap in languages must be addressed and overcome. The
Translator understands the business concerns and translates them
into clear and granular prioritized items for the Agile team:

“They [customer representative] can talk about high
level...‘I want to have Taj Mahal’, but of granite [or]
marble? Even they do not have time to talk about that!
This is most challenging part...getting the clarity.” —
P15, Scrum Master, India

Along the same lines, a Translator is able to understand the im-
plications of change requests on business processes and effectively
communicate that to the developers:

“The terminology that developers are using and cus-
tomers are using, is very different...I think the [Trans-
lator] has some value in the project. They [the organi-
zation] have a very complicated business process...some
people say ‘we need to change this validation rule of
such and such’ but they don’t know the implication of
those changes, it could break the whole system. And
the [Translator]...understand[s] what the implication
would be from these changes.” — P5, Developer, NZ

Finally, a Translator can also act as a representative for team
members with introverted personalities, who may be efficient in
their use of technological specifications, but are unable to translate
them effectively for the business customer to understand:

“I don’t normally talk to people. We ask [Translator]
and then [Translator] talks to everybody else...If [cus-
tomers] never knew I existed it would be great for me
(laughs)...I might explain something in a very cryptic,
technological way and they [customers] won’t under-
stand a word and we’d need [Translator] anyway to
translate it, to make it mean something.” — P9, De-
veloper, NZ

The Translator role was played by a business analyst. The Trans-
lator functioned as a two-way street for translating between the
technical language of the Agile teams and the business langusage
of the customers. This sort of translation is imperative for the
proper communication of product requirements from the customer
side and clarification of issues from the development team side.

4.4 Champion
Champions the Agile cause with the senior management within

their organization in order to gain support for the self-organizing
Agile team.

It became evident from the interviews and observations that a
self-organizing Agile team cannot emerge and flourish in isolation.
The team is impacted in several ways by the environment that sur-
rounds it. The environment that the team works and interacts in is
comprised firstly of their own organization and secondly of their
customers. The Champion is responsible for making the organiza-
tional environment conducive for the self-organizing Agile team by
seeking senior management support. Lack of understanding of Ag-
ile principles and practices can lead the management to take project
decisions that may damage the team. An Agile coach and trainer
working with Indian Agile companies highlighted the importance
of senior management support in adopting Agile at the organiza-
tion:

“The mindset change doesn’t happen from the ground
up and so the organizations I see getting the most ben-
efit from Scrum, from Agile, are organizations where
senior management really gets it! Where senior man-
agement has been has been through training...Senior
management took the time to read, learn about Agile.
The least successful Agile adoptions are ones where
senior management has no interest in Agile, they have
no interest in what Agile is.” — P22, Scrum Trainer,
India

Several participants highlighted the need for senior management
support in attempting to establish Agile as a software development
methodology within the organization (P1, P7, P12, P13, P15, P19,
P21-P24). Participants observed the existence of a Champion on
their projects, who was advocating the Agile cause within their or-
ganization to the senior management. Senior management’s ap-
proval was critical to the decision to explore Agile methods within
their organization andestablishing a self-organizing Agile team. The
Champion explained the Agile values, principles, and practices to
senior management and gained their support in establishing a pilot
team to try Agile:

“I [the Champion] came in with my background in
Agile...explained the benefits, explained the process.
The founders of the company had heard of Agile...They
were keen to try it out, have somebody who could lead
them...and as of four months ago all of our projects
run with Agile, so the transition is complete.” — P12,
Senior Management/Coach, NZ

Gaining the support of senior management is a crucial step in
being able to establish and nurture a self-organizing Agile team. An
Agile Coach recounted their role as a Champion and described how
they convinced the senior management to explore Agile methods:

“I’ve been involved within our company to promote
this notion [of Agile]...we finally got the okay...to go
ahead and make it all formal. Which is excellent, but it

took a [very] long time to understand people’s motiva-
tions and awareness of things...talk to the business in
terms that matter to them...Is it useless for them to con-
tinue with this [non-Agile] approach?” — P1, Coach,
NZ

In order to gain senior management support for exploring Agile
methods, the Champion often resorts to setting up a pilot team to
work on a project. The idea is to show to senior management how
Agile practices work in reality on a small scale, thereby exhibiting
the advantages of Agile software development. Some Champions
suggested that piloting with a team that is open to trying Agile was
preferred. Most Champions also mentioned that the initial pilot
attempt works best on a project that had previously experienced
difficulties with the traditional development approach, so that the
value brought in by Agile was more apparent:

“Piloting is the key. Pilot with people who want to do
it...with a project which has had problems, with chang-
ing requirements, with customers not happy. Then you’ll
see maximum value...if it is a hundred people organi-
zation with ten projects, try with one or two [projects].”
— P20, Developer, India

The idea of promoting Agile software development is tightly
coupled with the effort of establishing an initial team. We found
that promoting and gaining support for Agile as a method is impor-
tant to support self-organizing Agile teams.

The role of the Champion is not limited to driving initial pilot
projects. The Champion also promotes the idea of propagating
more self-organizing Agile teams across the organization:

“The [Champion] was pretty much championing the
whole Agile idea. They were thinking of using [the
Champion] to expand Agile through all of [organiza-
tion], so every single project they were looking at try-
ing to put an Agile aspect to it and [the Champion]
was doing all the ideas, all the objective identification,
everything” — P7, Business Analyst, NZ

4.5 Promoter
Promotes Agile with customers, and attempts to secure their in-

volvement and collaboration to support the efficient functioning of
the self-organizing Agile team.

We found that the environmental factors that influence self-organizing
Agile teams include customer collaboration and involvement, be-
sides senior management support. Almost all participants men-
tioned that securing customer involvement was a challenge (P2, P4,
P6, P7, P8, P9, P11, P13-17, P19-22, P24).

“Commitment for that time from the business [is] a
huge cost...And that’s something that isn’t normally
there in a [non-Agile] software development project
[where the customers] throw [the product requirement]
over the wall and don’t have to worry about it for
6 months and then it appears and then you get the
heartache of a product that’s not working or not do-
ing all that you want.” — P2, Coach, NZ

“customers [show] reluctance to participate in sprint
meetings...got no time. [There is] resistance to change
[and] involvement.” — P21, Senior Management, In-
dia

The collaboration between the team and customers ensures the
development of a product that is built to the customer’s vision. Con-
vincing the customer that this advantage is worth their time invest-
ment and securing their collaboration is challenging. Customers
may be skeptic about their involvement in an Agile project:

“The client reads [Scrum books] and what they see is
client can make changes all the time and they think
wow that sounds great!...They don’t understand the
counter-balancing discipline [customer involvement]
...Customer involvement is poor.” — P22, Scrum Trainer,
India

The Promoter identifies the concerns of the customers and sys-
tematically attempts to engage the customer representatives by guid-
ing them on Agile practices:

“I did persuade the client to go down this road...story
cards, iterations, all the way through. Slowly the client
did come around and started to see benefit, so it did
work out really well” — P12, Senior Management/Coach,
NZ

The Promoter role educates the customers in Agile methods, and
clears any preconceived misconceptions that they may have har-
boured:

“[Customers] would have read about [Agile] or have
the wrong idea of Agile. We [coaches] have interac-
tions with them, have a series of talks...explain to them
what Agile is...[there is a] huge hullabaloo about Ag-
ile this, Agile that! We showcase our [Agile] offering
- not lulling them into a sense of security but - real
values and also focusing on the hardship which comes
with that.” — P18, Agile Coach, India

Customer collaboration is crucial for the implementation of sev-
eral Agile practices [30]. Customer involvement in the project
helps the team to avoid rework:

“To get the client involved in the process I think is the
most difficult part of Agile...[customer involvement is
a] benefit for us [team], because we don’t have to redo
things. So from my perspective as a Developer, yes, the
more the client is involved, the better for us.” — P4,
Developer, NZ

We discovered that in absence of the customer understanding of
Agile and their willingness to collaborate with the team, the self-
organizing team is unable to function to its full potential.

“Two of the [internal customers] responded lots and
were very...complaining, and at the end of the project
their business units loved it and the business unit that
didn’t give much feedback, when it went to a user, started
complaining. And it’s like well, if we didn’t get any cri-
tique it’s not really our fault!” — P3, Developer, NZ

One of the developers expressed their frustration over the lack of
enough customer involvement and the negative impact it had on the
team’s productivity:

“It’s not that we don’t have the capacity, but...the busi-
ness is holding off...and you know with Agile if you
don’t have a requirement...you can’t do anything be-
cause you’re supposed to be in line with business. ”
— P10, Developer, NZ

It therefore becomes imperative that someone takes on the role
of educating and convincing the customers to invest time and in-
volvement in the Agile project and to collaborate efficiently with
the self-organizing Agile team. It emerged that the Promoter took
on this responsibility.

“That is generally a problem when customer is not
convinced enough to try Agile but you’ve got to man-
age both of them [Agile and customer practices]” —
P14, Developer, India

Given the collaboration-intensive nature of Agile practices, it
can be dangerous to assume that a self-organizing Agile team can
work and flourish in isolation. We found that the Champion and
Promoter roles were crucial in identifying the influence of the en-
vironmental factors: support of senior management and customer
involvement respectively. These roles were usually played by the
Scrum Masters and Coaches, embodied by the same person in some
cases.

4.6 Terminator
Identifies team members threatening the proper functioning and

productivity of the self-organizing Agile team and engages senior
management support in removing such members from the team.

The role of the Terminator is certainly not an easy one, and per-
haps the most controversial. The Terminator identifies individu-
als in team that may be hampering team productivity because of
their personal characteristics and practices. Individual personality
of team members can be considered more important that skill set
when selecting an Agile team, as illustrated by the following re-
flection of a Developer:

“[At the time of hiring] it was just ‘well who is going
to work better with this group of people?’ rather than
who’s better technically or anything...personality [is]
more important...I think that’s really important with
Agile - you’ve got to have people you can work that
closely with and trust, a lot more than if you’re doing
[non-Agile].” — P3, Developer, NZ

Many participants agreed that the self-organizing Agile team should
be ‘Open’ in nature and willing to ‘Change’ (P1, P6, P7, P8, P11,
P13, P14, P15, P16, P19, P24). In the absence of these desired char-
acteristics, the individual is perceived to pose a threat to the proper
functioning and productivity of the self-organizing Agile team. The
Terminator identifies such individuals and engages senior manage-
ment support in removing them from the team.

As one of the Terminator acknowledges below, the individual
themselves are not ‘bad’, but that they are unable to adjust to the
Agile way of working and that starts to hamper the productivity of
the entire team. They also note that removing such members, who
hamper the self-organizing Agile team productivity, can be crucial
to project success:

“...having the right people on that team. If you have
someone who isn’t willing to learn and communicate -
all those kind of key things that are needed in an Ag-
ile team member...any one of them that can’t adjust to
the Agile mechanism really needs to be removed pretty
quickly...It’s not that the person is bad, they may be
very very good at their job, it’s just that they can’t ad-
just to the different mechanism [Agile].” — P2, Coach,
NZ

While inability to adjust into the Agile way of working is seen as
a disadvantage by many Terminators, the other extreme of embody-
ing idealistic or evangelist attitude towards Agile software devel-
opment is also seen as a potential hindrance to the self-organizing
Agile team:

“Some evangelists have such hundred percent concepts
— just scares me as a Coach...Throw out evangelists
sometimes, hard reality! People get fired. It’s the cold-
hearted nature of this businesses, [Agile] identifies the
good things, [Agile] identifies even the bad things. Some-
times [we] have to throw people out.” — P18, Agile
Coach, India

Sometimes a team member can destabilize the team by their ac-
tions and even though the other team members are aware of it, they
are unable to verbalize their concerns. It the Terminator who iden-
tifies the unverbalized concerns of the rest of the team and engages
senior management support to remove the destabilizing element.

“[Everything] seemed to go all right until [team mem-
ber] tore the whole product apart...So our [Termina-
tor] came in...noted that [team member] was holding
the team back, and made an executive decision by talk-
ing to management as the [Terminator] and said ‘the
Agile method isn’t working in this team because this
one person is making such a large difference to every-
one’s productivity’...[we] simply didn’t want to voice
our opinions because there was too much fallback when
we tried to...But the [Terminator] really made that quite
obvious to management and therefore we [the organi-
zation] just removed them.” — P7, Business Analyst,
NZ

The Terminator is able to identify the individuals unable to fit
into the Agile way of working and has enough senior management
support to ensure their removal from the team. This role was played
by experienced Scrum Masters and Agile Coaches.

5. DISCUSSION
Our cross-cultural study looked at Agile practitioners from New

Zealand and India. The New Zealand culture, despite being in-
dividualistic [6], did not negatively affect collaboration and co-
ordination on these Agile teams. This is in contrast to the find-
ings of Moe et al. who discovered that high individual autonomy
proved to be a barrier to self-organization in their single project
case study [35]. On the other hand, the Indian culture is hierarchi-
cal [6, 45, 47] with a low individualism (IDV) score and high Power
Distance Index (PDI) [3] where managers are expected to make all
decisions, a characteristic that runs contrary to the philosophy of
self-organizing teams. We identified the six roles in both cultures,
and the practice of the roles were unaffected by these cultural in-
fluences.

Software development teams benefit from the initial guidance of
a full-time Mentor, played by an experienced Agile Coach. The
Mentor role is the closest to the classic Agile Coach described in
the Agile literature [7, 33, 39, 41]. In contrast, we found that de-
velopers and business analysts often played the Coordinator role,
despite the presence of an Agile Coach on the team who continued
to play the Mentor role.

Martin et al. [31] describe a Geek Interpreter role which sup-
ported the customer to improve their communication with program-
mers. Our Translator role also helped improve communication
between the customers and development team, but achieved this

specifically by translating between technical terminology and busi-
ness language. Another difference is that the Translator interacted
directly with both parties and is a part of the development team,
instead of the customer team [31]. The Translator role was played
by Business Analyst exclusively.

Self-organizing teams do not emerge and flourish in isolation and
are dependent on environmental factors, such as the support of se-
nior management and the level of customer involvement. Moe et al.
[35] identify lack of support system as a barrier to self-organization.
Beck [5] notes that an Agile team is not equipped to handle the
“foreign relations” with the rest of the organization by themselves.
The Champion and Promoter roles handled these relationships and
were mostly played by Agile Coaches.

Finally, the Terminator role was played by Scrum Masters and
Coaches with the support of senior management. Cockburn and
Highsmith [16] recommend placing “more emphasis on people fac-
tors in the project: amicability, talent, skill, and communication.”
The Terminator excercises their power when team members did not
fit in with the rest of the team, and hampered their productivity due
to lack of openness and willingness to change.

We found that while one person — such as an agile coach — may
play the Mentor, Champion, Promoter and Terminator roles simul-
taneously, each self-organisational role was only ever played by
one team member at any given time. This is in contrast to develop-
ment roles: all the teams we studied contained multiple developers
working simultaneously.

6. CONCLUSION
In this paper we set out to answer the question: How do self-

organizing Agile teams organize themselves? We found that team
members adopt 6 particular roles to facilitiate their team’s self-
organisation. These roles are (1) Mentor that provides initial guid-
ance, understanding, confidence of Agile methods, and encourages
continued adherence to Agile practices; (2) Coordinator that co-
ordinates communication and change requests from customers; (3)
Translator that translates business language used by customers into
technical terminology used by the team and vice-versa, in order to
improve communication; (4) Champion that gains the support of
senior management to establish pilot teams and to propogate more
self-organizing teams across the organization; (5) Promoter that se-
cures customer collaboration and involvement to support efficient
functioning of Agile teams; and (6) Terminator that removes team
members that hamper team productivity due to their inability to fit
into the Agile way of working.

All the six roles were found in projects in both New Zealand and
India. While some of these roles were played by agile coaches,
some others were played by developers and business analysts —
the Translator role, for example, was played exclusively by busi-
ness analysts. We hope that understanding these roles will help ag-
ile software development teams to organize themselves, and guide
agile coaches mentoring self-organizing teams.

7. ACKOWLEDGMENTS
Our thanks to all those software practitioners who have partici-

pated in our research. This research is supported by an Agile Al-
liance academic grant and a BuildIT PhD scholarship. Thanks to
Dr. George Allan for his help.

8. REFERENCES
[1] N. Abbas et al. Historical roots of agile methods: Where did

“agile thinking” come from? In XP, pages 94–103, 2008.

[2] G. Allan. The Use of Grounded Theory as a Research
Method: warts & all. European Conf. on Research
Methodology for Business and Management Studies, 9-19,
2005.

[3] L. R. Abraham. Cultural differences in software engineering.
In ISEC ’09:, pages 95–100, New York, 2009. ACM.

[4] S. Adolph, W. Hall, and P. Kruchten. A methodological leg
to stand on: lessons learned using grounded theory to study
software development. In CASCON ’08:, 166–178, New
York, 2008. ACM.

[5] L. Anderson et al. Agile management - an oxymoron?: who
needs managers anyway? In OOPSLA Comp.:, 275–277,
2003. ACM.

[6] J. Aston, L. Laroche, and G. Meszaros. Cowboys and
Indians: Impacts of cultural diversity on agile teams. In
AGILE ’08: , 423–428, Washington, 2008. IEEE Computer
Society.

[7] S. Augustine, B. Payne, F. Sencindiver, and S. Woodcock.
Agile project management: steering from the edges.
Commun. ACM, 48(12):85–89, 2005.

[8] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, USA, 1999.

[9] A. Begel and N. Nagappan. Usage and perceptions of agile
software development in an industrial context: An
exploratory study. In ESEM ‘07: , 255–264, Washington,
2007. IEEE Computer Society.

[10] F. Brooks Jr. The Mythical Man-Month: Essays on software
engineering. Addison-Wesley, 1975.

[11] B. Boehm and R. Turner. Management challenges to
implementing Agile processes in traditional development
organizations. IEEE Softw., 22(5):30–39, 2005.

[12] T. Chau and F. Maurer. Knowledge sharing in agile software
teams. Logic versus approximation: LNCS 3075:173–183,
2004.

[13] T. Chow and D. Cao. A survey study of critical success
factors in agile software projects. J. Syst. Softw.,
81(6):961–971, 2008.

[14] A. Cockburn. People and Methodologies in Software
Development. PhD thesis, University of Oslo, Norway, 2003.

[15] A. Cockburn. Crystal clear: a human-powered methodology
for small teams. Addison-Wesley Professional, 2004.

[16] A. Cockburn and J. Highsmith. Agile software development:
The people factor. Computer, 34(11):131–133, 2001.

[17] G. Coleman and R. O’Connor. Using grounded theory to
understand software process improvement: A study of Irish
software product companies. Inf. Softw. Technol.,
49(6):654–667, 2007.

[18] T. Dybå and T. Dingsoyr. Empirical studies of Agile software
development: A systematic review. Inf. Softw. Technol.,
50(9-10):833–859, 2008.

[19] S. Fraser et al. Xtreme programming and Agile coaching. In
OOPSLA Comp. ’03:, 265–267, New York, 2003. ACM.

[20] P. Fitsilis. Comparing PMBOK and Agile Project
Management software development processes. SCSS(1),
378-383, 2007.

[21] B. Glaser. Theoretical Sensitivity. Sociology Press, Mill
Valley, California, 1978.

[22] B. Glaser. Doing Grounded Theory: Issues and Discussions.
Sociology Press, CA, 1998.

[23] B. Glaser and A. L. Strauss. The Discovery of Grounded
Theory. Aldine, Chicago, 1967.

[24] S. Georgieva and G. Allan Best Practices in Project
Management Through a Grounded Theory Lens. Electronic
Journal of Business Research Methods, 2008

[25] J. A. Highsmith, III. Adaptive software development: a
collaborative approach to managing complex systems.
Dorset House Publishing, New York, 2000.

[26] J. Highsmith. Agile Project Management: Creating
Innovative Products. Addison Wesley, USA, 2004.

[27] J. Highsmith and M. Fowler. The Agile Manifesto. Software
Development Magazine, 9(8):29–30, 2001.

[28] R. Hoda, J. Noble, and S. Marshall. Negotiating contracts for
Agile Projects: A Practical Perspective In XP2009: 186-191,
Italy, 2009.

[29] PMI Institute A Guide to the Project Management Body of
Knowledge. PMI Standard Committee, 2004.

[30] A. Martin, R. Biddle, and J. Noble. The XP customer role in
practice: Three studies. In ADC ’04:42–54, Washington,
2004. IEEE Computer Society.

[31] A. Martin, R. Biddle, and J. Noble. The XP customer role: A
Grounded Theory. In Agile2009 Chicago, 2009. IEEE
Computer Society.

[32] R. Martin. Agile Software Development: principles, patterns,
and practices. Pearson Education, NJ, 2002

[33] N. B. Moe and T. Dingsoyr. Scrum and team effectiveness:
Theory and practice. In XP,(9) 11–20, 2008. Springer.

[34] N. B. Moe and T. Dingsoyr. Understanding shared leadership
in Agile development: A case study. HICSS,0:1–10,2009.

[35] N. B. Moe, T. Dingsoyr, and T. Dybå. Understanding
self-organizing teams in agile software development. In
ASWEC ’08:, 76–85, Washington, 2008. IEEE Computer
Society.

[36] S. Nerur, R. Mahapatra, and G. Mangalaraj. Challenges of
migrating to agile methodologies. Commun. ACM,
48(5):72–78, 2005.

[37] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J.
Still. The impact of agile practices on communication in
software development. Empirical Softw. Engg, 303-337,
2008.

[38] S. R. Palmer and M. Felsing. A Practical Guide to
Feature-Driven Development. Pearson Education, 2001.

[39] L. Rising and N. S. Janoff. The Scrum software development
process for small teams. IEEE Softw., 17(4):26–32, 2000.

[40] K. Schwaber Scrum Guide. Scrum Alliance Resources, 2009.
[41] K. Schwaber and M. Beedle. Agile Software Development

with Scrum. Prentice Hall PTR, NJ, USA, 2001.
[42] H. Sharp and H. Robinson. An ethnographic study of XP

practice. Empirical Softw. Engg., 9(4):353–375, 2004.
[43] H. Sharp and H. Robinson. Collaboration and co-ordination

in mature extreme programming teams. Int. J. Hum.-Comput.
Stud., 66(7):506–518, 2008.

[44] J. Stapleton. Dynamic Systems Development Method.
Addison Wesley, 1997.

[45] M. Summers. Insights into an Agile adventure with offshore
partners. In AGILE ’08:, 333–338, USA, 2008. IEEE
Computer Society.

[46] H. Takeuchi and I. Nonaka. The new new product
development game. Harvard Business Review, 1986.

[47] E. Uy and N. Ioannou. Growing and sustaining an offshore
Scrum engagement. In AGILE ’08:, 345–350, USA, 2008.
IEEE Computer Society.

[48] E. Whitworth and R. Biddle. The social nature of Agile

teams. In AGILE’07:, 26–36, USA, 2007. IEEE Computer
Society.

