
Regions as Owners ∗

A Discussion on Ownership-based Effects in Practice

Johan Östlund Tobias Wrigstad
Uppsala University
{first.last}@it.uu.se

Abstract
A number of proposals in the literature combine ownership notions
and computational effects. The combination is sensible: ownership
gives strong guarantees about disjointness of subheaps and there-
fore lends itself well to modular reasoning about effects.

We argue that these proposals, while formally appealing, turn out
to be of little use in practice. The problem lies in the absence of
owners that are provably disjoint in actual programs, leading to
many situations that are safe in practice, but cannot be proven so by
the type system. In this short note, we show a number of examples
that cannot be expressed using the studied systems, and analyze
the underlying cause. We also propose a region system that avoids
these problems by unifying owners and regions in a natural way that
furthermore allows expressing effects more precisely than previous
ownership-based effect systems.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Object-Oriented Programming, Aliasing, Con-
finement

Keywords Object-oriented programming, Ownership Types, Re-
gions, Effects

1. Introduction
Ownership types gives a structure to the object graph by imposing
a nesting relation on objects and encapsulating objects in their
owning aggregates. In classic, Clarkean ownership [7, 12] each
object is owned by another object (or the special owner world)
and can be the owner of other objects. In the standard terminology,
each object defines a single context—its representation—usually
called this or rep. A context is an isolated subheap, and objects
owned by a context are fully encapsulated inside its defining object.
The containment invariant of Clarkean ownership systems is the so-
called owners-as-dominators property; any path from a root in the
system to an object contains the object’s owner. As a consequence,
the heap is hierarchically shaped.

Systems that support owners-as-dominators are generally called
deep ownership systems. In these systems, the ownership relation
forms a tree rooted in the outermost context worldwhich all objects
are (transitively) inside. In deep ownership systems, references that
point from an enclosed context to an enclosing one are permitted,
but not the converse.

For static checking, ownership types systems capture the nesting
structure in objects’ types. In addition to its owning context, a
type can be parameterized with permissions to reference objects

∗ Supported in part by the Swedish Research Council within the UPMARC
Linnaeus center of Excellence.

in other contexts. The key to deep ownership is to require that all
permissions of an object denote contexts outside its owner. Shallow
ownership [2] relaxes this property in an unstructured fashion, with
unclear confinement guarantees as the result.

Confining aliasing is one approach of several to manage alias prob-
lems in object-oriented programs [16]. Sometimes, controlling the
computational effects incurred via aliases are a more viable ap-
proach than overly restricting a program’s object graph. Usually
effects are computed by extending the type rules to propagate in-
formation about what data is touched by a particular expression.
Effect information facilitates reasoning about whether two expres-
sions are disjoint, i.e., only touch non-overlapping data. Disjoint-
ness of effects may be very useful to determine if a program trans-
formation is safe to perform, or to decide whether two computa-
tions may be run safely in parallel, especially important now in the
advent of ubiquitous multicore chips. However, managing aliasing
and managing their effects go hand in hand, as several researchers
have noted [8, 13]; the possibility of aliasing severely impacts the
possibilities to guarantee effect disjointness. To deal with this prob-
lem a number of proposals have combined effects with ownership
types or uniqueness, which both restrict aliasing in different ways.

In this paper we survey a number of existing systems which fall
into the description above. Joe1 combines deep ownership and
effects [8], OOFX uses abstract regions and effects [13], MOJO is
a language with multiple ownership and effects [6], ODE combines
ownership domains and effects [20] and DPJ uses regions and
effects for deterministic parallelism [3]. All these systems have
their respective strengths and weaknesses, as this survey will show.
Last, we propose a novel system combining owners and regions to
address some of the identified problems.

Contributions Our contributions in this paper include a survey of
existing systems with effects for object-oriented languages show-
ing their respective pros and cons, insight into the discrepancy be-
tween theory and practice, and a proposed solution to some of the
identified problems.

2. Object-Oriented Effects Systems: A Survey
In this section we overview a number of object-oriented effects
systems from the literature and identify a number of problems that
render these less useful in practice than one, perhaps, would expect.

2.1 Running Litmus Tests

Where it makes sense, we use a number of recurring examples in
our survey. The examples are chosen as examples of commonly
occurring patterns with respect to ownership structure of programs.
In honor of the canonical list example for ownership types systems,
we use list-based examples, but they should nonetheless be easy to
generalize. The tests are:

1 2011/6/2

a)

a

b
f

g h i

c d
e

b)

a

b
f

g
i

c
d

e
#

c)

a

b

f

g i
c
d e

#

Figure 1. Ownership graphs corresponding to our three scenarios.
Arrows denote references and red arrows denote absence of refer-
ences.

1. An object with a collection of external objects disjoint from the
set of enclosing objects—can this be expressed and can effects
on the list objects be distinguished from effects on this?

2. An object with two collections of external objects in its rep—
can effects on the two collections be distinguished?

3. An object with two collections of external objects where the
collections are also external to the object–can effects on the two
collections be distinguished?

The first example deals with vertical disjointness, the second with
horizontal disjointness, and the last whether disjointness informa-
tion may be transferred in a modular fashion. Fig. 1 shows the own-
ership graphs we assume as the setting for these examples. In ad-
dition to looking at how each system deals with this common set
of situations we also sometimes comment on other pros and cons
regarding the different system designs.

Example 1: External, but not Enclosing Fig. 1 a) shows a, gen-
erally frequently occurring situation in practice. Let f be a list with
links g, h, i referencing external objects c, d, e. This example in-
vestigates the ability to express outgoing aliases and the ability to
distinguish between the current and the enclosing context. Ideally,
modifying the objects c, d, e should not count as a modification to
the list itself.

Example 2: Same Context, but Disjoint In this example, il-
lustraded in Fig. 1 b), we consider two lists (g, i) both referencing
external objects in the same context (c, d, e). This example investi-
gates the ability to reason about disjointness of different subobjects
in the same representation.

Example 3: External, but Disjoint In this example, depicted in
Fig. 1 c), we consider two lists both referencing external objects in
the same context, but now the lists themselves belong to external
contexts. The rationale for this example is to investigate whether
disjointness information can be transferred in a modular fashion.

We now proceed with surveying object-oriented effects sys-
tems from the literature.

Effective Ownership Systems Before we start looking at the sys-
tems of the survey we wish to acknowledge some of Lu and Pot-
ter’s work on expressing ownership in terms of effects. With Effec-
tive Ownership Types [18] Lu and Potter show how to use effects
to achieve an ownership discipline similar to owners-as-modifiers
of Universes [19]; an object may be referenced from any context,
but an update must go through the object’s owner. Another work,
similar in spirit, is Variant Ownership Types [17], where the type
system separates permission to reference an object from permission
to update it. The result is a flexible system which provides a prop-
erty similar to owners-as-modifiers, but do not allow any reasoning
about effect disjointness as the other systems in this survey do.

Both these systems are interesting and flexible ways of expressing
encapsulation disciplines. However, effects in these systems are not
used to reason about disjointness, but to enforce encapsulation. A
different treatment of read and write effects might allow this, but as
this is not addressed in their work it is out of scope for this survey.

2.2 Joe1 and The Disjointness of Type and Effect

Almost 10 years ago, Clarke and Drossopoulou proposed the novel
formal language Joe1 [8] which married a deep ownership type
system with an effects system to show the correlation between
types and effects. In particular, they showed how by just looking
at whether two types contain different owners, one can tell whether
they can be aliases. Deep ownership ensures that the representation
of an object is fully encapsulated inside it. This fact, along with
the observation about aliasing gives a notion of disjoint aggregates;
entire subheaps which are guaranteed to be non-overlapping. Of
course, when computing effects such information is very useful. In
Joe1 one may advertise effects for a particular strand of a subheap
(e.g., the owner p or two levels of nesting below p, p.2) or an
entire subheap rooted at some owner p, under(p). The p.n effect
is particularly expressive, and allows e.g., expressing disjointness
between swapping the compartments of a tuple and the contents of
the compartments, etc.

Formally, disjointness of types in Joe1 is very straightforward: two
contexts p and q are disjoint, written p# q, if p ≺+ q, meaning that
q is a context containing p, but not equal to p. Two types are disjoint
if they are not related by subclassing or if a pair-wise comparison
of the owners occurring in the types shows at least one pair that is
disjoint. If the variables x and y have disjoint types, then x and
y cannot be aliases, and since objects’ representations are fully
encapsulated in deep ownership systems, any effect to the object

2 2011/6/2

pointed to by x or its representation will be disjoint from an effect
to y.

Effects on External Contexts We will now survey how Joe1 fairs
in the context of the three problems previously formulated. For this
sake we define a linked list class thus (stolen from the presentation
of Joe1 [8]):

class Link<owner,data> {
Link<owner,data> next;
Data<data> data;
Link(Link<owner,data> n, Data<data> d) writes this {
this.next = n;
this.data = d;
}
}

class List<owner,data> {
Link<this,data> head;
void add(Data<data> d) writes under(this) {
head = new Link<this,data>(head, d);
}
}

The class List has one context parameter (data) in addition to its
owner. The links in the list are pointed to by the head field which is
owned by the list representation context and thus fully encapsulated
within the list instance. Each link has a next field which is owned
by the link’s owner, that is the list instance representation, and a
data field owned by the data context.

The situation we are interested in studying is depicted in Fig. 1 a),
and the question is whether the system can tell that an effect on, c
will not affect object b? Inside object b there is no way this can be
done, since we cannot distinguish the owner of c, d and e from the
owner of b (which in this case are the same.) However, from the
point of view of object a Joe1 can distinguish effects internal to c
from effects on b, but if a method call on c is made which has an
effect on owner, then such an effect cannot be distinguished from
an effect on b. This is similar to the next situation we shall consider.

No Support for Horizontal Disjointness The second problem
formulated is illustrated by the following code:

List<this, elem> list1;
List<this, elem> list2;

Both lists belong to the representation of some object and they
both store elements from the same external context. There is no
way to tell whether these lists are different lists or aliased. It is
quite reasonable to want such a setup, for example to access a
set of elements in different precomputed orders. The point is that
if we know that they are different there is no reason to prevent
iterating over one of the lists while sorting the other. Systems
such as OOFX [13], DPJ [3] and Ownership Domains [1] support
partitioning an object’s representation into disjoint regions, which
avoids this problem.

Little Vertical Disjointness in Practice A likely scenario in
which such a list may be used is this (also from the Joe1 paper),
this corresponds to the third test:

List<p, world> list1;
List<q, world> list2;

Assuming p # q we can easily deduce from the rules for disjoint
types that List<p, world> # List<q, world>, i.e., that list1 and
list2 must point to different lists. While this is both sound and
great, we argue that this is exactly where Joe1 runs into problems:
usually one cannot determine p# q. The only contexts, in general,

that we know are disjoint are this # owner, this # world and
this # p, assuming p is a context parameter. The problem is that
other than this, owner and world the only contexts known are
those declared as context parameters. The only known fact about
these parameters is that all of them are outside owner, meaning that
they include the owner context, but they may very well be equal
to owner. A solution to this problem is to include the relations
between context parameters in the class header, giving a class
header looking thus:

class C<owner,
p strictlyOutside owner,
q strictlyOutside p> { ... }

While this indeed solves the problem of transfer of context relation
information it is inflexible. Inside class C we would be able to de-
duce List<p, world> # List<q, world>, but this comes at a cost.
Annotating classes this way obviously propagates the problem to
the user of the class. For such a type to be valid it has to be in-
stantiated with owners that are provably strictly outside each other,
which means such a type can only be used in classes which them-
selves have access to such relation information. Another problem
with this strategy is that there may have to be (at least) two versions
of many classes in the system, one that allows contexts to overlap
and one that does not, which is hardly desirable.

So, to conclude, the practical usefulness of Joe1 is hampered by the
fact that there simply are not enough owners around and there is not
enough information about their relations to express disjointness (in
most situations).

2.3 Multiple Ownership and Disjointness

Cameron et al. propose MOJO [6], a language with multiple own-
ership and effects. In MOJO contexts are called boxes and objects
owned by a box is said to be in that box. In contrast to classic own-
ership types, where every object belongs to a single context which
is fixed for life, MOJO allows an object to be in multiple boxes
at the same time. Such an object is said to belong to the intersec-
tion of these boxes. Multiple ownership is not compatible with the
strong notion of encapsulation given by owners-as-dominators. On
the other hand, multiple ownership can express additional program-
ming patterns. In the paper Cameron et al. use as running example
a company with projects, tasks and workers. In a traditional own-
ership system tasks and workers must belong to a single project
(owners-as-dominators). Modeling the quite reasonable situation
that a worker is involved in several projects is not possible, unless
everything is owned by the same context, say the company, which
gives a flat and unstructured ownership graph, without clear gains
over using a language with no ownership. MOJO, however, with
its support for multiple ownership can model such a situation quite
nicely.

External but not Enclosing MOJO supports disjointness-annotat-
ions which guarantee disjointness of contexts. Using this feature it
is possible to prove disjointness at any level. However, using such
annotations comes at a cost, which we will discuss shortly.

Split Representation MOJO suffers in the same way that Joe1
does when it comes to our second litmus test. MOJO does not
support splitting of the representation context and can therefore not
handle this situation in a satisfactory way.

Explicit Disjointness is Expressive but Inflexible MOJO sports
an effects system for multiple ownership. The effects system is a
straightforward and unsurprising extension of Joe1, but the fact
that boxes may intersect calls for extra machinery. MOJO classes
can declare that two boxes intersect or are disjoint, which governs

3 2011/6/2

the way boxes may be combined. Declared disjoint boxes may not
share objects, and thus effects on such boxes are disjoint.

class C<owner,a,b,data> where b disjoint a {
...
List<a, data> list1;
List<b, data> list2;
}

In a class such as C above, context parameters a and b are declared
to be disjoint. Upon instantiation of such a class the type system
ensures that only provably disjoint contexts may be used as actual
context parameters. Given this declaration we know that the two
lists reside in different boxes and thus cannot be aliases. This is
clearly an improvement over Joe1, but it comes at the cost of
inflexibility. The problem is essentially the same as described in
the discussion about Joe1. Several versions of the same classes
may have to exist in the system. On the other hand disjointness in
MOJO is somewhat easier to achieve than strictly outside in Joe1,
since two boxes in the same local context can be declared disjoint,
whereas strictly outside needs to be established by a client of the
class.

An aside–Disjointness and Aliasing MOJO allows a program-
mer to use final variables as owners (example taken from [6]):

final Worker<this> w1 = new Worker<this>;
final Worker<this> w2 = new Worker<this>;
w1 disjoint w2;

w1.delay(); // EFF: w1 / w1
w2.delay(); // EFF: w2 / w2

In the example two workers are created and stored in final vari-
ables. The variables are declared to be disjoint, which means that
the effects of calling delay on the workers are disjoint (the EFF-
comments show the read and write effects of calling the methods,
respectively.) However, this is only true if w1 and w2 are not aliases.
In this example we can trivially see that this is the case, but in gen-
eral the type system cannot know this without some other machin-
ery to track or constrain aliasing. Not knowing that w1 and w2 are
unaliased means that we need to be conservative and disallow a
disjointness declaration. It is unclear to us what the impact is in
practice.

2.4 Ownership Domains

Ownership Domains [1] allows a programmer to specify arbitrar-
ily many disjoint contexts (domains) in a class. The key idea of
ownership domains is that the referencing policy is not fixed by
the system but specified by the programmer by explicitly linking
domains—“define, not confine”. In his dissertation, Smith extends
Ownership Domains with effects [20]. Declaring multiple disjoint
contexts allows splitting the representation of an object into prov-
ably disjoint parts which enables more precise effects.

Split Representation Litmus test one, formulated above and de-
picted in Fig. 1 a), is quite easily achieved in Ownership Domains.
We would like to distinguish effects on object c from effects on
object b. By declaring two disjoint domains in object a and putting
object b and the list elements in different domains effects on the list
elements are disjoint from effects on object b. We can also handle
Test 2 in a similar fashion.

External Disjointness In Ownership Domains one may annotate
a class with assumptions about how domains passed as parameters
may reference each other. However, these annotations can only
express that a particular region must be able to reference another
region, not the converse. Therefore we cannot, in general, know

that two external domains are distinct and so the third test, where
we wish to distinguish two external lists is not easily solvable in
Ownership Domains.

The flexible nature of ownership domains does not give any aliasing
guarantees for objects in domains and there is no deep notion of
ownership. Nothing prevents an object in a supposedly internal
subdomain, with full access to its enclosing objects, to be arbitrarily
exposed, which makes effects tricky to track.

As a consequence, it is not surprising that ownership domains can
express many situations, but it is unclear whether an automatic
system (or a human, for that matter, when non-trivial code bases
are used) will be able to track effects in ODE, let alone determine
that the flexibility is not used in such a way that encapsulation is
effectively voided.

2.5 Effects for Deterministic Parallelism

Deterministic Parallel Java (DPJ) [3] uses regions and effects to
reason about the deterministic execution of parallel code. A class
may declare any number of regions and also declare each of its
fields to belong to a particular region. This gives a partitioning of
objects’ representations. Further, regions may be passed as param-
eters to types, similar to the other systems in this survey. The fol-
lowing binary tree class is used as an example in the DPJ paper:

class TreeNode<region P> {
region Links, L, R, M, F;
double mass in P:M;
double force in P:F;
TreeNode<P:L> left in Links;
TreeNode<P:R> right in Links;
TreeNode<*> link in Links;

void computeForces() reads Links, *:M writes P:*:F {
cobegin {
/* reads *:M writes P:F */
this.force = (this.mass * link.mass) * R_GRAV;
/* reads Links, *:M writes P:L:*:F */
if (left != null) left.computeForces();
/* reads Links, *:M writes P:R:*:F */
if (right != null) right.computeForces();
}
}
}

The class declares one region parameter P, five regions Links, L, R,
M and F. RPLs, short for region path lists, are colon-separated lists
of region names, and used to express region nesting. Region nest-
ing forms a tree structure, similar to ownership. One RPL is nested
inside another RPL if the former is a prefix of the latter. RPLs are
crucial when determining effect disjointness. Two RPLs, say P:M
and P:F are disjoint because the names of the regions they describe
differ. RPLs may be determined to be disjoint by differing either
from the left of from the right. We will not dig too deep into the
details of how to determine disjointness. Instead we concentrate on
some of the aspects of the example above. The cobegin block runs
each of its statements in parallel. It can do so safely because the ef-
fects of the statements can be determined not to interfere. The two
calls to the computeForces method affect the left and right tree,
which are disjoint (they differ in the L and R position P:L:*:F and
P:R:*:F.) As we can see disjointness of regions (and effects) is
closely tied to the sequences of region names in the RPLs. This
means that a programmer must know the nesting structure of re-
gions. This is not a problem for recursive data structures, such as
the binary tree here, but in general abstraction is severely impacted
by this scheme. It should also be noted that region nesting and dis-
jointness is achieved by linearity (uniqueness), or rather by keeping
the data owned by rep in ownership terminology. The left and right

4 2011/6/2

branches are disjoint because by well-formed construction of the
tree this must be the case. However, the example above would suf-
fer from storing other data than primitive data in the tree, unless
it was copied (into the node’s rep), which is expensive, because
potential aliasing would either void guarantees or limit the parallel
execution possible.

2.6 Effects on Abstract Regions

Greenhouse and Boyland [13] propose the language OOFX which
has an effects system expressed in terms of abstract regions in a
class’s public interface. Fields are mapped to regions and effects
on a field are advertised in terms of its defining region. In terms
of object-orientation, OOFX offers good abstraction capabilities in
that only regions have to be visible in the public interface of a class,
not the names of particular fields. Regions may be arbitrarily ex-
tended in subclasses, but method overriding must preserve effects.

OOFX’s Regions are of a Shallow Nature Unless care is taken,
fields of different regions could be aliases, which would cause an
effect to one region to also be an effect on the other. Correctly
handling such situations requires tracking aliasing between regions
which is very hard, and OOFX instead attempts to handle this
problem by employing a notion of uniqueness, called unshared
fields, to avoid aliasing altogether. Sadly, programming with unique
variables causes a wealth of problems on its own [4, 5] due to the
problems of maintaining uniqueness. Further, plain uniqueness is
a shallow property unless full encapsulation such as Islands [15]
is used, which causes additional pain. External Uniqueness [9, 21]
solves some of the problems, but needs deep ownership (or some
similar heavy machinery [14]) to be realized, and the introduction
of deep ownership here would lessen the need for uniqueness in the
first place.

OOFX’s regions can express regions for unique nodes in a linked
list (an example can be found here [13]). This precludes doubly-
linked lists, but trivially allow distinguishing direct effects on ob-
jects in the list since these are uniquely referenced. In a doubly
linked list, disjointness cannot be proven without additional heavy
machinery such as alias analysis, as far as our understanding goes.

2.7 Discussion

We have now presented our survey of existing systems looking at
some of their strengths and weaknesses. In summary we can con-
clude that disjointness of effects is hard to achieve and track in prac-
tice. In Joe1 the problem is mostly the shortage of contexts which
are provably disjoint, which in turn is a consequence of the lack
of transfer of disjointness information and single representation.
MOJO solves this by annotating classes with a where-clause speci-
fying the disjointness of boxes. While this indeed works for transfer
of disjointness information it severely impacts reusability and may
call for several implementations of the same class. OOFX’s regions
offer a way of splitting the representation of an object into several
disjoint parts. This is very appealing because it allows reasoning
about disjoint modifications in the representation of a single object.
OOFX suffers from aliasing problems which may be overcome by
brittle alias analysis or very restrictive unshared fields. Ownership
Domains offers loads of flexibility in that the reference scheme is
not fixed by the system but specified by the programmer. This al-
lows the programmer to express many programs not easily realiz-
able in traditional ownership systems. However, the flexible nature
of ownership domains make tracking effects difficult since there
is no such thing as a dominating node or equivalent that bounds
from where effects may be incurred. As a consequence, how useful
ODE is in practice for safe parallelization and effective reasoning
is unclear to us. Deterministic Parallel Java uses region path lists to
calculate disjointness of effects. To establish disjointness, informa-

x
f f'

r1 r2
f f'

x

Figure 2. Joe1 (left) and OOFX (right). In Joe1, each object
defines a single subheap but it is possible to talk about effects on
different strands of the subheap (e.g., the teal-colored stripe). In
OOFX, regions are shallow and encapsulate fields only, not the
contents of the fields which may be shared (with the exception of
unshared fields).

tion about the nesting of regions in a class must be exported in a
way that impacts abstraction negatively.

Drawing on the conclusions of this survey we sketch next a minor
change with major impact. Our proposal combines regions and
owners to address some of the issues identified in the previous
systems.

3. Unifying Regions and Ownership in Joelle
Clarke and Drossopoulou’s effect shapes are deep and handle alias-
ing elegantly by basing the system on deep ownership types. In
contrast, Greenhouse and Boyland’s effect shapes are shallow, un-
less regions contain only unshared fields. In practice, Clarke and
Drossopoulou’s system is likely, we argue, to be of little value due
to the lack of disjoint owners. In some cases, disjointness of types
can be enough for effect disjointness, but as soon as a method on
an object has an effect on its owning context, disjointness of type
means little. Greenhouse and Boyland’s system seem to be of little
practical value, due to its being based on a complicated and brittle
notion of uniqueness to battle the effects of aliasing. Fig. 2 shows
this pictorially.

We propose a simple region construct as a solution to the problems
of both these systems that unify OOFX-style regions with Clarkean
owners in a natural and straightforward fashion1. Our notion of
region is a refinement of a context; a region is a carved-out subset of
a context subheap including fields with outgoing references. A class
may define any number of disjoint regions that can act as owners of
objects. Further, we map each field into a single region to represent
the slice of the top-level object that holds the field. Fig. 3 shows
this pictorially.

If an owner is interpreted as the set of objects inside its transitive
closure, then if a class defines two regions r1 and r2, this = r1∪r2
and r1 ∩ r2 = ∅.
Just like in OOFX, regions are part of a class’ public interface, and
writing a field in a region r is a write effect on r. Similarly, a write
effect on an object owned by r (nested, perhaps deeply, inside the
region) is also a write on r. For concreteness, here is an example of
our surface syntax:

class BinaryTree<owner, data> {
region left, right;
BinaryTree<left, data> left in left;
BinaryTree<right, data> right in right;

1 It should be noted that in the related work section of [3] it is observed that
ownership normally has a one-to-one mapping between regions and objects.

5 2011/6/2

r1 r2

f f'

x

Figure 3. Regions as Owners in Joelle.

Object<data> value;

boolean contains(Object<data> obj) reads(this) {
return value == obj ||

findInLeft(obj) ||
findInRight(obj);

}

boolean findInLeft(Object<data> obj) reads(left) {
return left.contains(obj);
}

boolean findInRight(Object<data> obj) reads(right) {
return right.contains(obj);
}
}

Since all regions in a class are refinements of a single context,
objects belonging to different regions are effectively siblings, and
it makes sense, also from a programmer’s point of view, to allow
all regions of a class to refer to each other’s objects. Nothing
prevents allowing regions to be additionally refined, equivalent
with the hierarchical nesting of regions in OOFX, although we do
not consider that here.

class BinaryTree<owner, data> {
region left, right, shallow;
BinaryTree<left, data> left in shallow;
BinaryTree<right, data> right in shallow;
...

In the above example, the binary tree class defines a third region
shallow, that only contains the fields left and right; the equi-
named regions encapsulate the left and right branches of the tree.
A reason for using a separate region for holding the fields could be
e.g., to facilitate reasoning about writes to the top-level fields that
do not effect any nested state. In this particular care, an effect on
shallow is equivalent to this.1 in Joe1.

If an object defines a single region r, this region is effectively the
same as the standard this region. Notably, if an object defines a
region r and only fields in r use r to form types, then the fields in r
dominate the objects in the region. This is, in a sense, a generaliza-
tion of external uniqueness [9, 21]; if r in our example has a single
field, then the reference in that field is a dominating edge to all ob-
jects (transitively) in r. A big advantage of regions over uniqueness
is avoiding having to deal with the inherent slipperiness of unique
values [4].

Constructing a type system to go along with the above design is
straightforward.

3.1 Applying Joelle Regions to Our Examples

In this section, we examine the examples from previous sections to
see how such a simple idea as splitting representation into several
disjoint parts helps overcoming the aforementioned problems.

External, but not Enclosing The key to expressing this situation
in Joelle is to divide the context in a into two disjoint parts, r1
and r2 say

a

b
f

g h i

c
d

e

r1 r2

and use r1 as the owner of b, and its transitive state, and r2 for
the objects c, d, e. As a consequence, a can distinguish between
the object containing the list (b) and its data objects, but b
cannot, nor can the list (f). See the discussion on “External,
but Disjoint”.
Notably, our system cannot express that c may not reference
b if b and c should belong to the same context. However, this
should pose no problem since effects to the different objects
will be reported as effects to different contexts, so any method
in c that touches b will report this clearly and the disjointness is
clear in the context of a.

Same Context, but Disjoint This is trivially expressed by context
refinement. Declare two regions as disjoint subsets of the cur-
rent context and place the lists in separate regions.

class Client<data> {
region a, b;
List<a,data> g in a;
List<b,data> h in b;
}

External, but Disjoint Expressing that two outgoing references
point into two external, disjoint aggregates is not possible in
our system without allowing statements of disjointness on con-
text parameters á la MOJO. Such statements have a side-effect
of constraining reuse of classes in situations where there is no
disjointness and should be used sparingly, only for data struc-
tures where disjointness is a key property of sound behavior.

4. Concluding Remarks
In this short note, we have discussed ownership-based effects sys-
tems in the context of a couple of examples that examine issues
with vertical and horizontal context disjointness. We have also
showed on-going work on an amalgamation of OOFX-style re-
gions with Joe1-style ownership-based effect shapes (reminiscent
of DPJ) to overcome limitations of both these systems and improve
the precision of effects. Our regions are being implemented and
tested in the context of our Joelle language for parallel program-
ming [10, 11], and results of practical evaluation will be fed back
into the design to further refine our proposal. We are also work-
ing to solve the problem of transferring disjointness information
in a modular way. We are confident that additional experiments
with rewriting Java-like programs in Joelle will increase our un-
derstanding of the practical implications of deep ownership and
effects systems based on ownership, not only for the usability of
ownership-based effects systems in practice, but hopefully for other
ownership-related constructs as well.

References
[1] J. Aldrich and C. Chambers. Ownership Domains: Separating

Aliasing Policy from Mechanism. In ECOOP, volume 3086 of
LNCS, pages 1–25. Springer, June 2004.

6 2011/6/2

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for
Program Understanding. In OOPSLA, Nov. 2002.

[3] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for deterministic parallel java. In
Proceeding of the 24th ACM SIGPLAN conference on Object
oriented programming systems languages and applications,
OOPSLA ’09, pages 97–116, New York, NY, USA, 2009. ACM.

[4] J. Boyland. Alias burying: Unique variables without destructive
reads. Software—Practice and Experience, 31(6):533–553, May
2001.

[5] J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A
generalisation of uniqueness and read-only. In Proceedings of the
15th European Conference on Object-Oriented Programming,
ECOOP ’01, pages 2–27, London, UK, UK, 2001. Springer-Verlag.

[6] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith. Multiple
Ownership. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2007.

[7] D. Clarke. Object Ownership and Containment. PhD thesis, School
of Computer Science and Engineering, University of New South
Wales, Sydney, Australia, 2001.

[8] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. In Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’02, pages 292–310, New
York, NY, USA, 2002. ACM.

[9] D. Clarke and T. Wrigstad. External Uniqueness is Unique Enough.
In ECOOP 2003 – Object-Oriented Programming, volume
2743/2003 of Lecture Notes in Computer Science, pages 59–67.
Springer Berlin / Heidelberg, 2003.

[10] D. Clarke, T. Wrigstad, J. Östlund, and E. Broch-Johnsen. Minimal
ownership for active objects. Technical Report SEN-R0803, Centrum
voor Viskunde en Informatica, Amsterdam, The Netherlands, June
2008. Extends [11] with a complete formalisation of Joelle’s
semantics, additional background and examples.

[11] D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen. Minimal
Ownership for Active Objects. In Programming Languages and
Systems (Procedings of the 6th Asian Symposium on Programming
Languages and Systems), volume 5356/2008 of Lecture Notes in
Computer Science, pages 139–154. Springer Berlin / Heidelberg,
2008.

[12] D. G. Clarke, J. Potter, and J. Noble. Ownership types for flexible
alias protection. In OOPSLA, pages 48–64, 1998.

[13] A. Greenhouse and J. Boyland. An object-oriented effects system. In
Proceedings of the 13th European Conference on Object-Oriented
Programming, ECOOP ’99, pages 205–229, London, UK, 1999.
Springer-Verlag.

[14] P. Haller and M. Odersky. Capabilities for Uniqueness and
Borrowing. In Proceedings of the 24th European Conference on
Object-Oriented Programming, Lecture Notes in Computer Science.
Springer, 2010.

[15] J. Hogg. Islands: Aliasing protection in object-oriented languages. In
OOPSLA, Nov. 1991.

[16] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The
Geneva Convention on the treatment of object aliasing. OOPS
Messenger, 3(2):11–16, 1992.

[17] Y. Lu and J. Potter. On ownership and accessibility. In D. Thomas,
editor, ECOOP 2006 - Object-Oriented Programming, volume 4067
of Lecture Notes in Computer Science, pages 99–123. Springer Berlin
/ Heidelberg, 2006.

[18] Y. Lu and J. Potter. Protecting representation with effect
encapsulation. SIGPLAN Not., 41:359–371, January 2006.

[19] P. Müller and A. Poetzsch-Heffter. Universes: A type system for
controlling representation exposure. In A. Poetzsch-Heffter and
J. Meyer, editors, Programming Languages and Fundamentals of
Programming, pages 131–140. Technical Report 263, Fernuniversität
Hagen, 1999.

[20] M. Smith. A Model of Effects with an Application to Ownership
Types. PhD thesis, Imperial College, London, UK, May 2007.

[21] T. Wrigstad. Ownership-Based Alias Management. PhD thesis,
Royal Institute of Technology, Kista, Sweden, May 2006.

7 2011/6/2

