
Categorization of Concerns
 A Categorical Program Comprehension Model

Tim Frey
Otto-von-Guericke University

Magdeburg, Germany

tim.frey@tim-frey.com

Marius Gelhausen
TU Darmstadt

Darmstadt, Germany

marius.gelhausen@gmx.de

Gunter Saake
Otto-von-Guericke University

Magdeburg, Germany

gunter.saake@ovgu.de

Abstract
Program comprehension models lack associations with
the paradigm of separation of concerns. We present a
holistic program comprehension model based on
categorization studies of psychology. A comparison of
research about categorization and separation of concerns
is used to develop the model. The cognition in this model
is influenced by the context wherein a programmer
investigates the code. The comprehension process starts
with some ad-hoc concerns that are about to be refined
by following an investigation strategy and a vertical
process study. Through this study, the concerns
refinement may imply an update on the knowledge and
the adoption of a new behavior for the investigation
strategy. Our model can serve as starting point for further
investigations how developers recognize concerns.

Categories and Subject Descriptors D.2.3 [Software
Engineering]: Coding Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and
Features.

General Terms Human Factors

Keywords Program comprehension, separation of
concerns, categorization

1. Introduction
Companies spend a large amount of money for software
maintenance [28]. Since source code is more read than
written, a crucial element in maintenance is the
comprehension of source code [25]. Thus, research about
maintenance tasks and the corresponding inspection of
source code by a developer is done. It seems that some
elements are more important for specific maintenance
tasks [58]. Likewise, first indications show that effective
programmers inspect source code systematically to
uncover elements, belonging to a task [51].

In order to explain the source code investigation process,
different program comprehension models were created.
These models [2, 6, 7, 8, 9, 10] describe the creation
process of a developers mental program model. Some of
them [8, 7, 3, 27] state that previous knowledge of a
programmer is used to gain intelligence about a program.
Some models propose that developers use so called
beacons [2, 6, 4, 1, 3] to detect familiar structures in
code. Beacons are well known concepts (e.g. method
calls) to a developer that are used to derive indications
about the code. Hence, the role of such conceptual
knowledge in program comprehension is of interest to
researchers [12, 26]. Thus, how conceptual knowledge of
a programmer manifests in code is a central element for
program comprehension [13, 14].

In order to realize mental concepts in code, developers
follow the paradigm of separation of concerns (SOC).
SOC recommends encoding one concern in one module
and weaving those together [21]. Commonly, the term
concern is overloaded, in respect to programming
structures, to be any matter of interest of a software
system [24]. Thus, we restrict a concern to a logical
classification of a source code fragment. Programming
languages support, by varying terms, the application of
SOC [29].1 In reality, often modules are responsible for
multiple concern or concerns are scattered over various
modules [17]. Consequently, programmers face the
challenge to comprehend the concerns and their
encoding.

Surprisingly, none of the former referenced program
comprehension models addresses the fact that
programmers need to comprehend concerns and their
separation. In favor, to fill this gap, we did research
about areas in psychology that seem similar to the idea of
SOC. In prior work, we identified the area of
categorization in cognitive science as interesting for
program comprehension [60]. Now, we show the
following research about categorization and present a
program comprehension model based on it.

Our contribution is a holistic program comprehension
model based on categorization theory. This model

1We assume a reading familiarity with the idea of SOC [21] and

the corresponding coding techniques. For the comprehension
of this paper a basic knowledge about Annotations [18],
Aspects [19, 31], design patterns including architectural
layers [23, 40, 61] and the basic idea of multidimensional
SOC [15, 16, 17] is expected.

Copyright is held by the author/owner(s). This paper was published in
the Proceedings of the Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU) at the ACM Onward!
and SPLASH Conferences. October, 2011. Portland, Oregon, USA.

respects research about categorization and SOC. Hence,
we enrich program comprehension through the direct
association with an area of psychology. We enable future
research about the detailed role of categorization in
program comprehension.

First we do a brief introduction about categorization.
Afterwards, we present similarities of the SOC paradigm
in contrast to categories and establish step by step our
comprehension model. We argue for the validity of our
model by presenting threats against it. Related work
shows similar approaches and differences to our work.
Finally, we do conclusions and propose future work.

2. Categorization
Categorization is a part of cognition and fundamental for
the process of comprehension. Categories play a central
role in perception, learning, communication and thinking.
Categorization is used to group objects together into
classes, based on similarities. These classes are called
categories or concepts [36, 38]. In this chapter, we give
a brief introduction about categorization. We present the
different theories how elements are categorized.

2.1 A brief introduction
Category membership enables the usage of knowledge,
about a category. New objects are associated with a
category and the knowledge about the category is used to
assume properties of the new object [36, 38, 45]. To
argue, in favor of the existence of categorization, it has to
be considered that without it, every object or incidence
would appear inimitable. Hence, there would be no way
to do predictions about new unknown objects. Thus,
categories can be seen as a product of interactions,
containing perceived resemblance relations in the
environment, prior knowledge and context of utilization.

Categories can be formed for physical objects like
specific animals, but also for entities that don’t exist as
physical objects [47]. For instance, democracy represents
a conceptual ideal of government. This way, categories
classify abstract functionality for a democratically system
directly. Likewise, it is possible that categories of
physical objects are used to infer about the functionality
of category members. Thus, no simple distinction
between categories and functionality of those can be
done. However, categorization is a dynamic process,
which updates the knowledge about categories, their
members and their relations constantly throughout new
experiences. Thereby, even minimal prior knowledge has
the effect to greatly speed up category learning [56].
Likely, there are basic categories, representing important
and often used elements, enabling faster processing and
association [50].

One feature of categorization is to do quick predictions
[46]. This can be done out of limited available
information, but can lead to avoid understanding an
object completely. It would be too time consuming to
comprehend every object totally. This way, it is possible
to drive a car just because all cars are similar or to be
careful towards a snake. Like the examples show,

predictions are used to act adequately or to adapt
behavior [32].

Additionally, there are different kinds of categories.
Taxonomic categories represent hierarchies of
increasingly abstract categories like terrier-mammal-
animal. Script categories are used to group elements that
play the same role together. For instance, in the case of
breakfast: Eggs and bread belong to the category
breakfast foods and are exchangeable. Both can be eaten.
Finally, thematic categories that group objects that are
associated or have a complementary relationship like a
dog leash or a clothesline [41]. We humans use
taxonomic, script and thematic categories equally to
categorize and understand objects [40]. This means that
every category kind is used to categorize objects and
none is favored. It is also possible to combine different
categories and their objects to generate new categories
[62, 63]. Also categories can be structured hierarchically.
Subcategories have features of their super ordinate for a
certain probability. The “inheritance” of features is
therefore not absolute [37].

Categories can be formed spontaneously to fulfill a
certain task. This kind is called ad-hoc categories [43].
For example, things that can be sold in a garage sale can
be defined in a spontaneous category. Also, an object can
be associated with multiple categories at the same time,
what is called cross classification. The context wherein
an object is viewed influences which category is
associated with it [39]. Thereby, the objects categories
can be the different category kinds (e.g. the former
named taxonomic and thematic) [41, 42]. This is
important, because research indicates that the association
speed with a category differs for the different category
kinds [44].

2.2 The different theories
The classical view claims that categories are discrete
entities characterized by a set of properties which are
shared by all of their members. These properties are
assumed to establish the conditions, which are both
necessary and sufficient, to capture the meaning of a
category. All members of a class posses equal quality to
the respective category [33]. Through results of various
experiments it seems that categories have diffuse
boundaries, and categories are not discrete [22, 34].
Therefore new theories have been built.

The prototype theory claims that categories are
represented by a bundle of characteristics, which are
typical for a certain category, but not inevitable or
sufficient [35]. A category “bird” might have
characteristics, like “flying” or “building a nest”. Even if
not all birds exhibit this features, they still belong to the
bird category. For instance, a penguin is a bird that can’t
fly. The prototype of a category merges typical
characteristics of a category, but no exemplar has to
match completely, with all characteristics. New objects
are classified, out of an affinity composition with the
prototype of an already existing category. The inclusion
of characteristic features illustrates why some elements

are perceived as typical instances of a category, in
comparison to others. Characteristic features of a
category are abstracted during learning and merged as a
representation of a prototype representing the category.
Thus, all typical features are associated with the
prototype. Hence, the prototype is a representation of an
amount of objects that share similar features [22].

The exemplary view assumes that in contrary to the
prototype theory, single exemplars are engrained together
with the category denotation. Each new exemplar
represents a category on its own. By recognizing a new
exemplary a learner is reminded, more or less, to prior
seen exemplars. The learner assumes, an object might
have the same features like the exemplar compared to
which it has the most similarities. Thus similarity
comparisons are made with the exemplar itself and not
with an abstract prototype. This way, a certain animal
might be categorized as a rodent, because it reminds of a
mouse, whereas another animal is categorized to the
same category, because it reminds of a squirrel or a
chipmunk. Research certifies some prognoses that were
made out of this theory [59]. Nowadays hybrid theories
are available that try to combine the different views [20,
30, 64].
3. Categorization of Concerns
To bring categorization and SOC together, we present
different supporting points. Several comparisons of the
area of categorization to the area of programming are
shown. Thereby, similarities between SOC and
categorization are emerging. Finally, we show a model
with all the facts included together.

3.1 Characteristics of categories
Categories are essential for the comprehension of
specific objects and discrete conceptual entities [47]. In
source code both of them are occurring, too. There are
concrete mechanisms to indicate concern associations of
elements. Such mechanisms are packages, classes,
inheritance, annotations methods and similar means.
Other concepts are realized through compositions of
various programming constructs. Design patterns are an
example for such compositions [61]. Developers
associate the realizing elements with the corresponding
design pattern. The functionality of these elements has
discrete, flexible characteristics where not every
implementation is completely equal. Thus, the category
of a design pattern is more like an abstract concept then a
concrete mechanism. Categories manifesting in code are
similar to physical object categories and abstract
concepts like democracy. Hence, there are concrete
mechanisms to realize categories and compositions to
realize elements of conceptual categories.

The comprehension of fragments seems to be
dependent on the experience [51] and thus probably of
the knowledge of a developer. That is also the case in
categorization. The learning of categories and also
comprehension speed differs, depending on prior
knowledge [56, 50]. We see supporting arguments in

research about program comprehension. There, some
source code lines are more important than others for the
comprehension of a developer [3]. We see these lines as
a representation of categories or features of categories.
To categorize the fragment, features (those lines) are
recognized and used for category association. Another
possibility is that the line itself represents an element of a
category that is recognized. We claim that concerns are
acquired and accessed by studying programs. This is
similar to how categories are learned. Therefore, we
assume that the importance of a concern and the
frequency how often it is studied, influences if it is
recognized as a basic concern. This distinction is done, to
respect the existence of basic categories. Like for
categories, the comprehension of basic concerns is done
quicker as for normal ones. We consider framework
classes as an example for often used elements. Therefore,
we assume that framework classes are an instance of
basic concerns.

Figure 1. Learning basic concerns

We present our graphic representation of the concern
learning process in Figure 1. Developers comprehend
code and use basic and normal concerns. We visualize
the access of the code with the arrow from
comprehension down to the code fragments. A developer
accesses a concern every time it is studied. Thus, the
usage frequency of the category gets up. This means: Just
the study of source code can lead to classify a concern as
important and it can be faster comprehended when it is
occurring again. We visualize the continuous usage of
concerns for comprehension as well as their update as
double sided arrows. Additionally, the importance of a
concern and its usage frequency refines a first recognized
normal concern into a basic concern. When a code study
begins there is no knowledge about the source code. But
as the knowledge grows, certain concerns can get
important ones. We present this transfer as arrow from
concerns to basic concerns.

3.2 Usage of prior knowledge for prediction
Developers predict functionality of source code through
prior knowledge. This is obvious, because often
reoccurring elements are used in a program. Also,
different program comprehension theories support this.
It is assumed that a developer creates hypotheses about
the way of operation of a program out of prior
knowledge [2, 8, 7, 3, 27]. That usage of prior
knowledge for comprehension seems also to be the case
in categorization [45]. We believe that building
hypothesis about a program is equal to predictions out of
category membership [46]. Hence, the prediction about

the functionality comes out of categories. A prediction
leads to adequate behavior. Such a behavior can be a
change of the investigation strategy. In categorization
adapting behavior is an important appliance [32]. Thus, it
seems equal to the code inspection process.

Figure 2. Prediction and behavior

We developed visualization for the process of predictions
and behavior. We present it in Figure 2. In respect to the
program comprehension scenario, the behavior is called
investigation strategy. On the left side, the investigation
process is vertically visualized. It is arranged in a box
with an arrow to express the continuous process. All
shown actions happen within this process. The arrow
directions visualize the way of interactions between the
elements: Code is studied and comprehended through
the influence of known concerns. The comprehended
code influences the cognition and thus the
comprehension of further fragments. For example, new
concerns can be learned by studying and therefore the
cognition is changed. Comprehending code leads also to
predictions about the features of the code under the
influence of known facts. By building such a prognosis
the current state of comprehension influences the
prediction. Because of predictions about studied source
fragments, the investigation strategy can be adapted. The
strategy also influences the cognition of a studied code
fragment and is adapted by the current state of
comprehension. It is a mutual influence: In the study
process this can happen multiple times and when the
comprehension adepts the investigation strategy the
perception of new studied elements will be changed.
Anyway, sometimes wrong or right predictions are made.
In such an ongoing comprehension process, predictions
can be verified wrong or right. It is important to note that
the strategy has not the demand to be verifying
predictions continuously. A direct verification is
probably rather happening, when uncertainness about the
predictions is at stake. Likely, in a normal study process,
the predictions are verified by the assumption they are
true and further investigation support of falsify these.
The verification of these predictions is then used to
update the knowledge about concerns. Such an update
can be the proof or falsification of the predictions that are
associated with a concern. Since these concerns influence
the cognition, the strategy can change again. For example
can the recognition of a code fragment lead to predictions

about its functionality. Further investigations can then
lead to support or falsify the previous made assumptions.
Because of this, the knowledge about the concern has to
be updated. This leads to new predictions that can lead to
a strategy change in investigation.

3.3 Different means of separating concerns
Different programming paradigms and mechanisms exist
to apply SOC [21, 17, 19, 15, 16, 18, 31, 61]. In the
following we will exemplary mention a few of them on
an arbitrary level. This way, we show a relation between
categorization theories and means to separate concerns.

A mean to apply SOC are classes in object-oriented
languages. The inheritance of fields and methods is
absolute for subclasses. We see this as corresponding to
the classic category view. Also, we see the same for
classes and their instances. Instances of classes have all
the same features.

Annotations [18] enable developers to mark absolutely
different classes with them. For example, classes can be
marked through persistency Annotations. All marked
persistent classes are belonging to the persistency layer.
This layer can also be named persistency category. The
classes belonging to this layer cannot be defined as
precisely as the classic view demands: The annotated
classes are totally distinct and share varying feature sets.
Obviously, no class needs to have all of the persistency
annotations. Thus, we recognize that the classic view is
sufficient to represent this kind of categorization. Hence,
we propose the prototype theory as explanation for this
phenomenon. A prototype of a layer groups all the
different features, associated with the layer, together.
This way, an abstract prototype groups all persistency
Annotations together. Classes are getting annotated with
the Annotations that occur in the prototype. Each class
just has to have a few features of the prototype. Not all
features need to be shared with other classes of the
category.

However, SOC proposes to encode each concern in a
separated module. If this would be possible the result
would be modules with no shared features. So, we see
the necessity to conclude that the prototype theory is not
sufficient to explain SOC. Advanced mechanisms to
apply SOC support this assumption: Aspects [19] group
elements together and allow modifying their behavior.
All the elements have in common is the application of the
Aspect. Therefore, aspect-oriented programming is not
comparable with the prototype theory. Similar to
Aspects, MDSOC allows advanced modularization [17,
16]. All together, the advanced separation beyond the
prototype seems quite similar to total distinct exemplars.

All over, we see source code and the means to separate
concerns similar to the different theories how categories
are arranged. Our main point is that means to separate
concerns are similar to categorization theories. Elements
in source code are recognized and grouped into
categories.

We developed a comprehension process and
visualization and present it in Figure 3. Concerns in the

source code are shown (Code Fragments). The single
sided arrows visualize that code is comprehended and
studied. The letters represent the concerns and the circle
around them represents a module. The different means to
separate concerns and modules can be mapped to the
corresponding cognitive representation. The mapping
box shows different possibilities of mapping. This
mapping between the mental representation and the
realization in source is maintained continuously during
the study process. Therefore, the arrow in the box
indicates the continuous comprehension of a developer.
The small arrow, to the mapping box, indicates the
constant mapping refinement during the comprehension.
In the mapping block the different circles and arrows
show different variants of mapping. We symbolize this
mapping as arrows from the mental space (grey) to code
mapping (white). The grey circles in the mapping are
concerns and the white code circles are modules. Not
every concern is realized in a single module and
sometimes modules represent multiple concerns. This is
because of limitations to separate concerns in the source
code, but also through mistakes of programmers.

Figure 3. Concern theory mapping

The arrow across the comprehension box symbolizes
the continuous comprehension process and shows that
concerns will be recognized differently. At their first
occurrence they will probably be recognized as a single
exemplar. For instance, an class is seen for the first time.
Since a developer does not know other occurrences of
this exemplar just a single exemplary is created. As more
and more code fragments appear, using the class, a
developer is reminded to the other fragments. Then, an
abstract prototype will be created if similarities between
the different code fragments excel (prototype theory). If
all the studied features are fixed, a category following the
“classic view “ category is created. We show this use of
prior seen exemplars through the double ended arrows.
Additionally, we show exemplary code fragments,
whereby the letters describe features of the fragments.
Vertically at the bottom are the corresponding different
categories arranged.

3.4 Multi-category-association
In software development, maintenance tasks appear, as
for instance, fixing bugs. Dynamically multiple elements
of the code are associated with such a task [58]. Likewise
categories can be formed dynamically [43]. Hence, this
indicates that program elements can be part of a

spontaneous category. Similar is the multi category
membership in categorization. Elements can be part of
script, thematic and taxonomic categories at the same
time. For instance, a class belongs to a certain package,
but in the same moment it can also be a member of an
inheritance hierarchy and can be affected by
Annotations. Furthermore, a code fragment can be
comprehended differently. The actual comprehension
depends on the intention of a developer when he studies
a fragment. This can be compared with polysemous
words where the actual meaning is driven by the context
[39]. Thus, likely, the association of a source code
fragment with multiple concerns, is the same like cross-
classification [41, 42] .

Figure 4. Cross concern association

We present our view of a multi concern association in
Figure 4. There code fragments are associated with
different concerns. The concerns are the letters and the
code fragments are the circled letters. The fragments are
belonging to different concerns at the same time. We
visualize this through the concern letter associations.

Figure 5. Cross concern comprehension

Figure 5 shows a single fragment that belongs to two
concerns. The comprehension which concern is
recognized is influenced by the context in what the
fragment appears. For the study process is this context
the investigation strategy. Thus, the investigation strategy
influences how and which concerns are comprehended.

Code Fragments

A ACAB DCBD

Comprehension/Cognition
Investigation

StrategyInfluences

Mental comprehension

A
A AC

AB DC

BD B

C

D

Legend:
The investigation
strategy influences
which categories are
recognized. The different
spaces show the
different category
associations of the
fragments.

Figure 6. Cross concern association comprehension

In Figure 6, Figure 4 and 5 are combined and shown with
multiple fragments. The discovering of varying concerns
through different investigation strategies is visualized by
the example of grey and black concerns. However, the
framed spaces represent the concerns. As shown, a
fragment is framed by multiple lines to indicate the
multi- concern fragements. In short, a fragment is an
intersection of various concerns.

3.5 Composition

The composition of code elements seems similar to the
combination of categories to build new categories [62,
63]. Hence, we assume that new concerns can be created
through the composition of other concerns, what happens
quite often in source code; for instance, by creating data-
access-objects (DAO). Such classes are clearly to be
counted to the persistency layer. At the same time this
classes are composed together with domain objects that
normally represent business entities. Therefore, it is
wrong to count a DAO only to the persistency layer,
since they also belong to a distinct business domain in
the application itself. Thus, a DAO is a composition of a
business concern with the concern of persistency.

Developers often deal with abstract definitions and
concrete implementations. We consider that a class can
represent a concern. But when it is used somewhere (e.g.
as instance object) then it is like a feature of another
element. This reveals the question between a concern and
its instance. The different categorization theories hold no
answer about categories and their members. Hence, for
the sake of simplification we don’t distinct between
concern or category instance.

In order to understand a composed concern a developer
needs to know the underlying concerns. Another option
to determine the way of operation of a composed
fragment is by meta-information associated with the
composed concern itself. Such meta-information can be
realized through comments or a meaningful name of
fragment.

Compositions are quite common. We assume that
compositional concerns are only recognized as concerns
by a developer, when their meaning is quite clear. Not
every composition will be recognized as new concern.
The usage frequency of a composed concern is an
indicator if it is comprehended as concern itself. If a
composition is never used, it will probably not be
recognized as a concern on its own; likely it will be
comprehended as pure composition, but not as a concern.

Figure 7. Concern composition

Figure 7 shows a composition of concerns based on
concerns. The concerns are named C and the composed
concerns are named VC (virtual concern). VC1 shows a
composition of two normal concerns. The a. part of the
graphic shows the construction of the first composed
concern (VC1 – composed of Cx and Cy). The b. part
shows the construction of another composed concern on
top of a composed concern (VC2). To visualize, VC1 is
equal to any other concern, a shifted VC1 is also shown
in Figure 7b. We assume that VC1 will be recognized as
concern, because it is used by VC2. The developer needs
to know it to comprehend VC2. It can be that VC2 will
not be recognized as a concern itself because it is not
used anywhere else.

Anyway, we see this as simplification of the real world
where some compositions (VC1) get used more often and
others do not (VC2). The usage of VC1 in VC2 in Figure
7 is just one example for multiple usages within other
concerns. Developers recognize such often used
composition concerns as VC1 because of their
reoccurrence in code. This is supported in the prototype
theory. There, categories are learned through the
occurrence of elements that are similar. Developers
recognize the occurrences of a composition as category
members. Thus, every occurrence of the used
composition is associated with the composition itself and
the composition evolves to its own category.

Figure 8. Concern composition comprehension

We visualize the integration of the compositional
concerns in Figure 8. The code fragments contain
compositions that represent compositional and normal
concerns. A continuous study process is shown. We
show the mental representation of a developer wherein
the composition is expressed through the vertical block.
All normal concerns (C1…Cn) are arranged horizontally.
VC1 is a member in the horizontal and vertical. We do
this to respect the previous discussed fact, that a
composition can be recognized as a normal concern, too.
Anyways, it has to be clarified that there could be
multiple levels of composition and this crossing has to be
seen as example. Developers build up the knowledge
about the compositions through the study process. They
can recognize compositions first as a pure “horizontal”
concern. A further study process can then refine it to
recognize it as composition. For example when VC2 is
comprehended first, probably VC1 would get recognized
as a normal concern and part of VC2. When it is
recognized later that VC1 is also a composition, then the
knowledge about it would be updated. In short, Figure 8
expresses the process of composition comprehension.

3.6 Putting it all together
We present the abstract model of the study process in
Figure 9. The cycle expresses the continuous process of
program comprehension. The arrow visualizes the mind
of the developer where the knowledge is build up and the
comprehension grows. The direction of the arrow also
indicates the permanent knowledge level. We do this to
respect that concerns can first be current concerns of
interest, so called ad-hoc concerns, named after the ad-
hoc categories. Such a-hoc concerns can evolve into
permanent ones depending on their importance and
occurrence in the study process. Finally, concerns can be

even more generic basic concerns. Such basic concerns
have a high usage frequency or a high importance, like
described in section 3.1.

Figure 9. The comprehension process

Figure 10 is assembling all facts, from section 3.1. -
3.5, together. The two axes, study process and
comprehension/ cognition, show the main actions that
happen in program comprehension. The boxed arrows
indicate the continuous comprehension process. All the
elements that are in the range of the arrows are affected
by the comprehension and the study process. The study
process crosses the cognition/comprehension to indicate
the consistency of the comprehension all over a study.
Vice-versa, the comprehension process crossing over the
boundaries of the study process shows the holistic
approach of comprehension, which is not limited for a

specific study process. Moreover, even multiple study
processes can happen.

The mental comprehension contains different
representations of the concerns in the mind. Like shown,
they are updated during the study process and have an
influence to the comprehension/cognition. The actual
cognition adepts the knowledge and the knowledge can
influence the cognition. Also, mappings between the
mental representation and the concrete program elements
exist and get maintained during the comprehension
processes. The concerns are represented by the various
kinds of category views/theories (section 3.3). The
concerns beneath are separated into the different kinds of
basic, normal and ad-hoc concern. The ad-hoc concerns
are used for a specific task like described in section 3.4.
The basic ones are important and often used concerns as
described in section 3.1. The comprehension speed and
usage frequency is increasing from ad-hoc concerns to
basic concerns.

The bars crossing the concern kinds are the different
other facts that were discussed allover in section 3. The
grey vertical boxes represent the different concern types
(exemplary, basic normal). The concern box is colored
grey to indicate it is a simplification for the different
theories that are also colored grey. The Means of
separation block indicates that a concern can also be

Figure 10. Holistic comprehension model

associated with the means how the separation manifests
in the source code. The block named Multi concern
fragments, indicates that a fragment can be mapped to
different concerns at the same time and multiple concerns
can be associated with the same fragment.

We show a block of investigation strategies. It was
added to the mental knowledge, because we assume that
the experience of a developer influences investigation
strategies. Successful investigation strategies are
somehow associated with concerns. Thus, there needs to
be an association between investigation strategies and
discovered concerns. Additionally, research [51] supports
the assumption that investigation strategies vary for
different skilled developers.

The vertical blocks with multi concern fragments and
means of separation visualize compositions. However,
the concern is enhanced with the other vertical elements
that indicate the different associations.

Anyway, like in Figure 3 mappings of source code to
the mental model are shown. The “Mapping” has been
extended to visualize that they can also be associated
with all the previous discussed elements and that they are
in the mental comprehension as well as in the code.
Through this combination of the mappings it is also
possible to contain the means how concerns are separated
and associate them with the mental knowledge. Like
before, the small symbolization in the mapping bar
indicates different mapping variants exist.

As discussed in section 3.2, different actions happen.
The investigation strategy is adapted and predictions
about the way of operation of studied source code
fragments are verified or falsified and the mental
knowledge is created and updated. Generally, all the
arrow relations represent the same like described in the
whole section.

4. Threats
Several threats have been identified that could corrupt
the model. We show and address these facts to
discriminate unsure pretenses against well known facts
for validation with upcoming research.

The issue that effective programmers have different
investigation strategies compared to others, that is stated
in [51], needs further validation, since the study is not
based on a large number of programmers. Therefore, the
assumption that the investigation strategy can be
associated with concerns could be wrong. We argue
against this falsification, because of the fact that
categories can change the behavior [32]. Since an
investigation strategy is a kind of behavior, we argue for
the accuracy of our conclusion, again.

Additionally, there is no complete model of the human
mind available and there are only theories of how it
works. This way, only the empiric supported research
can be considered as fact. Therefore the different
theories, exemplary, classic and prototype and also
hybrid ones can be wrong. This could affect the
comparison of the theories, with the means to separate
concerns. We argue that these theories are based on

empiric research and parts of them have been proofed.
Our comparison was only on a basic level and showed
already similarities. Furthermore, the comparison with
the theories and means of separating concerns is only a
small part of the model. Even with a nullity of these
theories, only a small part of our model would be
corrupted.

Also, the creation of categories just out of the pure
composition of other categories could be used to argue
against our model. We induce the fact that psychological
research appears to go in the direction of cognitive
concepts that are used to build inferences about the
combination of categories [36]. We state that
compositions are a concept. This way, our model holds
for the specific case of composition and is not corrupted
through a generalized conceptual combination of
categories.

5. Related Work
Our model is in the research area of program
comprehension [5,49]. In [2, 26] a model is presented,
based on the idea of problem domain reconstruction
through top-down hypotheses. Thereby, prior knowledge
is used and the hypotheses verification is done through
beacons. Programmers use these beacons to understand
the way of operation of a code fragment [9]. Our
comprehension model differs from the approach because
it is founded on categories and concerns. We think that
beacons are used to recognize the categories. The main
benefit of our model is that it is starting to fill the gap
between research in psychology and program
comprehension. Furthermore, we consider the influence
of the context in which source code is studied for
comprehension. Our theory is connecting the
manifestation of concerns in source code and the
representation in a programmers mind.

In [6], the comprehension is done by the usage of
standard code conventions and patterns. Again we don’t
argue against this point. Patterns can be used to derive
categories.

In [8], the comprehension is divided into a knowledge
base, a mental model and an assimilation process. The
knowledge base contains the experience of a
programmer. The mental model links the representation
in the mind and the implementation of the program. The
assimilation of a program is done by applying the
knowledge base to the program. Again this model does
not differ completely from our approach. For instance,
basic categories are comparable to the experience. Again,
the main difference is that SOC and neither research
about categorization is mentioned.

Another model [10] describes program comprehension
based on strategies and again the idea of categorization
and the impact of SOC in the comprehension process and
in the mental model is not mentioned.

The research about the creation of a concern schema,
COSMOS [52, 53, 54, 55] can be seen related, since the
conceptual space is modeled. COSMOS proposes a
schema with various concern kinds and rules how they

can be associated with each other. This schema is multi-
dimensional and can be used to define the concerns of a
system. The goal was to develop a method to map these
to programming constructs. In contrast to our approach
no background from psychology was used.

Additionally, in [48] the problem of semantic defects is
proposed to be solved through an ontology. Thereby, the
problem of mapping of concepts in the mind of a
programmer to program elements is discussed. This is
similar to our approach, since we also try to come up
with explanations how a developer comprehends a
program. Probably, it can be interesting to compare
semantic defects with the categorization approach.

6. Conclusions and Future Work
We presented the application of research in the area of
categorization to develop a program comprehension
model. In doing so, similarities between categories and
concerns were shown. Different dimensions of concern
comprehension were uncovered and visualized. Finally, a
complete model, with all the different aspects was
presented. In short, the presented comprehension model
can be expressed as consisting of two different areas.
First: The mental representation, where concerns are
structured in categories and mapped to source code.
Second: A continuous study process that influences the
mental model and the comprehension. Vice versa, the
current state of comprehension influences the actions of
the study process.

However, we see the model not as alternative or as
independent from other program comprehension theories.
Related work showed already that our model does not
stand orthogonal to previous research. Though, our
model bridges an approved research area in psychology
with program comprehension. In contrast to previous
source code study models, we respect the idea that SOC
plays a role in program comprehension and relate
program comprehension to psychology. We introduce
the idea of concerns and basic concerns, which are
created on usage frequency and importance. The
occurrence of multi-concern fragments is explained by
cross categorization. Compositional concerns explain the
creation of new concerns. Different category types and
kinds (section 3 C and D) introduce the idea of similarity
to different means to apply SOC. Former models did not
respect this facts together. Thus, future work needs to
compare the program comprehension with categorization
in detail.

Our model enables further research about the role of
categorization in program comprehension. Through the
model several areas are identified where research needs
to be done. For instance, we assume a difference in
comprehension of normal and basic concerns.
Investigations need to verify this assumption. Such
investigations can uncover methods to detect such basic
concerns automatically. This can help developers to
investigate a program. Also, the psychological
experiments about categorization need to be studied in
detail and compared with manifestations in source code.

This can lead to new concern revealing techniques.
Generally, we see our model as a holistic view of the
developer source code investigation interaction. It can be
used as starting point to investigate the distinct areas
further. For example categorization theories can be
inspected to be leveraged to compare programming
languages.

Finally, the model proposes a comprehension process.
Modern development environments offer plenty of
tracking functionalities where a developer clicks. We
believe, future program investigation tools need to
construct a category model of a developer through
behavior tracking. Our presented model can serve as
starting to develop such a category model.

All together, we see the emerging need to compare
categorization in more detail with software development.
7. Acknowledgements
This work is (partly) funded by the German Ministry of
Education and Research within the project ViERforES-II (grant
no. 01IM10002B). Thanks go to Manuela Fath and the
anonymous reviewers for their useful comments on earlier
drafts.

8. References
[1] T.M. Shaft and I. Vessey. “The Relevance of Application Domain

Knowledge: The Case of Computer Program Comprehension”,
Information Systems Research, pp. 286-299, 1995

[2] R. Brooks, “Towards a theory of the comprehension of computer
programs”, International Journal of Man-Machine Studies vol. 18,
pp. 543-554, 1983

[3] M. E. Crosby, J.Scholtz, S. Wiedenbeck, “The roles beacons play
in comprehension for novice and expert programmers”. In
Proceedings of the 14th Workshop of the Psychology of
Programming Interest Group. 2002

[4] C. Aschwanden and M. Crosby. “Code scanning patterns in
program comprehension”. In Proceedings of the 39th Hawaii
International Conference on System Sciences, 2006

[5] M.-A. Storey, “Theories, Methods and Tools in Program
Comprehension: Past, Present, and Future”. 13th IWPC, pp.181-
191, 2005

[6] E. Soloway, K. Ehrlich. “Empirical Studies of Programming
Knowledge”. IEEE Transactions on Software Engineering, 10(5),
pp. 595-609, 1984

[7] B. Shneiderman, R. Mayer. “Syntactic/Semantic Interactions in
Programmer Behavior: A Model and Experimental Results”.
International Journal of Parallel Programming, 8(3), 1979

[8] S. Letovsky. “Cognitive Processes in Program Comprehension”.
In Empirical Studies of Programmers, pp. 58-79. Intellect Books,
1986

[9] N. Pennington.” Comprehension Strategies in Programming”. In
Empirical Studies of Programmers: Second Workshop, pp. 100-
113, 1987

[10] D.C. Littman, J. Pinto, S. Letovsky, E. Soloway. “Mental Models
and Software Maintenance”. In Empirical Studies of
Programmers: First Workshop, pp. 80-98, 1986.

[11] F. Detienne,“Software Design – Cognitive Aspects”, Springer-
Verlag London, 2002

[12] V. Rajlich, N. Wilde.“The role of concepts in program
comprehension.” In International Workshop on Program
Comprehension, 2002

[13] B. Cleary, C. Exton, “Assisting Concept Assignment Using
Probabilistic Classification and Cognitive Mapping”. In
Proceedings of the 2nd International Workshop on Supporting
Knowledge Collaboration in Software Development, 2006

[14] B. Cleary, C. “ExtonAssisting Concept Location in Software
Comprehension”, 19th Annual Workshop of the Psychology of
Programming Interest Group, 2007

[15] P. Tarr, H. Ossher, W. Harrison, S. M. Sutton, Jr.. “N degrees of

separation: Multidimensional separation of concerns”. In
Proceedings of the 21st International Conference on Software
Engineering, pp. 107–119. 1999.

[16] H. Ossher, P. Tarr. “Multi-dimensional separation of concerns and
the hyperspace approach”. In Proceedings of the Symposium on
Software Architectures and Component Technology: The State of
the Art in Software Development. Kluwer, 2001.

[17] R. E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented
Software Development Addison-Wesley Professional; 1 edition,.
2004.

[18] J. A. Bloch, “A Metadata Facility for the Java Programming
Language”, 2004.

[19] G. Kiczales, E. Hilsdale, et. al. „An Overview of AspectJ”.
European Conference on Object-Oriented Programming, pp. 327-
355. 2001

[20] J.D.Smith, M.J. Murray, J.P. Minda, J. P. “Straight talk about
linear separability”. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 23, pp. 659-680. 1997

[21] E. W. Dijkstra. “A Personal Perspective. On the role of scientific
thought“, Selected Writings on Computing, Springer-Verlag. 1982

[22] E. Rosch, C.B. Mervis. “Family resemblances: Studies in the
internal structure of categories”. Cognitive Psychology, 7, 573-
605.1975

[23] M. Fowler, “Patterns of enterprise application architecture”,
Addison-Wesley, 2003

[24] S. M. Sutton Jr., P. Tarr. ”Aspect-oriented design needs concern
modeling”, Workshop on Aspect-Oriented Design 1st
International Conference on Aspect-Oriented Software
Development, 2002.

[25] A. von Mayrhauser, A.M. Vans. “Program Comprehension During
Software Maintenance and Evolution”. Computer, 28(8), pp.44-
55, 1995.

[26] R. Brooks. “Using a Behavioral Theory of Program
Comprehension in Software Engineering”. Proceedings of the 3rd
international conference on Software engineering, pp. 196-201,
1978

[27] N. Pennington. “Stimulus structures and mental representations in
expert comprehension of computer programs”. Cognitive
Psychology, 19, pp. 295–341, 1987

[28] B.P. Lientz, E.B. Swanson. “Software Maintenance
Management”. Addison-Wesley, 1980

[29] W. L. Hursch, C. V. Lopes. “Separation of Concerns”. Technical
report by the College of Computer Science, Northeastern
University, Boston, 1995

[30] B. Landau, “Will the real grandmother please stand up?”, The
psychological reality of dual meaning representations. Journal of
Psycholinguistic Research, 11, 1982.

[31] G. Kiczales, M. Mezini :”Separation of concerns with procedures,
annotations, advice and pointcuts”. In Proceedings of 19th
European Conference on Object-Oriented Programming, 2005

[32] L. W. Barsalou, Ad hoc categories. Memory & Cognition, 11, pp.
211-217, 1983

[33] J.S. Bruner, J. Goodnow, G. Austin, “A study of thinking”. Wiley,
New York. 1956

[34] M. McCloskey, S. Glucksberg.” Natural categories: Well-defined
or fuzzy sets?”, Memory & Cognition, 6,pp. 462-472. 1978

[35] E.E. Smith, D.L. Medin. “Categories and concepts”. Cambridge,
MA.: Harvard University Press. 1981

[36] D. L. Medin, E. J. Heit. „Categorization”. In D. Rumelhart and B.
Martin Handbook of cognition and perception. San Diego.
Academic Press. 1999

[37] Steven A. Sloman, Categorical Inference Is Not a Tree: The Myth
of Inheritance Hierarchies, Cognitive Psychology 35, 1–33 (1998)

[38] G. L. Murphy, The Big Book of Concepts, MIT Press, 2002
[39] D. Klein, G. Murphy, “Paper has been my ruin: conceptual

relations of polysemous senses”, Journal of Memory and
Language, Vol. 47, No. 4, pp. 548-570, 2002

[40] R. Johnson, “Expert one-on-one J2EE design and development”,
Wrox 2003

[41] S. P. Nguyen, G.L. Murphy, “An apple is more than a fruit: Cross-
classification in children’s concepts”. Child Development, 74,
2003

[42] S. Nguyen. “Cross-classification and category representation in
children’s concepts”. Developmental Psychology, 43, pp. 719-
731, 2007

[43] L.W. Barsalou, “Ad hoc categories”, Memory and cognition 11,
pp. 211-227. 1983

[44] B. H. Ross, G. L. Murphy, “Food for Thought: Cross-
Classification and Category Organization in a Complex Real-
World Domain”, Cognitive Psychology 38, pp. 495–553. 1999

[45] T. Yamauchi, A. B. Markman, “Inference Using Categories”,
Journal of Experimental Psychology: Learning, Memory, and
Cognition, Vol. 26, No. 3, pp. 776-795, 2000

[46] M. F. Verde, G. L. Murphy, B.H. Ross, “Influence of multiple
categories on the prediction of unknown properties”, Memory &
Cognition, 33 (3), pp. 479-487, 2005

[47] D.L. Medin, E.B. Lynch, K.O. Solomon. “Are there kinds of
concepts?” Annual Review Psychology, 51, pp.121 - 147. 2000

[48] D. Ratiu, F. Deissenboeck, “How Programs Represent Reality
(and how they don’t)”, Proceedings of the 13th Working
Conference on Reverse Engineering, IEEE, 2006

[49] M. P. O’Brien, “Software Comprehension – A Review &
Research Direction”, Department of Computer Science &
Information Systems University of Limerick, Ireland, Technical
Report, 2003

[50] C. B. Mervis , M.A. Crisafi. “Order of acquisition of subordinate-,
basic-, and superodinate-level categories”. Child Development,
53, pp. 258-266. 1982

[51] M. P. Robillard, W. Coelho, G. C. Murphy, “How Effective
Developers Investigate Source Code: An Exploratory Study”,
IEEE Transactions on Software Engineering vol. 30, No. 12, 2004

[52] S. M. Sutton, Jr, I. Rouvellou. “.Modelling of software concerns
in Cosmos”. Proceedings of the 1st international conference on
Aspect-oriented software development. 2002.

[53] S. M. Sutton, Jr, I. Rouvellou. “Concern Space Modeling in
Cosmos”. OOPSLA Poster Session, 2001

[54] S. M. Sutton Jr. “Early stage concern modeling”, Early Aspects
Workshop, Held with AOSD, 2002

[55] W. Chung, W. Harrison, V. Kruskal et al.. “Working with Implicit
Concerns in the Concern Manipulation Environment”, AOSD ’05
Workshop on Linking Aspect Technology and Evolution. 2005.

[56] A. S. Kaplan, G. L. Murphy, “Category Learning With Minimal
Prior Knowledge”, Journal of ExlXaimental Psychology:
Leraning, Memory, and Cognition , vol. 26, No. 4, pp.829-846,
2000

[57] G. C. Murphy, M. Kersten, L. Findlater. “How Are Java Software
Developers Using the Eclipse IDE?” IEEE Software, vol. 24, No.
4, 2006

[58] M. Kersten. “Focusing knowledge work with task context”. PHD
thesis, University of British Columbia, Canada. 2007

[59] L.R. Brooks, G.R. Norman, S.W. Allen. „Role of specific
similarity in a medical diagnostic task”. Journal of Experimental
Psychology: General, 120, pp. 278-287. 1991

[60] Frey, M. Gelhausen. “Strawberries are nuts”. CHASE '11 4th
international workshop on Cooperative and human aspects of
software engineering. page 49. ACM. 2011

[61] E.Gamma, R.Helm, R.E. Johnson, J. Vlissides. “Design Patterns.
Elements of Reusable Object-Oriented Software”, Addison-
Wesley; 1st ed., 1994

[62] E.E. Smith, D.N. Osherson,L.J. Rips, M. Keane.“Combining
prototypes: A selective modification model”.Cognitive
Science,12, pp. 485–527. 1988

[63] G.L. Murphy. “Comprehending complex concepts”. Cognitive
Science, 12, pp. 529–562.1988

[64] S. L. Armstrong, L. R. Gleitman, H. Gleitman, “What some
concepts might not be”, Cognition, Vol. 13, No. 3. , pp. 263-308,
1983

