

Software Development - Course Outline SWEN 221: 2013 Trimester 1

This document sets out the workload and assessment requirements. It also provides contact information for staff involved in the course. If the contents of this document are altered during the course, you will be advised of the change by an announcement in lectures and/or on the course web site. A printed copy of this document is held in the School Office.

The Course

This course develops a deeper understanding of <u>object-oriented programming</u> and associated practices. The primary focus is on understanding the features common to object-oriented programming languages, including <u>inheritance</u>, <u>polymorphism</u>, <u>generics</u>, <u>exceptions</u>, and more.

The prerequisite for SWEN221 is COMP103. If you have not passed this course recently, you should contact the Course Coordinator as soon as possible.

Objectives

By the end of the course, students should be able to:

- 1. Implement, test, and debug object-oriented programs using all the facilities of the Java programming language, including exceptions, generics, assertions, and concurrency; (3(b),3(c),3(f))
- 2. Appreciate the range of programming techniques available, the strengths and weaknesses of particular techniques, and be able to choose and apply an appropriate programming technique to a given problem; (<u>3(b),3(f)</u>)
- 3. Understand the range of programming tools available, their different strengths and weaknesses, and be able to choose the appropriate tools for a software development task; (3(b),3(f))
- 4. Use appropriate programming tools, such as development environments, test harnesses, frameworks, and libraries. (3(b),3(f))

The assignments, labs and lectures will contribute to all learning objectives.

Note: SWEN 221 is part of the Engineering program at Victoria University of Wellington. BE students are expected to exhibit a number of graduate attributes upon graduation. These course objectives contribute to the graduate attributes as indicated above. A full table of these attributes is available at <u>Graduate Attributes</u>.

Staff

The course organiser is David J. Pearce. The lecturers for the course are <u>David Pearce</u> and <u>Marco Servetto</u>. Their contact details are:

- David J. Pearce
- <u>Cotton 231</u>
- +64 4 463 5833
- <u>djp@ecs.vuw.ac.nz</u>
- Marco Servetto
- <u>Cotton 258</u>
- +64 4 463 5820
- <u>marco.servetto@ecs.vuw.ac.nz</u>

The Class Rep for SWEN221 this year is:

- Mate Antunovic
- antunomate@ecs.vuw.ac.nz

Announcements and Communication

The main means of communication outside of lecture will be the web area at

http://ecs.victoria.ac.nz/Courses/SWEN221 2013T1/. There you will find, among other things, this document, the lecture schedule, and the SWEN 221 Forum. The forum is a web-based bulletin board system. Questions and comments can be posted to the forum, and staff will read these posts and frequently respond to them.

Important announcements for the course will be made at lectures, emailed to the course mailing list and posted on the

SWEN 221 web site. We will assume that all students attend all lectures and check the web site and their ECS email at least three times a week.

Trimester Dates and Lecture Times

SWEN 221 is a trimester 1 course. The trimester starts on Monday 4th March. The examination period at the end of the course is 14 June - 3 July,

A schedule of lecture topics, readings, and assignment due dates is available online. A summary of the topics is:

Торіс	Lectures
Testing + Debugging	5
Inheritance	2
Polymorphism	2
Generics	2
Concurrency	2
Other Features	4

Lectures are: Monday and Wednesday, 4pm-5pm in New Kirk LT301 (see the University Timetable for more information).

Attendance at lectures is an essential part of the learning process. Lectures will be used to introduce basic ideas and techniques.

In addition to attending lectures, we expect you to spend at least one hour a week preparing for them by reading the suggested chapters of the textbook. These can be found in the Schedule.

Textbook

There is no official course textbook. However, you should find the following textbook (from COMP102) covers much of the relevant material:

• Java Foundations: Introduction to Program Design and Data Structures, by Lewis, DePasquale, and Chase, published by Addison Wesley, 2008.

Other useful text books include the following:

- Program Development in Java, Barbara Liskov
- Object-Oriented Design & Patterns, Cay Horstmann, Second Edition.
- Practical Object Oriented Design, Bhuvan Unhelkar
- Effective Java, Josh Bloch

There are a number of other useful books on programming in Java available in the library.

Course Materials

We will usually hand out copies of the lecture slides, though we cannot guarantee to always have them ready for the lecture. All the course handouts will be available on the course web site. Notice that the slides may be incomplete and we expect students to attend lectures and complete them.

Laboratories

Starting in the second week, you will be expected to attend one two-hour supervised laboratory a week. In the laboratories, you will be asked to solve small problems that relate to the course material and/or assignments currently underway. **The laboratories are assessed, and attendance is mandatory**. A schedule for the laboratory times will be posted on the course web site and you will need to sign up to one of the available lab streams. **The laboratory room for SWEN221 is** <u>CO238</u>.

Assignments

The practical work for the course consists of 8 assignments of varying sizes. Each assignment will consist of one or more programming problems that explore different aspects of the material presented in the lectures. Practical work underpins this course, since it is essential for a proper understanding of the material. **Therefore, you are required to submit a reasonable attempt on all assignments in order to pass the course**. We expect that you will spend at least 6 hours a week working on the current assignment.

If you have access to a computer outside the labs, you may use it to work on the assignments/projects, but you will need to acquire your own software for writing Java programs. Please note that we do not have the resources to provide

assistance if you have difficulties with a computer at home -- the tutors can only answer questions about the assignments/projects and the workstations in the laboratories. Note also that we cannot offer you any help with choosing, setting up, or fixing your own computer system, other than the general advice that we provide on the website.

Assessment

Your grade will be determined based on your lab and assignment marks, a mid-term test and a final examination:

Item	Weight
Assignments	16%
Labs	14%
Mid-term test	10%
Final Examination	60%

The test and exam will assess your understanding of the material presented in lectures, while the lab/project work will assess your ability to apply the techniques in practice. Each assignment is worth 2%, whilst each lab is worth 1.23%.

Note: Bachelor of Engineering students should be aware that copies of their assessed work may be retained for inspection by accreditation panel.

Marking Criteria

The assignments will be marked on the following criteria:

- Correctness does the program adhere to the given specification
- Style does the code follow the style guide and have appropriate comments (inc. Javadoc)

The labs will be marked during the lab sessions, according to the following grade scale:

- 0: didn't attend
- E: no achievement on set problem(s)
- D: poor achievement on set problem(s)
- C: satisfactory achievement on set problem(s)
- B: good achievement on set problem(s)
- A: excellent achievement on set problem(s)

Tests and Exams

The **mid-term test** will take the form of a short programming test, rather than a written test. The date and time of the test is **Tuesday 30th April** (TO BE CONFIRMED), from 5--8pm. The test will help you gauge your understanding of the material so far.

The <u>timetable for final examinations</u> will be available from the University web site and will be posted on a notice board outside the faculty office. The final examination will be three hours long. No computers, electronic calculators or similar device will be allowed in the final examination. Paper non-English to English dictionaries will be permitted. The study and examination period for trimester T1 is between 10th June - 3rd July, 2013.

Practical Work

Hand-in dates for the assignments are:

- Assignment 1 due Monday 18th March, 2013 @ midnight
- Assignment 2 due Monday 25th March, 2013 @ midnight
- Assignment 3 due Monday 8th April, 2013 @ midnight
- Assignment 4 due Monday 29th April, 2013 @ midnight
- Assignment 5 due Monday 6th May, 2013 @ midnight
- Assignment 6 due Monday 20th May, 2013 @ midnight
- Assignment 7 due Monday 27th May, 2013 @ midnight
- Assignment 8 due Sunday 9th June, 2013 @ midnight

Each piece of work should be handed in on the dates and times specified in the Schedule. Submission should be made via the <u>online submission system</u> (found on the course homepage). **Unless prior agreement with the course coordinator has been made at least 24 hours in advance, late submissions will be penalised 20% of their mark for every day overdue**. This means after 5 days zero marks will be awarded. In this case, the work should still be submitted in order to pass the mandatory requirements. However, submissions will not be accepted once any model answers have been given out. Approval for late submission will only be given in exceptional circumstances.

Plagiarism

We encourage you to discuss the principles of the course and assignments with other students, to help and seek help with programming details, technical issues, or problems involving the lab machines. However, any work you hand in must be your own work.

The <u>School policy on Plagiarism</u> (claiming other people's work as your own) is available from the course home page. Please read it. We will penalise anyone we find plagiarising, whether from students currently doing the course, or from other sources. Students who knowingly allow other students to copy their work may also be penalised. If you have had help from someone else (other than a tutor), it is always safe to state the help that you got. For example, if you had help from someone else in writing a component of your code, it is not plagiarism as long as you state (eg, as a comment in the code) who helped you in writing the method.

Mandatory Requirements

This course is focused on practical work and you must demonstrate adequate mastery of this to pass the course. Therefore, it is a mandatory requirement that you make a reasonable attempt on all assignments. You are also required to attend one two-hour laboratory session each week and achieve at least a 'D' grade in the final exam.

Additional Information

Workload

In order to maintain satisfactory progress in this course, you should plan to spend an average of at least 11 hours per week on this paper. A plausible and approximate breakdown for these hours would be:

- Lectures and labs: 4 hours
- Readings: 1 hour
- Assignments: 6 hours

School of Engineering and Computer Science

The School office is located on level three of the Cotton Building (Cotton 358).

Withdrawal

The last date for withdrawal from this course with entitlement to a refund of tuition fees is Friday 15th March 2013. The last date for withdrawal without being regarded as having failed the course is Friday 17th May 2013 -- though later withdrawals may be approved by the Dean in special circumstances.

Rules & Policies

Find key dates, explanations of grades and other useful information at http://www.victoria.ac.nz/home/study.

Find out about academic progress and restricted enrolment at http://www.victoria.ac.nz/home/study/academic-progress.

The University's statutes and policies are available at <u>http://www.victoria.ac.nz/home/about/policy</u>, except qualification statutes, which are available via the Calendar webpage at <u>http://www.victoria.ac.nz/home/study/calendar</u> (See Section C).

Further information about the University's academic processes can be found on the website of the Assistant Vice-Chancellor (Academic) at http://www.victoria.ac.nz/home/about/avcacademic

All students are expected to be familiar with the following regulations and policies, which are available from the school web site:

Grievances Student and Staff Conduct Meeting the Needs of Students with Disabilities Student Support Academic Integrity and Plagiarism Dates and Deadlines including Withdrawal dates School Laboratory Hours and Rules Printing Allocations Expectations of Students in ECS courses

The School of Engineering and Computer Science strives to anticipate all problems associated with its courses, laboratories and equipment. We hope you will find that your courses meet your expectations of a quality learning experience.

If you think we have overlooked something or would like to make a suggestion feel free to talk to your course organiser or lecturer.