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Abstract

We present here an empirical study comparing the accuracy
rates of novices writing software in three programming lan-
guages: Quorum, Perl, and Randomo. The first language,
Quorum, we call an evidence-based programming language,
where the syntax, semantics, and API designs change in cor-
respondence to the latest academic research and literature on
programming language usability. Second, while Perl is well
known, we call Randomo a Placebo-language, where some
of the syntax was chosen with a random number generator
and the ASCII table. We compared novices that were pro-
gramming for the first time using each of these languages,
testing how accurately they could write simple programs us-
ing common program constructs (e.g., loops, conditionals,
functions, variables, parameters). Results showed that while
Quorum users were afforded significantly greater accuracy
compared to those using Perl and Randomo, Perl users were
unable to write programs more accurately than those using a
language designed by chance.

Categories and Subject Descriptors D.3 [Programming

Languages]; H.1.2 [Information Systems]: User/Machine
Systems — Software Psychology

General Terms Design, Experimentation, Human Factors,
Standardization

Keywords Programming Languages, Intuitiveness, Com-
prehension, Language Reductionism

1. Introduction

How to design a programming language that is sufficiently
easy to use for all people, from beginners starting their jour-
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ney in computer science courses to professionals creating
globally distributed products, is neither obvious nor easy.
For decades, computer scientists have argued, largely anec-
dotally, about what makes a language robust, elegant, or easy
to use. While debate is common, the types of sophisticated
experimental designs and thorough empirical data common
in social disciplines like psychology have largely not been
adopted by the programming language design community.
As such, our community has, as Hanenberg poetically states,
put far too much faith, hope, and love [3] in language design.

In this paper, we present an objective test of the accu-
racy by which novices can program a computer in three com-
puter programming languages, 1) Quorum (previously called
Hop [14]), 2) Perl, and 3) Randomo. In doing so, we present
a novel adaptation of an accuracy measurement paradigm
called Artifact Encoding [15] and define two novel computer
programming languages. In the first language, Quorum, we
have used survey methods [14], usability studies, and field
tests [16] to help us design the programming language and
make it easier to use. We call such a language an Evidence-
Based Programming Language in the sense that we have
continuously altered the syntax, semantics, and API design
according to both our observational work with novices and
results from the literature [6, 11, 18].

During the course of these studies, we have observed that
novices learning to program at the university or younger lev-
els (and also blind children [16]), can have significant diffi-
culty learning the syntax of general purpose programming
languages, which may initially seem arbitrary (e.g., ||, ˆ,
@ [0]). Given this observation, novices may think program-
ming language syntax is rather arbitrary, but how accurately
could novices use a programming language designed by a
random number generator? We designed such a language:
Randomo. If the reader will excuse a metaphor, we call lan-
guages designed in such a way Placebo languages. We pro-
pose that Placebo languages may be useful as an objective
form of control group in language design studies.

These observations and language designs led us to ask
the following research question: Can novices using pro-



gramming languages for the first time write simple com-

puter programs more accurately using alternative program-

ming languages? To analyze the issue, we conducted a
study with a repeated-measures between-subjects design
comparing accuracy rates of novices using common syntax
(e.g., loops, conditionals, functions, variables, parameters)
in the languages Quorum, Perl, and Randomo. Results show
that Evidence-Based Programming Languages afford accu-
racy rates that are statistically significantly higher amongst
novices compared to those using Perl or Randomo, as mea-
sured by Artifact Encoding [15]. Novices using Perl were
unable to write programs significantly more accurately than
Randomo, our Placebo language.

In the course of this paper, we will first discuss related
work. Then, we will move to the details of our experimental
procedure, including a brief explanation of Artifact Encod-
ing. Then we will discuss our results, their potential impli-
cations, threats to validity, and conclude.

2. Related Work

As programming itself is such a significant component of
what computer scientists do, its study in the literature is only
natural and has a rich history. While a complete review is
outside the scope of this work, in this section, we review
some of the major themes related to the usability of program-
ming languages.

The empirical studies and programming tools presented
here have been heavily influenced by several lines of re-
search on programming language usability. For example,
McIver focused her research on the programming language
GRAIL in usability studies, making specific predictions
about what kind of syntax and semantics would be sensi-
ble [10]. One specific suggestion was that the unicode arrow
might be more intuitive to novices for assignment (e.g., com-
pared to =, :=, or other common operators). While McIver’s
hunch is contradicted by one of our previous empirical stud-
ies [14], the low level thinking on specific constructs used in
GRAIL heavily influenced the bottom-up approach used in
the Quorum programming language.

Other language designers have also attempted to make
languages intuitive or easy to use. For example, Holt et al.
created the teaching programming languages SP/k and Tur-
ing [4]. Similarly, in the late 80’s and early 90’s, many re-
searchers focused on analyzing either the comprehension of
languages [12] or qualitative analysis of a specific language
(see Taylor for one of many examples [19]). While work like
Taylor’s is qualitatively interesting, it does not make specific
predictions about how to change programming languages to
improve them, nor does it provide empirical data to support
its claims. For a systematic review of novice programming
systems, see Kelleher and Pausch [7].

Many authors in recent years interested in how novices
or end-users might program have been influenced by the
visualization or multimedia literature [1, 6, 8]. While such

systems are interesting, quantitative experiments indicate
that they are not a silver bullet. For example, Garlick and
Cankaya [2] showed that students beginning with Alice had
statistically significantly lower grades than those starting
with pseudo-code in introductory computer science courses.
Further, novice programming systems are typically only
used at the beginning of a computer science curriculum,
if at all, while general purpose programming languages are
typically used beyond that point and in industry.

While many lessons can be learned from these systems,
the literature suffers from at least two significant drawbacks:
1) work conducted on programming languages is sometimes
less empirically rigorous than it should have been, and 2)
a significant amount of analysis was conducted on the al-
gorithmic performance of programming languages, but dra-
matically less on the humans that use them. Markstrum’s ar-
gument is salient [9]. He observed that many programming
language papers tend to make claims about their language
without backing them up with empirical data. Consider, for
example, the language Turing. While Holt and Cordy spent
considerable effort attempting to make their language easier
to use for novices, the only published data collection on the
language appears to have been a survey comparing the lan-
guage to Fortran. Further, in our personal correspondence
with Holt and Cordy, data was collected internally by their
research team on novice use of Turing, but this work was
never published and has been lost to history. In summary,
there is little empirically rigorous work in the literature on
general purpose programming language design.

On the second point, Hanenberg [3] argues that human
factors and empiricism should be included in the study of
programming languages. Fortunately, the modern literature
has picked up steam in this area [11], influencing the cur-
rent research. Specifically, APIs in the Quorum program-
ming language are being designed according to the empir-
ically refined directions in Stylos [18], Quorum does not
allow constructors with required parameters [17], and the
technology developed by Ko on the whyline [8] and Hund-
hausen’s ALVIS [6] have influenced the design of Quorum’s
auditory omniscient debugger [13], which is used by sighted,
blind, and visually impaired individuals.

3. Language Comparison Study

The preliminary study presented in this work is designed to
test novice accuracy rates as they attempt to program using
various features in programming languages. In this section,
we discuss how this study was put together, including a brief
description of our methodology for measuring accuracy, Ar-

tifact Encoding. As Artifact Encoding is complex and a thor-
ough description would be too long for this work, readers
interested in both a thorough description and empirical val-
idation of the paradigm should see previous work [15]. Our
goal in this study was to test the following null hypothe-
sis, H0: Novices programming a computer for the first time



will have equal accuracy rates, regardless of the program-

ming language used. The study was conducted as a repeated-
measures between-subjects design with six tasks. Partici-
pants completed all six tasks using the same programming
language, in one of the following three groups:

• Quorum: A programming language designed using data
in empirical studies on the “intuitiveness [14]” of pro-
gram constructs. The name of this language was previ-
ously Hop. Full documentation of the syntax and seman-
tics is available online at http://sourceforge.
net/apps/trac/sodbeans/wiki/Hop.

• Perl: A well-known commercial programming language.

• Randomo: A programming language based largely on
the syntactical structure of Quorum. With the exception
of braces, the lexical rule for variable names, and a few
operators (e.g., addition, subtraction, multiplication, di-
vision), many of the keywords and symbols were chosen
randomly from the ASCII table.

3.1 Participants

We solicited 19 participants between the months of April
and July of 2011 from non-computer programming classes
at Southern Illinois University Edwardsville after appropri-
ate Institutional Review Board ethics reviews. Participants
in all groups were equally paid ten dollars for their partici-
pation. All participants reported in an exit survey that they
had never before attempted to program a computer. Of these
individuals, one participant left in the middle of the study.
Since this participant did not complete the experiment, that
individual’s data was subsequently removed. Of the remain-
ing 18 participants, the average age was 21.3 years, with 12
males and 6 females.

3.2 Procedure and Experimental Walkthrough

When participants began the study, they were first greeted by
a proctor and assigned randomly to a group. Once assigned,
participants were seated at a computer with Windows 7
installed. Cardboard barriers were placed in between each
individual. These barriers prevented people from looking
at other participants’ screens or otherwise cheating. For a
participant to cheat, they would have had to physically stand
up and walk to a neighbor’s computer to do so. As we
monitored participants and made reasonable restrictions to
prevent cheating, we conclude that each participant worked
independently and without assistance from their peers or the
Internet.

Each experimental session lasted approximately two
hours and followed a standard checklist of procedures. A
complete replication package, including all tasks, procedure
checklists, task solutions, and scripts is available from the
authors on request. Before beginning, participants were read
a script describing what they will be doing in the experi-
ment. Once complete, participants were given a code sample
worksheet for the particular language group they were in

Task Procedure and tested concepts

Task 1 7 Minutes, reference: conditional statements, strings, and variables

Task 2 7 Minutes, reference: loops, variables

Task 3 7 Minutes, reference: functions, parameters, return values
Task 4 10 Minutes, no reference: loops, variables

Task 5 10 Minutes, no reference: functions, parameters

Task 6 10 Minutes, no reference: nested conditional statements, variables

Table 1. A table giving the programming concepts high-
lighted in each task. The amount of time available to com-
plete a task and whether a reference sheet (during) and solu-
tion (after) were available for inspection is listed.

(Quorum, Perl, or Randomo). See Figure 1 for one of the
examples on the reference sheet given to participants.

The general idea of the experiment is to give novice users
code samples similarly to if a participant was learning to
program from home on the Internet. As such, we did not
train participants on what each line of syntax actually did
in the computer programs. Instead, participants attempted to
derive the meaning of the computer code on their own.

Participants completed a total of six experimental tasks
(see Table 1). In the first three, participants were allowed
to reference and use the code samples shown in Figure 1.
Seven minutes were allotted to complete each of the first
three tasks. Once time was up, participants were given an
answer key. This somewhat mimics the idea of finding a
working example on the Internet then trying to adapt it for
another purpose. For the final three tasks, use of the code
samples was not allowed, no solutions were given, and ten
minutes was allotted for each task.

3.3 Materials and Tasks

For each experimental task, participants were given identical
English descriptions of the code they were asked to write
(Quorum, Perl, or Randomo). For task 1, the description
read: Using the code sample given to you, try to write code

that defines a variable x that stores real values and is set to

175.3. The code should also define a variable y that stores

a string of characters and saves the word false in it. The

code should then check whether x is larger than 100. If so,

y should save the word true. Otherwise, y should save the

words still false. Write your code in the text editor open

on the PC in front of you. See Figure 2 for one possible
solution in each programming language. The other five tasks
were similar and the concepts participants had to attempt to
program are summarized in Table 1.

3.4 Results

To grade each experimental task, we used a simplified ver-
sion of Artifact Encoding [15]. While previous work dis-
cusses the procedure in more detail, Artifact Encoding es-
sentially produces a key that can be graded by a computer.
These answer keys are metaphorically similar to how an an-
swer key for a class would be constructed, break-down the
computer code into components (e.g., did the user define
a particular variable correctly?) and score each individual



action Main
number x = z(1, 100, 3)

end

action z(integer a, integer b,

integer c) returns number
number d = 0.0

number e = 0.0
integer i = a
repeat b - a times

if i mod c = 0 then
d = d + 1

end
else then
e = e + 1

end
i = i + 1

end
if d > e then

return d
end
else then

return e
end

end

(a) Quorum

$x = &z(1, 100, 3);

sub z{
$a = $ [0];

$b = $ [1];
$c = $ [2];

$d = 0.0;
$e = 0.0;
for ($i = $a; $i <= $b; $i++){
if ($i % $c == 0) {
$d = $d + 1;

}
else {
$e = $e + 1;

}
}
if ($d > $e) {
$d;

}
else {
$e;

}
}

(b) Perl

ˆ Main {
˜ x \ z(1, 100, 3)

}

ˆ z(@ a % @ b % @ c) | ˜ {
˜ d \ 0.0
˜ e \ 0.0

@ i \ a
# (b - a) {
: i ; c ! 0 {
d \ d + 1

}
, {
e \ e + 1

}
i \ i + 1

}
: d ` e {

d

}
, {

e
}

}

(c) Randomo

Figure 1. This code shows one of the code samples provided to participants. The description said the following: This code will

count the number of values that are and are not divisible by c and lie between a and b. It then compares the number of values

that are and are not divisible by c and makes the greater of them available to the user.

number x = 175.3
text y = "false"

if x > 100 then
y = "true"

end
else then

y = "still false"
end

(a) Quorum

$x = 175.3;
$y = ’false’;

if ($x > 100) {
$y = ’true’;

}
else {
$y = ’still false’;

}

(b) Perl

˜ x \ 175.3
?? y \ ?false?

: x ` 100 {
y \ ?true?

}
, {
y \ ?still false?

}

(c) Randomo

Figure 2. For each programming language, this code represents one possible solution a participant might give for task 1.

piece with a code, in this case 0 or 1. In this study, if an an-
swer was correct, we marked that component with a 1. If a
particular component was incorrect, we marked it with a 0.
Once all components were marked, a total and a percentage
was computed for each task. So, in effect, we computed a
“percent correct” metric for each task and used these values
in our statistical models, but we did so in such a way that we
could compute an inter-rater reliability analysis. Other forms
of artifact encoding are far more complex [15].

To ensure our grading could be replicated by other re-
searchers, we first verified that independent raters of the data
would give approximately the same result. We did this using
a standard inter-rater reliability test called a Kappa analysis
(see e.g., Hubert [5]). Two researchers first trained on data
not used in the study and then independently coded approxi-
mately 20% of the actual data. A Kappa statistic of 0.80 (raw
agreement 91.0%) was found, a result which is typically in-
terpreted as highly reliable. Researchers trained in the grad-
ing technique proceeded to code the remaining 80% of the
data.

We then proceeded to analyze the data using a standard
repeated-measures ANOVA test, with corresponding post-
hoc Tukey tests and partial-eta squared values using the sta-
tistical package SPSS. For those unfamiliar with this proce-
dure, one must first verify that the assumptions of the statisti-
cal test are not violated. To do so, we first ran Mauchly’s test
for sphericity, χ2(14) = 12.071, p = .608. As the result was
non-significant, it implies that the sphericity assumption has
not been violated. As such, the standard Greenhouse-Geisser
correction was unnecessary for our data.

Next, we conducted a test for within-subjects effects
to see if learning played a role in our experiment. Re-
sults show that total cross-language averages for task 1
(M=.412, SD=.237) raised slightly by the end of the experi-
ment (M=.552, SD=.224), F (5, 75) = 3.22, p = .011, η2p =
.177). This is not surprising. We would expect participants
to improve slightly as they become familiar with either the
language or protocol, although it is interesting that scores
continued to rise despite the lack of a reference sheet in
tasks 4-6. The learning effect interaction with language was
non-significant, F (10, 75) = .735, p = .689, η2p = .089,
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Figure 3. A summary of the accuracy scores by language
and task. 1.0 means 100% correct, whereas 0.0 means 0%
correct.

implying there was no obvious interaction between task or-
der and language. A summary of the accuracy data for each
task is shown in Figure 3.

However, the test most critical to our hypothesis is the
test of between-subjects effects—did differences in the lan-
guages themselves matter? This test shows that differences
between the programming languages were both significant
and very large, F (2, 15) = 7.759, p = .005, η2

p
= .508.

Further, post-hoc Tukey HSD tests of the between-subjects
effect indicate a surprising result. While users of Quorum
(Average M=.628, SD=.198) were able to program statisti-
cally significantly more accurately than users of Perl (Aver-
age M=.432, SD=.179), p = .047, and users of Randomo
(Average M=.341, SD=.173), p = .004, Perl users were
not able to program significantly more accurately than Ran-
domo, p = .458.

3.5 Discussion

But why was it that Quorum, just another general-purpose,
object-oriented, programming language afforded better ac-
curacy while programming for novices? We think the most
plausible explanation is that we were very careful to use em-
pirical evidence for the design of our language. In previous
work, we carefully studied what we called “intuitiveness”
metrics for a large selection of word choices in the language.
As an example, consider the use of the word for, as is com-
monly used to represent the concept of looping in a program-
ming language. The word repeat is rated by novices as
being nearly seven times more intuitive [14].

Further, the between-subjects effect size (η2
p
=.508) was

very large. This statistic is commonly interpreted as the
percent of the variance accounted for, in this case evidence

that programming language differences might account for up
to half of the problems novices initially face.

Perl users in our study performed notably poorly, not only
performing less well than Quorum, but no better than a lan-
guage designed largely by chance. While Perl has never had
a particular reputation for clarity, the fact that our data shows
that there is only a 55.2 % (1 - p) chance that Perl affords
more accurate performance amongst novices than Randomo,
a language that even we, as the designers, find excruciat-
ingly difficult to understand, was very surprising. This is es-
pecially true, we think, considering we chose to test only
the syntax in Perl that is relatively common across a num-
ber of languages (e.g., if statements, loops, functions, pa-
rameters). Considering that Java syntax, which many would
arguably consider to be easier to understand than Perl, uses
similar syntax, we are curious how it would perform. Given
this interesting first result, we plan to test a number of addi-
tional languages using the same procedures.

3.6 Threats to Validity

A number of potential threats may have influenced the re-
sults presented here. First, the sample size in our experiment
was low: 18 people spread across 3 groups. It is possible that
we just happened to get six high performing novices in the
Quorum (or Randomo or Perl) group or six low perform-
ing individuals similarly. While the statistical probability of
having good or bad individuals is equal across languages,
we think that replication on a larger sample of individuals is
warranted.

Second, while we have made claims about particular pro-
gramming languages, it could very well be the case that, for
either Randomo or Perl, we did not test a feature of Ran-
domo or Perl in which novices would have performed well.
While this is true, we generally tried to test the features that
would be common to learn in an introductory computer sci-
ence course. Other features should be tested, but the ones we
chose seemed to be a reasonable first attempt.

We should also mention that our test was conducted with
students that had no programming experience. We conducted
a test in this way largely because students in our classroom
often exhibit substantial difficulty when first learning to pro-
gram. Students tell us that the syntax they are learning (in
C++ at our school), makes no sense and some have diffi-
culty writing even basic computer programs. It is unclear
from the work here exactly what kind of students or profes-
sionals such results could generalize to. For example, there
is some evidence that sensible API designs [18] even benefit
those with experience. The exact generalizability is unclear,
but the results here seem reasonable under the conditions of
our test and it is plausible that they extend farther.

4. Summary and Future Work

We have shown in this work an empirical study comparing
three computer programming languages: Quorum, Perl, and



Randomo. We compared novices that were programming for
the first time using each of these languages, testing how ac-
curately they could write simple programs using common
program constructs. Results showed Quorum afforded sig-
nificantly greater accuracy amongst novices compared to
Perl and Randomo, while Perl users were unable to write
programs more accurately than those using a language de-
signed with syntax chosen randomly from the ASCII table.
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