
Is the World Ready for Ownership Types?
Is Ownership Types Ready for the World?

Tobias Wrigstad1 and Dave Clarke2

1)Department of 2)IBBT-DistriNet
Information Technology Dept. Computer Sciences

Uppsala University K.U.Leuven

Abstract This position paper identifies several weaknesses in the state
of reseach on ownership-based confinement and calls for a coordinated
effort to tackle this problem with the ultimate goal of making ownership
types ready for the world.

Seven years ago, Wrigstad started his two master students Cele and Stureborg [5]
in an early experiment with ownership types in practical programming. The ex-
periment uncovered substantial problems with refactoring, a process of piecemeal
improvement of the structure of a piece of software by performing semantically
preserving minor transformations, such as moving data from one class into an-
other class whose objects most frequently access it. Similar problems are found
when testing systems with strong encapsulation; writing code that is easily test-
able often goes against the encapsulation that one wants in the product builds
of the software, or for applying program analysis. Maybe the answer lies in plug-
gability or gradual encapsulation [17]?

In 2011, there is still a significant lack of research on how systems for alias
encapsulation interact with existing programming practices and most proposed
systems use an “all-or-nothing approach” that requires an entire system to be
heavily annotated if any encapsulation guarantees are to be given. We still know
(surprisingly) little about how compatible actual encapsulation invariants and
recurring patterns found in existing software are with the various flavours of own-
ership types1; how common programming idioms can be expressed in terms of
their effect on object interconnection structures; how fundamental programming
practises, such as refactoring, interact with systems that place rigid restrictions
on object graphs or if there exists a corresponding set of refactoring principles
for evolving alias encapsulation. Furthermore, we do not know what flexibility is
required by idioms and practises that rely on privileged access to data, such as
equivalence tests or software testing, and whether there is an underlying prin-
ciple that can be extracted. And if so; how do these principles relate to strong
encapsulation?

1 Although see Nägeli’s masters thesis [12] for a notable exception that investigates
the compatibility of ownership types with design patterns and successfully applies
ownership to two small examples.



Within the subfield of ownership-based object encapsulation, a few studies exist
that investigate the state of real-world programs. In a rare and much welcomed
exception, Potanin et al. [14] have studied the run-time structure of programs.
The study was based on snapshots of a running system, and each snapshot
showed that an overwhelming percentage of all objects were not aliased but
uniquely referenced and that roughly one third of all objects are strongly encap-
sulated. Sadly, we must take these results with a grain of salt, since the method
does not capture temporary violations of uniqueness occurring in-between the
snapshots, etc. Abi-Antoun and Aldrich [1] perform static extraction of object
graphs based on ownership domains [2], which is an interesting start, but their
study is only on 68 KLOC in a single program, which is quite small to gen-
eralise from. While Abi-Antoun and Aldrich’s efforts are commendable, they
do not scale to the majority of ownership research which are based on much
stricter confinement invariants such as owners-as-dominators [6,15] or owners-
as-modifiers [10].

We argue that research on ownership types must incorporate larger practical ex-
periments that involve ownership constructs in real-world programming in order
to be taken seriously. Although excursions in formal territories are important
and often enlightening, we believe there is a “disjointness between theory and
practice” in the field of ownership types that may hide shortcomings of many
proposals in their interaction with common programming idioms or practises. As
an example, informal experiments by the authors with the Joe1 [7] programming
language shows that the circumstances necessary for disjointness seldom arise in
practise in programming, rendering the proposal much less appealing in practise
than it appears on paper. This does not by any means demean the results of
Clarke and Drossopoulou, but also does not help in getting practitioners inter-
ested in the results of the field, and the practical weaknesses might propagate
in derivative proposals [13,4] in silence. As an additional anecdotal evidence, it
has been long said that ownership types systems do not need run-time owner-
ship information since conformance to e.g., owners-as-dominators is guaranteed
at compile-time. However, in systems that do not support run-time ownership
information (which is expensive [3]), downcasting in the presence of ownership
types is complicated but necessary to encode frequently occurring idioms such as
the common Java equals method for structural equivalence testing (one can also
resort to downcasting to volatile existential owners [18]). Surely actual program-
ming in our proposed systems, even with ocular type checking, would have made
such observations early on, and reported on them faithfully? Proposals such as
Joelle [9] and Loci [19] have some success in bringing ownership types close to
real-world programming (the latter with at least 100 KLOC actual translated
code), but only for flat ownership structures that give far less interesting guaran-
tees than a fully-fledged ownership types system such as Jolene [8] or OGJ [15].
Surely, we must be able to do better when bringing ownership to the masses?

We call for a coordinated effort to make ownership-based confinement ready for
the world. We identify the need for a common, pluggable compiler infrastruc-



ture in the public domain that facilitates easy extension and practical experi-
ment with language constructs for object encapsulation. This compiler should
not stand alone, but be accompanied by a well-accepted set of standard corpus
programs (note the plural; we cannot rely solely on JHotDraw as the litmus test),
idioms, refactorings, etc. to be translated, expressed, or carried out as minimal
benchmarking and real-world testing of encapsulation mechanisms. Translating
programs into using ownership types will require libraries and better integration
with libraries is a long-standing problem. Key libraries for recurring data struc-
tures should not only be in the corpus, but be specifically studied in terms of
their encapsulation properties and interconnection structure.

We believe that ubiquitous parallelism gives a window of opportunity to push
ownership-related constructs into the mainstream, see for example [9,19,11,16]
for encouraging examples moving in this direction. Thus, integration with con-
currency libraries, developments of methods for program transformation for par-
allelism, determinism, etc. should be a key target for researchers in the field and
this should further influence the compiler and corpus selection.

As the understanding of object-encapsulation in real-world program matures,
this set of standard programs etc. can be extended to improve on the validity of
future results. There is also a lack of a common website to promote and make
available results from work in the field in an approachable fashion.

In conclusion, we believe that the iron for ownership is hot, but that much work
is needed before it makes sense to strike. IWACO is a suitable venue to begin
this discussion and solicit feedback and cooperation from active experts of the
field.

Acknowledgements The authors wishes to thank the anonymous reviewer that
reminded them of Nägeli’s work. Tobias Wrigstad’s work was supported in part
by the Swedish Research Council within the UPMARC Linnaeus centre of Ex-
cellence.

References

1. M. Abi-Antoun and J. Aldrich. Static extraction and conformance analysis of
hierarchical runtime architectural structure using annotations. SIGPLAN Not.,
44:321–340, October 2009.

2. J. Aldrich and C. Chambers. Ownership Domains: Separating Aliasing Policy
from Mechanism. In ECOOP, volume 3086 of LNCS, pages 1–25. Springer, June
2004.

3. C. Boyapati, R. Lee, and M. Rinard. Safe runtime downcasts with ownership
types. In International Workshop on Aliasing, Confinement and Ownership in
Object-oriented Programming, July 2003. Submitted to IWACO’11.

4. N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith. Multiple
Ownership. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2007.



5. G. Cele and S. Stureborg. Ownership Types in Practice. Master’s thesis,
Stockholm University, 2005. TR-02-02.

6. D. Clarke. Object Ownership and Containment. PhD thesis, School of Computer
Science and Engineering, University of New South Wales, Sydney, Australia,
2001.

7. D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, OOPSLA ’02,
pages 292–310, New York, NY, USA, 2002. ACM.

8. D. Clarke and T. Wrigstad. External Uniqueness is Unique Enough. In ECOOP
2003 – Object-Oriented Programming, volume 2743/2003 of Lecture Notes in
Computer Science, pages 59–67. Springer Berlin / Heidelberg, 2003.

9. D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen. Minimal Ownership for
Active Objects. In Programming Languages and Systems (Procedings of the 6th
Asian Symposium on Programming Languages and Systems), volume 5356/2008
of Lecture Notes in Computer Science, pages 139–154. Springer Berlin /
Heidelberg, 2008.

10. W. Dietl, S. Drossopoulou, and P. Müller. Generic universe types. In In ECOOP,
pages 28–53. Springer, 2007.

11. P. Haller and M. Odersky. Capabilities for Uniqueness and Borrowing. In
Proceedings of the 24th European Conference on Object-Oriented Programming,
Lecture Notes in Computer Science. Springer, 2010.

12. S. Nägeli. Ownership in design patterns. Master’s thesis, ETH Zurich, 2006.
13. J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership, Uniqueness,

and Immutability. In Objects, Components, Models and Patterns (Proceedings of
46th International Conference on Objects, Models, Components, Patterns),
volume 11 of Lecture Notes in Business Information Processing, pages 178–197.
Springer Berlin Heidelberg, 2008.

14. A. Potanin and J. Noble. Checking ownership and confinement properties. In
Formal Techniques for Java-like Programs, 2002.

15. A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic Ownership for Generic
Java. In Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, OOPSLA ’06,
pages 311–324, New York, NY, USA, 2006. ACM.

16. J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing Active Objects to
Concurrent Components. In 24th European Conference on Object-Oriented
Programming (ECOOP 2010), LNCS, pages 275–299. Springer, June 2010.

17. I. Sergey and D. Clarke. Towards gradual ownership types, 2011. To appear at
IWACO’11.

18. T. Wrigstad and D. Clarke. Existential owners for ownership types. Journal of
Object Technology, 6(4), May/June 2007.

19. T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci: Simple
thread-locality for java. In ECOOP 2009 — Object-Oriented Programming,
volume 5653 of Lecture Notes in Computer Science, pages 445–469. Springer
Berlin / Heidelberg, 2009.


