A Confinement Framework for OO Programs

Shu Qin and Qiu Zongyan*
LMAM and Department of Informatics
School of Math., Peking University

{shuqin,zyqiu}@pku.edu.cn

ABSTRACT

We present a framework for specifying and verifying about object
confinement in OO programs. Instead of expressing the expected
confinement requirements within a class, the requirements are spec-
ified by the clients of the class. We add an optional conf clause
in class declarations for specifying the confined attribute-paths. A
“same type and confinement” notation is introduced for expressing
type dependencies among variables, parameters and return values
of methods in classes. Based on the extension to a Java-like lan-
guage and existing techniques of alias analysis, we define a sound
type system to check well-confinedness of objects in programs.

Categories and Subject Descriptors

D.3.3 [Software]: Programming Languages, Language Constructs

General Terms

Language, Theory, Verification

Keywords

Object-Orientation, Confinement, Type System

1. INTRODUCTION

The sharing of object references (aliasing) is essential in object-
oriented (OO) programming. Aliasing brings much benefit to OO
practice and is utilized widely, however, it is also the source of
program vulnerabilities [1, 2]. Current OO languages do not pro-
vide linguistic support for confinement to exclude undesired alias-
ing. For achieving confinement, early attempts include Hogg’s Is-
lands [3] and Almeida’s Balloon types [4] to enforce full encap-
sulation. J. Vitek et al. propose confined classes [5] that confine
object references at a package level. D. Clarke et al. propose own-
ership types [6, 7] to confine objects inside some object instances
in more fine-grained schemes. Universes [8] and Ownership Do-
mains [9] support more precise and flexible aliasing protection as
variants to ownership types.

Ownership types clarify many issues related to confinement, but
its specification form might not be quite satisfactory. The essential

* Supported by NNSFC Grand No.90718002.
t Supported by the projects NSFC-60970031, NSFC-60736017, and
NSFC-91018012.

IWACO’2011 Lancaster, UK
Permission granted for this paper to appear in the proceedings of INACO
2011

Wang Shulingf
Institute of Software
Chinese Academy of Sciences

wangsl@ios.ac.cn

class Node {
Node next;
T data;

- -

Figure 1: Class Node without and with Ownership Types

class Node<own> {
Node<own> next;
T data;

idea of ownership types is that owner parameters for objects are
introduced to the syntax of an OO language, and the owner param-
eters are used to declare types of attributes, local variables, parame-
ters and return values of methods which will be instantiated by their
owners later. This preparation for future confinement is good and
benefits a clear and straightforward type system [6], but sometimes
may not be easy to apply properly for all possible clients.

Fig. 1 shows a class Node in common syntax (left) and its ex-
tension with ownership types (right), where T is type of attribute
data. In ownership typed code, Node is defined with an owner pa-
rameter for the later possibility to confine Node objects and their
attribute next in some higher-level classes. Given a simple class as
Node, we may introduce owner parameters to support all the pos-
sible ownership relations for later use of the class. But for a little
more complex class with a dozen of attributes and methods, intro-
ducing owner parameters for all possibilities will disturb the class
declaration and make the class unacceptable, because in each use
of the type we will have to instantiate all the ownership parameters
correctly. A specification for an entity in a program such as a class
should let us concentrate on the facilities of the entity itself instead
of some unclear future requirements. Thus a class such as Node
has no duty to offer facilities for plausible confinement in its future
use. If another class List needs to confine a sequence of Node ob-
jects and to use them as its representation, it should have the whole
duty to specify this requirement. Of course, the language should
provide mechanisms for programmers to express the intention.

We introduce a clause conf in class declarations to express that
objects referred by the paths are confined inside this object. To
avoid tedious writing, we propose a “same type and confinement”
notation by using a type form ctype[p]. Objects of type ctype[p]
have the same type and confinement requirement as the object re-
ferred by p. We define a type system to check programs in a core
language CuJava statically. The type system is sound according
to our proof. Due to the page limitation, we leave many technical
details in our report [10].

The main contributions of this paper are:

e A novel idea for specifying confinement policies in class dec-
larations. It is a more flexible and up-down way to express
confinement specification. Classes can be used with different
forms with respect to confinement.

e A type system for checking programs with confinement spec-
ification. Soundness of the system is proved based on our
previously published work [11].

Outline. Section 2 illustrates our idea intuitively; Section 3 extends
a Java-like language with confinement specification; Section 4 de-
fines typing environments and related notations, based on which a
type system is defined in Section 5; Section 6 concludes.

2. CONFINEMENT SPECIFICATION

This section illustrates our approach by some examples, with
some comparison to ownership types. We allow also programmers
to write confinement requirements in programs, and define also a
type system to check whether the requirements are satisfied during
execution. The essential difference between our approach and own-
ership types is that, instead of assigning objects ownership contexts
with ownerships parameters in lower-level classes, we specify these
requirements in higher-level client classes, and meanwhile, we do
not needs to say anything in the classes of these internal objects.

2.1 Internal Representation

The first example is taken from [6], where a class Pair has two
attributes fst of type X and snd of type Y. Class Intermediate
has two attributes p; and p2 of type Pair, where p1, p1.fst and
p2.fst are its internal representation, but the rest are public. The
Main class has a public attribute safe of type Intermediate, and
method a cannot be called by safe in Main class, so a := safe.a()
is wrong. There are some other wrong statements in Main.

The example can be realized by our approach as shown in Fig. 2.
First of all, we do no need to annotate any confinement requirement
in class Pair, because it does not want to confine anything itself.
While for class Intermediate, we need to confine the paths rooting
from the attributes declared with rep in the ownership example. In
consequence, we define p1, p1.fst and p2.fst to be confined paths
in the conf clause, and moreover, in order to preserve the prefix
closure of conf set, we need to define p2 to be confined. Notice
that in the original example p> is public, but this does not mean that
we have more confinement restrictions for class Intermediate. In
fact, although ps is public, its attribute fst is declared with rep,
so according to ownership types, p2 can only be accessed by the
current class. In later work of ownership types, Boyapati et al [12]
proposed the constraints on owners principle, which corresponds
to the “prefix closure” requirement of confined paths here.

Thanks to the type notation ctype[p]|, we can specify type de-
pendencies between variables within a class. For all types with rep
context in the ownership example, we use ctype[p| instead, where
p is some confined path, to denote that the declared variable (or pa-
rameter, return value) has the same type and confinement require-
ment as p. For example, method a of class Intermediate in Fig. 2
returns a value of the same type as p1, therefore we define ctype[p1]
as its return type. Other methods can be defined similarly.

Finally, the class Main in the ownership example declares two
local variables a and b with rep context. It seems to be problematic
in our approach to declare local variables with rep context when
there is no conf set in the class. But in fact, local variables with rep
context will only be managed in current class without affecting the
objects of the class at all. Therefore, we declare these variables as
public instead, as seen in Main class of Fig. 2.

Our type system produce the same result as ownership types
while checking this example. Compared to ownership types, our
type system allows more valid programs. For instance, if we as-
sume that in class Pair Y is a subtype of X, we can add one
more method declared as: void swap(){ fst := snd; }. Accord-

ing to ownership types, the assignment inside the body is invalid
due to the different ownership contexts of fst and snd. However,
in our opinion, it is too early to exclude such a behavior, since
m and n may be instantiated with the same context in the future.
Our approach leaves the type checking to the later position(s) when
method swap of class Pair is used.

2.2 Recursive Internal Representation

Fig. 3 implements a typical linked list class with a head node.
Class Node declares a recursive attribute next, and also an at-
tribute data of type T. Method setNext sets next of this object
to be parameter n, and getNext returns the next attribute. Class
List declares a head attribute of type Node, and confines paths
head, head.data, and head.{next}". Here head.{next}" repre-
sents all the nodes of the linked list except for the first one denoted
directly by head. Notice that only the data of head node is con-
fined, while the data of all other nodes are public. This is mean-
ingful in practice because the first node is often used to store some
important information of the list such as its length. The confine-
ment structure of such a linked list is illustrated in Fig. 4.

Although head and head.{next}t are of the same type Node
and both confined in List, they have different confinement schemes:
head confines one more attribute (data) than head.{nezt}*. In
order to distinguish them, we attach to the confinement scheme of
each object the confinement information of its components, which
will be discussed in detail in Section 4.

Method addNode in List first creates a new node, denoted by
local variable temp, and then adds the node after the head node via
calling getNext and setNext of Node. The newly added node has
the same confinement type with other nodes referred by head.next.
‘When a method is declared without confinement types, it is allowed
to be called by either public or confined objects. But for the later
case, we need to check whether the actual invocation will break
confinement, e.g. head.getNext(temp) in the method body. Our
framework can conclude that addNode is valid.

Similar to ownership types, if a method is declared with confine-
ment requirement in types, it can only be called by objects with the
same type and confinement status as this such as getHead here.
Method violate in List attempts to assign the head of this with the
head of another node from the parameter /s. The assignment is not
valid because the nodes are confined inside two different lists. In
addition, ls.head is even not allowed to occur here because it is
invisible for current object. However, if we change the type of s
to be ctypelthis] instead, then the assignment would be valid. The
notation ctypel[this] provides a way to express that multiple objects
share the same confinement domain.

Going back to ownership types, we find that the list class in Fig. 3
can not be implemented by a single Node class with ownership
types as defined in Fig. 1. Another class needs to be introduced
specially for implementing the head node:

class HNode<Nowner, Towner>{
Node<Nowner> next;
T<Towner> data;

}

and List needs to be modified accordingly.

2.3 Subtyping

We use the example in Fig. 5 to illustrate how confinement is
specified in the presence of subtyping. Here class A has two at-
tributes a1 and az. a is confined. Class B extends A with two
new attributes by and b2. by is confined. Class Main defines two
confined attributes, a of type A and b of type B respectively, and

class Pair {
X fst, Y snd; class Node {
} Node next; T data;
void setNext(Node n){
class Intermediate { this.nezt = n;

Pair p1, pa; Node getNext(){
conf {p1, p1.fst, p2, p2.fst}; return this.next; }
ctype[p1] a() { return p1;} }

ctype[p2] b() { return p2;}
ctype[p1.fst] () { return p1.fst; }

Y y() { return py.snd; }

void update() { p1.fst := new X (); }

class List {
Node head;
conf {head, head.data, head.{next}*};
void addNode(T wval){
ctype[head.next] temp;
temp := new Node();
temp.data = wval;

class Main {
Intermediate safe;

Figure 4:
Linked List

void main(){

temp.next := head.getNext();

confinement boundary

class A : Object{
T1 a1; T2 ag2; conf {a1};

}
class B : A{
S1 bi; S2 ba; conf {b1};

Confinement Structure of

Pair a, b;

Xz, Yy

safe := new Intermediate();

a := safe.a(); // wrong

b := safe.b(); // wrong

z := safe.x(); // wrong

y = safe.y(); // valid

safe.update(); // valid

} }

} }

Figure 2: Example from [6]

head := ls.head;

furthermore, confines attributes as of a and bo of b. In method
main, local variables « and y are declared to have the same type
and confinement requirement as a and b respectively. A new object
of class B is created and assigned to y.

Our key idea for confinement in relation to subtyping is that what
is confined in a superclass should also be confined in its subclasses.
By our typing rule, the confinement scheme of ¥ is not a subtype
of the one of x, since attribute a2 of z is confined while a2 of y is
not. Therefore, assignment x := y is invalid.

The examples in this section give some intuitive ideas of our ap-
proach for specifying and checking confinement. In the following
sections, we turn to our formal framework.

3. CuJava

To investigate the confinement problem, we define a simple OO
language CpJava for the work that is a Java-like language extended
with confinement specifications. Here is its syntax:

e == null | this | =
n=skip|z:=e|ea:=z|xz:=eca|xz:=T)e
| z:=em(e) | z:=newT() | ¢c

T Object | C

P = a|pa]|pst

TC == T | ctypelthis] | ctype[p]

md = TCm(TC x){TC z; c;returne}
cd = classC : C{T a; [conf {p};] md }
prog = cd

To keep the language simple for a formal investigation to confine-
ment problems, we restrict the common aspects of CpiJava to some
extent which are not essential.

We use x to denote a variable name, C' a class name, a an at-
tribute name, and m a method name. We use € to denote a sequence
of expressions and correspondingly e; the ¢-th element. We assume
that there is always a statement return e as the last statement in

head.setNext(temp);
head.data = ...;

}
ctypelhead]| getHead(){
return head; //valid iff invoked from this

void wiolate(List Is){
// wrong

Figure 3: Linked List

class Main {
A a; B b; conf {a,a.az,b,b.b2};
void main (){
ctype[a] =; ctype[b] y;
y := new B();
x = y; // wrong

}
}

Figure 5: Example With Subtyping

method declarations. If there is no return statement in a method, a
statement as “return null” is added by default. The return keyword
void in previous examples is only a shorthand for brevity.

We introduce the path expressions p for specifying the represen-
tations of objects, where s is a finite set of attribute names, and
form sT is used to define paths in recursive data structures. All
paths start from the current object this by default. For example, if
head refers to the head node of a linked list, then head.{next}*
denotes all nodes of the list except the head node. We say p is a
simple path (expression) when it does not contain the form s*. A
valid simple path p denotes an attribute of some class.

In a class declaration, a new conf clause is introduced for speci-
fying the confinement requirements for attributes of the class with
path expressions, {P}, to mean that this.{p} forms the internal rep-
resentation of this object and is confined in it. We introduce a type
notation ctype[p] to stand for the same type and confinement re-
quirements as the object denoted by path p, here p must be a con-
fined simple path of the class. In particular, ctype[this] represents
the same type and confinement requirement as the variable this.

We call the syntactic category T'C confinement type. In Culava,
all parameters, local variables and return values are typed with T'C.
We will use cpath(C') to denote the set of confined paths of class
C' (without the ones declared in its superclasses).

For making confinement specification meaningful, it needs to
conform to the following restrictions:

DEFINITION 1 (VALID CONFINEMENT SPECIFICATION). A
confinement specification of a class C'is valid, iff

e All the confinement types used in C are well-formed: ei-
ther TC' is an ordinary type T, or of the form ctype][this]
or ctype[p] for p € cpath(C);

e cpath(C) satisfies the property of prefix closure: if a path
is in cpath(C), then all its non-empty prefixes are also in
cpath(C).

e cpath(C) satisfies the property of confinement inheritance:
a subclass inherits all confined paths of its superclasses (sim-
ilar to attribute inheritance), but cannot override them. That
is, only paths starting from newly declared attributes can ap-
pear in the conf clause of the subclass.

e cpath(C) satisfies the property of path visibility: only non-
confined attributes of other classes can appear in cpath(C).

It is easy to formalize and check these restrictions statically. In the
following, we only consider valid confinement specifications.

4. TYPING: ENVIRONMENTS AND NOTA-
TIONS

Given a program P, its typing environment consists of two com-
ponents, where I' p records basic type and inheritance information
of classes in P and © p records information relevant to confine-
ment. We will define confinement schemes and the subtyping rela-
tion between the schemes according to the typing environment.

4.1 Standard Typing Environment I'»

The standard typing environment of a program P is a tuple:
T'p = (cnamep,superp, attrp, methodp, locvarp)

where cnamep is the set of class names declared in P plus prede-
fined Object and Null; super is a map associating each class to its
direct superclass; attr p maps each class name to its set of attribute-
type pairs including the inherited attributes; method p maps each
pair of a class name and a method name to the signature of the cor-
responding method; and locvarp maps a tuple of a class name, a
method name and a variable name to the type of the variable. Types
recorded in method p and locvar p are confinement types 7'C'. The
construction of I'p is routine [13] and omitted here.

4.2 Confinement Typing Environment o,

Our type system use information stored in environment ©p to
check whether an access to a variable or a method in a given context
is permitted. © p maps each class to its confinement tree, which
will be defined below.

4.2.1 Confinement scheme

A confinement scheme CS records the type of an object plus the
confinement information, defined as:

w u=T(C,a—w,b— +)
CS = w | Tthis) | T

The confinement scheme of general form w defines a type with
a confinement context. An object of scheme T(C,a+— w, b — +)
means that the object is of type 7" and is confined in class C' and
the rest following C are the attribute-paths which are also confined
inside class C, plus their confinement schemes recursively. The
notation b — 4 means that b has the same confinement scheme as
the current object. It is used in defining schemes of objects with
confined recursive attributes. The special form T'(this) represents
that current object has the same type and confinement context as
the variable this of class T'. The final form 7" without confinement
context means that current object is of type 1" and not confined.

We use dtype(CS) to extract the pure type from a scheme CS,
ie., dtype(T(C,...)) =T.

4.2.2 Confinement tree

Each confinement type in a class corresponds to a confinement
scheme. To calculate confinement schemes for confinement types
in programs, we construct a confinement tree for each class.

head ,’ Main
; N
, AN
NodL/e data ¢ RN
next .’ / N
\// A B
, , !
Node a,, " b,
’ ’ N
next s / \
¥ P N
+ T2 S2

Figure 6: Confinement Trees for Examples in Section 2

DEFINITION 2 (CONFINEMENT TREE). A confinement tree is
a rooted, labeled and directed tree, defined as a quadruple:

T = (r,N, A8)

where 1 is the root representing a class type, N is the node set rep-
resenting class types or +, A is the label set representing attributes,
and £ CN x A x N is the edge set. []

Suppose we are considering the confinement tree of class G. An
edge (C,a, D) € & (resp. (C,a,+) € £) means that class C has
an attribute a of type D (resp. C') and a is confined in G. The
confinement tree of a class C, denoted by 7¢, can be constructed
based on its confined set cpath(C). It roots at class node C, from
which all the confined paths are drawn, with intermediate nodes
representing the types of corresponding prefixes of these paths. As
an example, the confinement trees for classes List in Fig. 3 and
Main in Fig. 2 are present in Fig. 6.

We then define the confinement typing environment © p for pro-
gram P as follows:

Op = {C— Tc}oerp.cname

Given a confinement tree 7 of class C' and a path p, we use
subtree(7, p) to denote the subtree that roots from the target node
referred by p in 7. We call such subtree a confinement tree in the
context of C. Given a confinement tree 7 in the context of class
C, we get the corresponding confinement scheme by traversing the
tree recursively, denoted by trans(7, C), as follows:

e First, starting from the root r, for all edges (r,a, D) € T, we
construct a — trans(7’, C), where T are the subtrees origi-
nating from the nodes D respectively;

e Second, for all edges (R, b,+) € 7, we construct b — +;
e Finally, we define the confinement scheme trans(7, C) as

r{C,a s trans(7’,C),b — +)

Based on the confinement trees in Fig. 6, we can calculate con-
finement schemes for all confined paths. For example in class List,
the confinement scheme for ctype[head] is Node(List, next —
Node(List, next — +),data — T(List)), while the one for
ctypelhead.next] is Node(List, next — +). For class Main, the
confinement scheme for ctype[a] is A(Main, a2 — To(Main)).

4.3 Confinement scheme for confinement type

Based on I' and ©, we introduce a function o(T'C, C) to return
the confinement scheme for 7T'C' declared in class C, defined as
follows:

o(TC,C) =
T if TC' =T € I'.cname,
C (this), if TC' = ctypelthis]

trans(subtree(0(C), p), C), if TC = ctype[p] A
p € cpath(C)

The confinement scheme of 7 is itself. The confinement scheme of
ctypelthis] is C(this). When T'C is of form ctype[p] in class C,
we first look up the confinement tree 7¢, then get the subtree cor-
responding to p by using subtree, and finally transform the subtree
into corresponding confinement scheme in the context of C.

4.4 Confinement schemes for attributes

As we defined above, the confinement scheme for an object not
only records the type and confinement information of itself, but also
those of its confined attribute-paths. Given a confinement scheme
CS and an attribute a, we can calculate the confinement scheme of
a under I" and O as follows:

tr,o(CS,a) =
CS it OS = T(C, 7 — CS.) A {z = CS.}(a) = +
Ccs’ if CS =T(C,z+— CS;) ANz +— CS;}(a) = CS’
o(ctypea], C) if CS = C(this) A a € cpath(C)
I.attr(T)(a) if dtype(CS) =T Aa € va(T)

where va(T') in the last line of the definition is a set including all
the non-confined attributes of class T'.

The first two cases are for the situation when a is confined in
the confinement context of C'S. For this situation, when there is
a — +in CS, it means that a is a recursive attribute and its scheme
is CS itself, otherwise, it is directly the projection of a in CS. The
third case is when a is a confined attribute of the declaring class,
so it can only be accessed by objects declared with ctype[this].
The last case is when a is not confined, then the scheme of « is its
declared type.

tr,e (CS, a) only calculates the scheme of attribute a that is vis-
ible in the confinement context of C'S. Therefore, the visibility of
attributes can be enforced by the function implicitly.

4.5 Subtyping

Based on the super relation in I', we define an extended subtyp-
ing relation <. between confinement schemes as follows:

I.super(T2) =T

T 2o DENull 2. CS Tk T(this) <. T

I'FT =X Ti {@a—=w.} C{b—w} {b}\{a} ¢ attr(Th)

I'FTo(Cb— wp) 2 T1(C, a7 wa)

Null is subtype to all confinement schemes. 7T'(this) is always
subtype to T". Given two confinement schemes w; and w2 with non-
empty confinement contexts, we <. wi iff the declared type of wo
is subtype to that of w1 ; they have the same confinement context;
w2 inherits all the confined attributes of w; and can confine more
new declared attributes which do not belong to wi. Finally, the
subtyping relation is reflexive and transitive.

4.6 Static Visibility

Variables or methods declared with confinement types are invis-
ible from outside. Especially such methods can only be invoked by
objects of type ctype[this] (including this) in current class. We use
static visibility to represent this access constraint.

DEFINITION 3 (STATIC VISIBILITY). For expression e and
confinement type TC, we say TC isvisible to e if sv(e, TC) holds:

sv(e, TC) = —(e: ctype[this] V e = this) = TC # ctype[p]
for any confined path p

where e : ctype[this] means that the declared type of e is ctypelthis].

S. ATYPE SYSTEM FOR CONFINEMENT

Under typing environments, we define a type system for check-
ing CuJava programs with confinement specifications.

First of all, the typing judgments for expressions take the form
I'6,C,mF e: CS, stating that expression e in the method m of
class C has confinement scheme CS under the typing environment
T" and ©. The typing rules for variables = and this are given as
follows:

I.locvar(C,m,z) = TC
Io,C,mtz:0(TC,C)

I',©,C, m this : C(this)

The confinement scheme of variable x can be calculated from its
confinement type 7'C by using o(T'C, C'). For the special variable
this in C, its confinement scheme is C (this).

The typing judgement for statements c takes the form “T", ©, C, m +

¢ : com”, stating that c is well-confined in the context of m in C'
under I" and ©. Except for method invocation, the typing rules
for statements can be defined in the traditional way. For example,
an assignment is well-confined iff the confinement scheme of the
assignee is subtype to the one of the assigner. The typing rules
for methods, classes and programs can also be defined as tradi-
tional way. In the following we will mainly build the typing rule
for method invocation, while the others can be found in detail in
our report [10].

Ownership types specify object dependencies when a class is de-
clared but our approach delays the process to the using stage of the
class. As a consequence, new dependencies may be introduced by
clients of classes, and for this case, we have to retreat to check
confinement of methods when they are called.

For checking method invocation z := ei.m1(€), we have two
typing rules. The first one is for the cases when method m is de-
clared with confinement types, or both caller e; and actual argu-
ments € are not confined:

[tp-methinv]
re,Cmbtx:CS; T,0,Cimbte: CS.
I,0,C,mke: CS., CS, =<edtype(CSe,)
(dtype(CSe,),mi(TCy :y) : TC) € I".method
sv(e1, TC) sv(er, TCy) T,0,C,myity: CS,
CSe 2 CSy o(TC,C) 2 CSy

I,e,C,mt z:=ei.mi(e): com

where CS., is C(this) or some ordinary type T"if C'S, is subtype
of dtype(CS.,). We first require that method m; is visible to the
caller e1, represented by sv(e1, TC) and sv(ei, TCy). Then as
usual, the confinement schemes of actual arguments € are subtype
to the ones of formal parameters J and the confinement scheme for
return type 7'C' is subtype to the one of assigner z.

From this rule, when m; is declared with confinement types, it
can only be called by objects of type C'(this). For this case, the
caller e; and method m; are in the same context corresponding
to this, therefore, the method invocation is well-confined. On the
other hand, if m; is declared without confinement types, this rule
restricts that the caller e; and actual arguments € be not confined in
current class C, i.e., they are of ordinary types like 7. Under this
condition, no more object dependence of the method body being
called will be introduced during the actual invocation, and there-
fore, the method invocation is well-confined.

By applying this rule, the statement a := safe.a() in method
masn is not well-confined, because method a of class Intermediate
is not visible to safe, i.e., sv(safe, ctype[p1]) is not satisfied; but
the statement y := safe.y() is well-confined, since method y of
class Intermediate is declared without confinement type, and the
caller safe is not confined.

Another rule [tp-methinv’] is defined for the case when method m1
is declared without confinement types, and the caller e; or actual
arguments € are confined in current class C. For this case, besides
the usual type checking, we need to further check whether the new
object dependencies induced during actual invocation will break
confinement or not. This is achieved by checking the alias set of
the method body being called after its instantiation over e; and e.

Given a program P, we introduce its alias summary AS, which
maps a pair of class and method to a set of aliasing sets:

AS(C,m)={A1,As, -+, An}
for all C € I'p.cname, m € I'p.method

Each set A; is composed of attribute-paths that are aliasing to each
other in m. For any ¢ # j, we have A; N A; = (. The aliasing
summary AS records the aliasing information of all methods of the
program. It can be built by statical analysis of body commands
of methods. There have been a range of work on this, one among
which is [14]. We assume the existence of AS here and will not
detail the construction process, because it is not the main concern
of the paper. The rule is then defined as follows:

[tp-methinv’]
r,e,C,mke :CS.,, I,0,Cmbtx:CS,
Ie,Cmte: CS.
(dtype(CSe,),m1(Ty : y) : T) € I'.method
dtype(CS.) <X Ty T =. dtype(CS,)
VD <. dtype(CSel),Ak S AS(D7m1),pi,p]~ c Ay
(CSz =<e CS; VvV CS; e CSl)
,0,0,mkF xz:=e1.mi(€) : com

where C'S; denotes the confinement scheme for the path p; after
instantiation, i.e., o(ctype[p;[e1/this, €/, x/res]],C), and CS;
the same.

Except for the usual type checking in the first two lines, we need
to further check: first, the declared types of actual arguments are
subtype to the ones of formal parameters, and the return type is sub-
type to the declared type of = being assigned. In this step, we don’t
check confinement; second, the method body of m being executed
actually should not break confinement of related objects. Because
of dynamic binding, we consider all the definitions of m; in the
subclasses of declared type of e1, i.e., D in the rule. For method
ma of class D, we require that any two aliasing paths should have
compatible confinement schemes during the method invocation, de-
fined by the last line of the hypothesis. For C'S; and CS;, which
one is subtype to the other is actually determined by the subtyp-
ing relation between their corresponding declared types, which is
guaranteed by the type checking of the method body.

By applying this rule, the statement temp.next := head.getNext()

in Fig. 3 is well-confined. Formally, the alias set for method getNext
is {{this.next, res}}, and furthermore, the confinement schemes
of this.next[this.head /this] and res[temp.next /res] are the same.

6. CONCLUSION

In this short paper, we present a new framework for specifying
and reasoning about confinement of OO programs. Our basic idea
is inspired by ownership types. In our approach, a class is not re-
sponsible for specifying future confinement requirements of other
client classes. If a class wants to confine its representation, it has to
only express this requirement entirely in its declaration by itself.

The confinement specification becomes simpler and more direct,
by delaying confinement requirements of classes to the later em-
ploying phase. But on the other hand, this to some extent burdens

the design of the type system. As shown above, the typing rule
for method invocation needs to check whether confinement of the
method body is broken because of the new object dependence in-
troduced during the invocation. We use alias summary to solve this
problem, though a little complicated, our approach aims at facili-
tating programmers to express their confinement requirements.

Currently, we restrict that an object cannot be the representations
of more than one object at the same time, thus suffers the limita-
tion to implement common programming idioms such as external
iterators. One considerable solution to relax this restriction in our
approach is to define confinement types visible for multiple classes
by connecting internal domain of these classes.

7. REFERENCES

[1] Hogg, J., Lea, D., Wills, A., de Champeaus, D., Holt, R.:
The geneva convention on the treatment of object aliasing.
ACM SIGPLAN OOPS Messenger 3(2) (1992) 11-16
Clarke, D., Drossopoulou, S., Miiller, P., Noble, J., Wrigstad,
T.: Aliasing, confinement, and ownership in object-oriented
programming (IWACO). In: Proc.of ECOOP’08, Springer
(2008)

Hogg, J.: Islands: Aliasing protection in object-oriented

languages. In: Proc. of OOPSLA’91, ACM Press (1991)

Almeida, P.S.: Balloon types: Controlling sharing of state in

data types. In: Proc. of ECOOP’97, Springer (1997)

Bokowski, B., Vitek, J.: Confined types. In: Proc.of

OOPSLA’99, ACM Press (1999)

Clarke, D., Potter, J., Noble, J.: Ownership types for flexible

alias protection. In: Proc.of OOPSLA’98, ACM Press (1998)

Clarke, D.: Ownership types and containment. PhD thesis,

University of New South Wales, Australia (2001)

Miiller, P.: Modular specification and verification of

object-oriented programs. PhD thesis, FernUniversit at

Hagen, LNCS 2262, Springer (2002)

Aldrich, J., Chambers, C.: Ownership domains: Separating

alias policy from mechanism. In: Proc.of ECOOP’04,

Springer (2004)

[10] Shu, Q., Qiu, Z., Wang, S.: A confinement framework for
OO programs. Technical Report 2011-011, School of Math.,
Peking University (2011) Avaliable at:
http://www.mathinst.pku.edu.cn/download.php.

[11] Wang, S., Shu, Q., Liu, Y., Qiu, Z.: A semantic model of
confinement and locality theorem. Frontiers of Computer
Science 4(1) (2010) 28-46

[12] Boyapati, C., Liskov, B., Shrira, L.: Ownership types for
object encapsulation. In: Proc.of POPL’03, ACM Press
(2003)

[13] Qiu, Z., Wang, S., Quan, L.: Sequential pJava: Formal
foundations. In AWSF’07. Technical Report 2007-035,
School of Math., Peking University (2007) Avaliable at:
http://www.mathinst.pku.edu.cn/download.php.

[14] Meyer, B.: The theory and calculus of aliasing. CoRR
abs/1001.1610 (2010)

[2

—

3

—

[4

—

[5

—

[6

—_

[7

—

[8

—

[9

—

