
QualNet 5.2
Programmer’s Guide

October 2011

Scalable Network Technologies, Inc.

6100 Center Drive, Suite 1250
Los Angeles, CA 90045

Phone: 310-338-3318
Fax: 310-338-7213

http://www.scalable-networks.com

http://www.scalable-networks.com

Copyright Information

© 2011 Scalable Network Technologies, Inc. All rights reserved.

QualNet and EXata are registered trademarks of Scalable Network Technologies, Inc.

All other trademarks and trade names used are property of their respective companies.

Scalable Network Technologies, Inc.
6100 Center Drive, Suite 1250
Los Angeles, CA 90045
Phone: 310-338-3318
Fax: 310-338-7213

http://www.scalable-networks.com
ii QualNet 5.2 Programmer’s Guide

http://www.scalable-networks.com

Table of Contents

Preface... xviii

Chapter 1 Introduction .. 1

1.1 QualNet Components ... 1

1.2 QualNet Protocol Stack .. 2

1.2.1 Application Layer.. 3

1.2.2 Transport Layer.. 3

1.2.3 Network Layer .. 4

1.2.4 Link (MAC) Layer ... 4

1.2.5 Physical Layer.. 4

1.2.6 Communication Medium .. 5

1.2.7 Node Mobility ... 5

Chapter 2 QualNet File Organization, Compilation and Debugging 6

2.1 File Organization... 7

2.2 Compiling QualNet on Windows.. 8

2.2.1 C++ Compiler ... 8

2.2.2 Executable Files... 8

2.2.3 Compiling QualNet ... 9

2.2.3.1 Compiling from Command Line... 9

2.2.3.2 Compiling from Visual Studio 2008 IDE .. 11

2.3 Compiling QualNet on Linux.. 14

2.3.1 Third party Software... 14

2.3.1.1 Expat Development Library ... 14

2.3.1.2 C/C++ Compiler... 14

2.3.2 Executable Files... 15

2.3.3 Compiling QualNet ... 16

2.4 Compiling QualNet on Mac OS X... 18

2.4.1 C/C++ Compilers.. 18
QualNet 5.2 Programmer’s Guide iii

2.4.2 Executable Files... 18

2.4.3 Compiling QualNet ... 18

2.5 Activating and Deactivating Addons... 19

2.5.1 Activating and Deactivating Addons on Windows .. 21

2.5.2 Activating Addons on Linux.. 21

2.5.2.1 Activating Addons Manually .. 21

2.5.2.2 Activating Addons using the Script.. 22

2.5.3 Activating Addons on Mac OS X .. 22

2.6 Advanced Compilation Options... 23

2.7 Debugging QualNet... 24

2.7.1 Debugging on Windows ... 24

2.7.2 Debugging on Linux and Mac OS X Systems .. 26

Chapter 3 Simulator Basics .. 28

3.1 Overview of Discrete-event Simulation... 28

3.2 Modeling Protocols in QualNet.. 29

3.3 Discrete-event Simulation in QualNet ... 30

3.3.1 Events and Messages.. 30

3.3.1.1 Message Class.. 30

3.3.1.1.1 Message infoArray Member ..31

3.3.1.1.2 Message packet Field ...32

3.3.1.2 Message APIs ... 33

3.3.2 Types of Events ... 34

3.3.2.1 Packet Events ... 34

3.3.2.1.1 Sending Packets Using Layer-specific APIs35

3.3.2.1.2 Sending Packets Using Message APIs ...38

3.3.2.2 Timer Events ... 42

3.3.2.2.1 Setting Timers ...42

3.3.2.2.2 Canceling Timers ..42

3.4 QualNet Simulator Architecture... 43

3.4.1 Initialization Hierarchy .. 43

3.4.2 Event Handling Hierarchy .. 47

3.4.3 Finalization Hierarchy... 50

Chapter 4 Developing Protocol Models in QualNet 53

4.1 General Programming Utility Functions ... 54

4.1.1 Reading Input from a Configuration File .. 54

4.1.2 Programming with Message Info Fields ... 56

4.1.2.1 Info Field Type... 56

4.1.2.2 APIs for Info Field Operations ... 57
iv QualNet 5.2 Programmer’s Guide

4.1.2.3 Using Info Fields.. 57

4.1.2.3.1 Declaring User-defined Info Field Type...57

4.1.2.3.2 Adding an Info Field ..58

4.1.2.3.3 Accessing an Info Field ...59

4.1.2.3.4 Removing an Info Field ...59

4.1.2.4 Persistence of Info Fields .. 59

4.1.3 Random Number Generation ... 60

4.1.3.1 Basic Functions for Random Number Generation..................................... 60

4.1.3.2 Built-in Random Number Distributions .. 63

4.1.3.2.1 Using the RandomDistribution Class...64

4.1.3.2.2 Using the File Parsing Function ..65

4.2 Application Layer.. 71

4.2.1 Application Layer Protocols in QualNet.. 71

4.2.1.1 Traffic-generating Protocols .. 71

4.2.1.2 Routing Protocols .. 73

4.2.2 Application Layer Organization: Files and Folders... 74

4.2.3 Application Layer Data Structures.. 75

4.2.4 Application Layer APIs and Inter-layer Communication................................... 76

4.2.4.1 Application Layer to Transport Layer Communication 76

4.2.4.2 Transport Layer to Application Layer Communication 77

4.2.4.3 Application Layer Utility APIs .. 77

4.2.5 Adding a Traffic-generating Application Protocol ... 77

4.2.5.1 Naming Guidelines .. 79

4.2.5.2 Creating Files .. 79

4.2.5.3 Including MYPROTOCOL in List of Application Layer Protocols 80

4.2.5.4 Defining Data Structures ... 82

4.2.5.5 Initialization.. 83

4.2.5.5.1 Determining the Protocol Configuration Format83

4.2.5.5.2 Reading Configuration Parameters and Calling the Protocol
Initialization Function ..84

4.2.5.5.3 Implementing the Client Initialization Function88

4.2.5.5.3.1 Creating an Instance and Initializing the State 88

4.2.5.5.3.2 Registering the Application.. 89

4.2.5.5.3.3 Initializing Timers... 89

4.2.5.5.4 Implementing the Server Initialization Function...................................91

4.2.5.6 Implementing the Event Dispatcher .. 91

4.2.5.6.1 Modifying the Application Layer Event Dispatcher91

4.2.5.6.2 Implementing the Client Event Dispatcher ..93

4.2.5.6.3 Implementing the Server Event Dispatcher...96

4.2.5.7 Collecting and Reporting Statistics.. 98

4.2.5.7.1 Declaring Statistics Variables..98

4.2.5.7.2 Initializing Statistics ...98
QualNet 5.2 Programmer’s Guide v

4.2.5.7.3 Updating Statistics...99

4.2.5.7.4 Printing Statistics...99

4.2.5.7.5 Adding Dynamic Statistics...100

4.2.5.8 Finalization .. 100

4.2.5.8.1 Modifying the Application Layer Finalization Function100

4.2.5.8.2 Implementing the Client Finalization Function...................................102

4.2.5.8.3 Implementing the Server Finalization Function102

4.2.5.9 Including and Compiling Files ... 103

4.2.5.10 Integrating the Protocol into the GUI ... 103

4.2.6 Adding an Application Layer Routing Protocol... 103

4.2.6.1 Including MYPROTOCOL in List of Application Layer Protocols 105

4.2.6.2 Modify AppData to include MYPROTOCOL State Information 105

4.2.6.3 Including MYPROTOCOL in Network Layer Declarations 106

4.2.6.4 Initialization.. 107

4.2.6.4.1 Determining the Protocol Configuration Format107

4.2.6.4.2 Calling the Protocol Initialization Function...107

4.2.6.4.3 Implementing the Protocol Initialization Function110

4.2.6.4.3.1 Creating an Instance and Reading Configuration Parameters .. 110

4.2.6.4.3.2 Initializing Timers... 111

4.2.6.4.3.3 Initializing Tables ... 111

4.2.6.5 Integrating with the Network Layer.. 113

4.2.6.6 Implementing the Event Dispatcher .. 113

4.2.6.6.1 Modifying the Application Layer Event Dispatcher114

4.2.6.6.2 Implementing the Routing Protocol Event Dispatcher.......................114

4.2.6.7 Collecting and Reporting Statistics.. 116

4.2.6.8 Finalization .. 116

4.2.6.8.1 Modifying the Application Layer Finalization Function116

4.2.6.8.2 Implementing the Routing Protocol Finalization Function118

4.2.6.9 Including and Compiling Files ... 118

4.2.7 Special Issues for Application Layer Protocols .. 118

4.2.7.1 Port Numbers In QualNet .. 118

4.2.7.1.1 Overriding AppType as Destination Port ...119

4.2.7.2 Setting Address for Broadcast Messages ... 121

4.3 Transport Layer... 122

4.3.1 Transport Layer Protocols in QualNet.. 122

4.3.1.1 User Datagram Protocol (UDP)... 122

4.3.1.2 Transmission Control Protocol (TCP).. 122

4.3.1.3 Reservation Protocol with Traffic Engineering (RSVP-TE) 123

4.3.2 Transport Layer Organization: Files and Folders... 123

4.3.3 Transport Layer Data Structures.. 124

4.3.4 Transport Layer APIs and Inter-layer Communication 124

4.3.4.1 Application Layer to Transport Layer Communication 124
vi QualNet 5.2 Programmer’s Guide

4.3.4.2 Transport Layer to Application Layer Communication 125

4.3.4.3 Transport Layer to Network Layer Communication................................. 125

4.3.4.4 Network Layer to Transport Layer Communication................................. 125

4.3.5 Adding a Transport Layer Protocol .. 125

4.3.5.1 Naming Guidelines .. 127

4.3.5.2 Creating Files .. 127

4.3.5.3 Including MYPROTOCOL in List of Transport Protocols......................... 128

4.3.5.4 Defining Data Structures ... 129

4.3.5.5 Initialization.. 130

4.3.5.5.1 Determining the Protocol Configuration Format130

4.3.5.5.2 Reading Configuration Parameters and Calling the Protocol
Initialization Function ..131

4.3.5.5.3 Implementing the Protocol Initialization Function133

4.3.5.5.3.1 Creating an Instance and Initializing the State 133

4.3.5.5.3.2 Initializing Timers... 134

4.3.5.6 Implementing the Event Dispatcher .. 135

4.3.5.6.1 Modifying the Transport Layer Event Dispatcher135

4.3.5.6.2 Implementing the Protocol Event Dispatcher137

4.3.5.6.2.1 UDP Event Dispatcher... 137

4.3.5.6.2.2 RSVP-TE Event Dispatcher... 141

4.3.5.7 Integrating with the Application Layer ... 143

4.3.5.8 Integrating with the Network Layer.. 144

4.3.5.9 Collecting and Reporting Statistics.. 146

4.3.5.9.1 Declaring Statistics Variables..146

4.3.5.9.2 Initializing Statistics ...147

4.3.5.9.3 Updating Statistics...147

4.3.5.9.4 Printing Statistics...147

4.3.5.9.5 Adding Dynamic Statistics...147

4.3.5.10 Finalization .. 148

4.3.5.10.1 Modifying the Transport Layer Finalization Function.......................148

4.3.5.10.2 Implementing the Protocol Finalization Function.............................148

4.3.5.11 Including and Compiling Files ... 150

4.3.5.12 Integrating the Protocol into the GUI ... 150

4.3.6 Special Issues for Transport Layer Protocols .. 151

4.3.6.1 Setting Address for Broadcast Messages ... 151

4.4 Network Layer ... 152

4.4.1 Network Layer Protocols in QualNet .. 152

4.4.1.1 Network Protocols ... 152

4.4.1.2 Routing Protocols .. 152

4.4.1.3 Queues.. 155

4.4.1.4 Schedulers .. 156

4.4.2 Network Layer Organization: Files and Folders ... 156
QualNet 5.2 Programmer’s Guide vii

4.4.3 Network Layer Data Structures .. 157

4.4.4 Network Layer APIs and Inter-layer Communication 161

4.4.4.1 Transport Layer to Network Layer Communication................................. 161

4.4.4.2 Network Layer to Transport Layer Communication................................. 161

4.4.4.3 Network Layer to MAC Layer Communication .. 161

4.4.4.4 MAC Layer to Network Layer Communication .. 162

4.4.4.5 Network Layer Utility APIs... 162

4.4.5 Adding a Network Layer Unicast Routing Protocol .. 163

4.4.5.1 Naming Guidelines .. 164

4.4.5.2 Creating Files .. 164

4.4.5.3 Including MYPROTOCOL in List of Routing Protocols............................ 165

4.4.5.4 Defining Data Structures ... 167

4.4.5.5 Initialization.. 168

4.4.5.5.1 Determining the Protocol Configuration Format168

4.4.5.5.2 Calling the Protocol Initialization Function...169

4.4.5.5.3 Implementing the Protocol Initialization Function173

4.4.5.5.3.1 Creating an Instance and Reading Configuration Parameters .. 173

4.4.5.5.3.2 Initializing State Variables and Routing Table 176

4.4.5.5.3.3 Registering Callback Functions with IP 176

4.4.5.5.3.4 Initializing Timers... 177

4.4.5.6 Implementing the Event Dispatcher .. 177

4.4.5.6.1 Modifying the IP Event Dispatcher ..178

4.4.5.6.2 Implementing the Protocol Event Dispatcher179

4.4.5.7 Modifying IP Functions .. 182

4.4.5.8 Processing Routing Packets ... 182

4.4.5.8.1 Modifying IP Packet Handler ...182

4.4.5.8.2 Implementing the Protocol Packet Handler184

4.4.5.9 Implementing Callback Functions ... 186

4.4.5.10 Collecting and Reporting Statistics.. 187

4.4.5.10.1 Declaring Statistics Variables..187

4.4.5.10.2 Initializing Statistics ...188

4.4.5.10.3 Updating Statistics...189

4.4.5.10.4 Printing Statistics...189

4.4.5.10.5 Adding Dynamic Statistics...189

4.4.5.11 Finalization .. 190

4.4.5.11.1 Modifying the IP Finalization Function..190

4.4.5.11.2 Implementing the Protocol Finalization Function.............................191

4.4.5.12 Including and Compiling Files ... 192

4.4.5.13 Integrating the Protocol into the GUI ... 192

4.4.6 Adding a Network Layer Multicast Routing Protocol 192

4.4.6.1 Creating Files .. 194

4.4.6.2 Including MYPROTOCOL in List of Routing Protocols............................ 194
viii QualNet 5.2 Programmer’s Guide

4.4.6.3 Defining Data Structures ... 194

4.4.6.4 Initialization.. 195

4.4.6.4.1 Determining the Protocol Configuration Format195

4.4.6.4.2 Calling the Protocol Initialization Function...195

4.4.6.4.3 Implementing the Protocol Initialization Function200

4.4.6.4.3.1 Creating an Instance and Reading Configuration Parameters .. 200

4.4.6.4.3.2 Initializing State Variables, Groups, and Forwarding Table....... 202

4.4.6.4.3.3 Registering Callback Functions with IP and IGMP.................... 202

4.4.6.4.3.4 Initializing Timers... 203

4.4.6.5 Implementing the Event Dispatcher .. 203

4.4.6.5.1 Modifying the IP Event Dispatcher ..203

4.4.6.5.2 Implementing the Protocol Event Dispatcher203

4.4.6.6 Processing Routing Packets ... 205

4.4.6.6.1 Modifying IP Packet Handler ...205

4.4.6.6.2 Implementing the Protocol Packet Handler205

4.4.6.7 Implementing Callback Functions ... 207

4.4.6.8 Collecting and Reporting Statistics.. 208

4.4.6.9 Finalization .. 208

4.4.6.10 Including and Compiling Files ... 208

4.4.6.11 Integrating the Protocol into the GUI ... 208

4.4.7 QualNet Queuing Protocols ... 208

4.4.7.1 Data Structures and Classes... 208

4.4.7.2 Interface Functions.. 213

4.4.7.3 Using the Queue Class ... 215

4.4.7.3.1 Creating and Initializing a Queue ..215

4.4.7.3.2 Performing Queue Operations ..217

4.4.7.4 Adding a New Queue Model ... 217

4.4.7.4.1 Creating Files ..218

4.4.7.4.2 Defining Data Structures ...219

4.4.7.4.3 Determining the Queue Configuration Format220

4.4.7.4.4 Reading Configuration Parameters ...220

4.4.7.4.5 Deriving New Queue Class from Base Queue Class223

4.4.7.4.6 Implementing Interface Functions ...225

4.4.7.4.7 Modifying the Queue Setup Function ..227

4.4.7.4.8 Including and Compiling Files ...228

4.4.7.4.9 Integrating the Model into the GUI ..228

4.4.8 QualNet Schedulers ... 228

4.4.8.1 Data Structures and Classes... 228

4.4.8.2 Interface Functions.. 232

4.4.8.3 Using the Scheduler Class.. 233

4.4.8.3.1 Creating and Initializing a Scheduler...233

4.4.8.3.2 Performing Scheduler Operations ...235
QualNet 5.2 Programmer’s Guide ix

4.4.8.4 Adding a New Scheduler... 236

4.4.8.4.1 Creating Files ..236

4.4.8.4.2 Defining Data Structures ...237

4.4.8.4.3 Deriving New Scheduler Class from Base Scheduler Class238

4.4.8.4.4 Implementing Interface Functions ...239

4.4.8.4.5 Modifying the Scheduler Setup Function...241

4.4.8.4.6 Including and Compiling Files ...241

4.4.8.4.7 Integrating the Model into the GUI ..241

4.5 MAC Layer ... 242

4.5.1 MAC Layer Protocols in QualNet ... 242

4.5.2 MAC Layer Organization: Files and Folders .. 243

4.5.3 MAC Layer Data Structures ... 244

4.5.4 MAC Layer APIs and Inter-layer Communication .. 246

4.5.4.1 Network Layer to MAC Layer Communication .. 246

4.5.4.2 MAC Layer to Network Layer Communication .. 246

4.5.4.3 MAC Layer to Physical Layer Communication .. 246

4.5.4.4 Physical Layer to MAC Layer Communication .. 247

4.5.4.5 MAC Layer Utility APIs .. 247

4.5.5 Adding a Wired MAC Protocol ... 247

4.5.5.1 Naming Guidelines .. 249

4.5.5.2 Creating Files .. 249

4.5.5.3 Including MYPROTOCOL in List of MAC Layer Protocols 250

4.5.5.4 Defining Data Structures ... 251

4.5.5.5 Initialization.. 252

4.5.5.5.1 Determining the Protocol Configuration Format252

4.5.5.5.2 Reading Configuration Parameters and Calling the Protocol
Initialization Function ..253

4.5.5.5.3 Initializing MAC Address ...259

4.5.5.5.4 Implementing the Protocol Initialization Function261

4.5.5.5.4.1 Creating an Instance and Initializing the State 261

4.5.5.5.4.2 Initializing Send and Receive Function Pointers 263

4.5.5.5.4.3 Initializing Neighbor List... 263

4.5.5.5.4.4 Initializing Timers... 263

4.5.5.6 Implementing Address Translation Functions ... 263

4.5.5.6.1 IP to MAC Address Translation Function ..263

4.5.5.6.2 MAC to IP Address Translation Function ..264

4.5.5.7 Implementing the Event Dispatcher .. 265

4.5.5.7.1 Modifying the MAC Layer Event Dispatcher......................................266

4.5.5.7.2 Implementing the Protocol Event Dispatcher267

4.5.5.8 Modifying MAC Layer Functions ... 269

4.5.5.9 Interfacing with Network Layer .. 270

4.5.5.9.1 Processing Outgoing Packets ...270
x QualNet 5.2 Programmer’s Guide

4.5.5.9.2 Processing Incoming Packets ...271

4.5.5.9.3 Sending Indications to Network Layer...275

4.5.5.10 Collecting and Reporting Statistics.. 275

4.5.5.10.1 Declaring Statistics Variables..275

4.5.5.10.2 Initializing Statistics ...276

4.5.5.10.3 Updating Statistics...276

4.5.5.10.4 Printing Statistics..277

4.5.5.10.5 Adding Dynamic Statistics...277

4.5.5.11 Finalization .. 278

4.5.5.11.1 Modifying the MAC Layer Finalization Function278

4.5.5.11.2 Implementing the Protocol Finalization Function.............................278

4.5.5.12 Including and Compiling Files ... 279

4.5.5.13 Integrating the Protocol into the GUI ... 280

4.5.6 Adding a Wireless MAC Protocol ... 280

4.5.6.1 Defining Data Structures ... 281

4.5.6.2 Initialization.. 283

4.5.6.2.1 Determining the Protocol Configuration Format283

4.5.6.2.2 Calling the Protocol Initialization Function...283

4.5.6.2.3 Initializing MAC Address ...285

4.5.6.2.4 Implementing the Protocol Initialization Function286

4.5.6.2.4.1 Creating an Instance and Reading Configuration Parameters .. 286

4.5.6.2.4.2 Initializing Timers... 287

4.5.6.3 Implementing Address Translation Functions ... 287

4.5.6.4 Implementing the Event Dispatcher .. 287

4.5.6.4.1 Modifying the MAC Layer Event Dispatcher......................................287

4.5.6.4.2 Implementing the Protocol Event Dispatcher288

4.5.6.5 Modifying MAC Layer Functions ... 290

4.5.6.6 Interfacing with Network and Physical Layers... 294

4.5.6.6.1 Processing Outgoing Packets ..294

4.5.6.6.2 Processing Incoming Packets ...297

4.5.6.6.3 Processing Physical Layer Status Change Notification.....................299

4.5.6.7 Collecting and Reporting Statistics.. 299

4.5.6.8 Finalization .. 299

4.5.6.9 Including and Compiling Files ... 299

4.5.6.10 Integrating the Protocol into the GUI ... 299

4.6 Physical Layer... 300

4.6.1 Physical Layer Models in QualNet ... 300

4.6.2 Physical Layer Organization: Files and Folders... 301

4.6.3 Physical Layer Data Structures.. 302

4.6.4 Physical Layer APIs and Inter-layer Communication 304

4.6.4.1 MAC Layer to Physical Layer Communication .. 304

4.6.4.2 Physical Layer to MAC Layer Communication .. 304
QualNet 5.2 Programmer’s Guide xi

4.6.4.3 PHY Models to Communication Medium Communication....................... 305

4.6.4.4 Communication Medium to PHY Models Communication....................... 305

4.6.4.5 PHY Model to Antenna Models Communication 305

4.6.4.6 Physical Layer Utility APIs... 305

4.6.5 Adding a PHY Model.. 306

4.6.5.1 Naming Guidelines .. 307

4.6.5.2 Creating Files .. 307

4.6.5.3 Including PHY_MYPHY in List of PHY Models 308

4.6.5.4 Defining Data Structures ... 309

4.6.5.5 Initialization.. 310

4.6.5.5.1 Determining the PHY Configuration Format......................................310

4.6.5.5.2 Calling the PHY Model Initialization Function....................................311

4.6.5.5.3 Implementing the PHY Model Initialization Function314

4.6.5.6 Implementing the Event Handler ... 317

4.6.5.7 Modifying Generic Physical Layer Functions .. 318

4.6.5.8 Interfacing with MAC Layer and Communication Medium 319

4.6.5.8.1 Processing Outgoing Packets ..321

4.6.5.8.2 Processing Incoming Packets ...324

4.6.5.9 Collecting and Reporting Statistics.. 330

4.6.5.9.1 Declaring Statistics Variables..330

4.6.5.9.2 Initializing Statistics ...330

4.6.5.9.3 Updating Statistics...331

4.6.5.9.4 Printing Statistics..331

4.6.5.9.5 Adding Dynamic Statistics...331

4.6.5.10 Finalization .. 332

4.6.5.10.1 Modifying the Physical Layer Finalization Function.........................332

4.6.5.10.2 Implementing the PHY Model Finalization Function........................333

4.6.5.11 Modifying Radio-range Utility Function.. 333

4.6.5.12 Including and Compiling Files ... 334

4.6.5.13 Integrating the Model into the GUI .. 335

4.6.6 Adding an Antenna Model.. 335

4.6.6.1 Naming Guidelines .. 336

4.6.6.2 Creating Files .. 336

4.6.6.3 Including MYANTENNA in List of Antenna Models 338

4.6.6.4 Including MYPATTERN in List of Antenna Pattern Types....................... 338

4.6.6.5 Defining Data Structures ... 339

4.6.6.6 Initialization.. 339

4.6.6.6.1 Determining the Configuration Format for Input Parameters339

4.6.6.6.2 Calling the Antenna Model Initialization Function..............................340

4.6.6.6.3 Reading Configuration Parameters ...342

4.6.6.6.4 Reading Antenna Pattern Files ...344

4.6.6.6.5 Implementing the Antenna Model Initialization Function346
xii QualNet 5.2 Programmer’s Guide

4.6.6.7 Modifying Generic Antenna Functions .. 347

4.6.6.8 Implementing Antenna Functions.. 349

4.6.6.9 Integrating with PHY Models ... 349

4.6.6.10 Including and Compiling Files ... 354

4.6.6.11 Integrating the Model into the GUI .. 354

4.7 Communication Medium .. 355

4.7.1 Communication Medium Models in QualNet.. 355

4.7.2 Communication Medium Organization: Files and Folders 357

4.7.3 Communication Medium Data Structures .. 358

4.7.4 Communication Medium APIs and Communication with Physical Layer 359

4.7.4.1 Physical Layer to Communication Medium Communication 359

4.7.4.2 Communication Medium to Physical Layer Communication 360

4.7.4.3 Communication Medium Utility APIs ... 360

4.7.5 Adding a Path Loss Model ... 360

4.7.5.1 Naming Guidelines .. 361

4.7.5.2 Creating Files .. 362

4.7.5.3 Including MYPATHLOSS in List of Path Loss Models 363

4.7.5.4 Initialization.. 363

4.7.5.4.1 Determining the Path Loss Model Configuration Format363

4.7.5.4.2 Calling the Path Loss Model Initialization Function364

4.7.5.4.3 Implementing the Path Loss Model Initialization Function366

4.7.5.5 Path Loss Calculation.. 368

4.7.5.6 Including and Compiling Files ... 369

4.7.5.7 Integrating the Model into the GUI .. 369

4.7.6 Adding a Fading Model .. 369

4.7.6.1 Including MYFADING in List of Fading Models 370

4.7.6.2 Determining the Fading Model Configuration Format 370

4.7.6.3 Initialization.. 370

4.7.6.4 Fading Calculation... 372

4.7.6.5 Integrating the Model into the GUI .. 372

4.7.7 Adding a Shadowing Model ... 373

4.7.7.1 Including MYSHADOWING in List of Shadowing Models 373

4.7.7.2 Initialization.. 373

4.7.7.3 Shadowing Loss Calculation ... 375

4.7.7.4 Integrating the Model into the GUI .. 376

4.8 Node Mobility .. 377

4.8.1 Mobility and Related Models in QualNet .. 377

4.8.2 Mobility Models Organization: Files and Folders ... 378

4.8.3 Mobility-related Data Structures... 379

4.8.4 Mobility APIs .. 381

4.8.5 Adding a Mobility Model ... 381

4.8.5.1 Naming Guidelines .. 382
QualNet 5.2 Programmer’s Guide xiii

4.8.5.2 Creating Files .. 382

4.8.5.3 Including MYMOBILITY in List of Mobility Models................................... 383

4.8.5.4 Determining the Mobility Model Configuration Format 383

4.8.5.5 Modifying Generic Mobility Functions.. 384

4.8.5.6 Implementing Mobility Model Functions .. 386

4.8.5.7 Including and Compiling Files ... 389

4.9 Adding Trace Collection... 390

4.9.1 Trace File Format... 390

4.9.2 Including MYPPROTOCOL in List of Traceable Protocols 395

4.9.3 Enabling/Disabling Tracing in Protocol's Initialization Function 395

4.9.4 Printing the Protocol Header .. 398

4.9.5 Tracing a Packet .. 398

4.9.5.1 Trace Actions .. 399

4.9.5.2 Trace of a Packet Send... 399

4.9.5.3 Trace of a Packet Receive .. 401

4.9.5.4 Trace of a Packet Drop ... 402

4.9.5.5 Trace of a Packet Enqueuing.. 403

4.9.5.6 Trace of a Packet Dequeuing.. 404

4.10 Creating an Addon, Interface or Model Library.. 405

4.10.1 Creating Directory and Files... 406

4.10.2 Including HELLO in List of Application Layer Protocols 407

4.10.3 Developing Protocol Components.. 407

4.10.4 Calling Protocol Functions from Application Layer Functions 408

4.10.5 Integrating a New Library into QualNet .. 410

4.10.5.1 Creating Makefiles... 410

4.10.5.2 Include Library Makefile in Main Makefile ... 411

4.10.5.3 Recompiling QualNet .. 412

4.11 Communication Between Layers... 413

4.11.1 Communication Between Adjacent Layers .. 413

4.11.2 Communication Between Non-adjacent Layers ... 416

4.11.2.1 Application Layer to Network Layer Communication............................. 416

4.11.2.2 Network Layer to Application Layer Communication............................. 419

4.11.3 Communication Among Layers Across Nodes... 422

Chapter 5 Customizing QualNet Graphical User Interface (GUI) 424

5.1 Customizing Design Mode of QualNet Architect ... 424

5.1.1 Description of QualNet GUI Settings Files ... 424

5.1.1.1 Structure of GUI Settings Files.. 426

5.1.1.2 Component Files ... 426

5.1.1.3 Shared Description Files ... 427

5.1.2 Elements of Settings Files.. 431
xiv QualNet 5.2 Programmer’s Guide

5.1.2.1 The category Element ... 431

5.1.2.2 The subcategory Element ... 433

5.1.2.3 The variable Element .. 434

5.1.2.4 The option Element ... 440

5.1.3 Using Shared Descriptions... 441

5.1.4 Integrating New Models into Architect.. 443

5.1.4.1 Integrating a New Protocol .. 444

5.1.4.2 Integrating a New Traffic Generator .. 446

5.2 Customizing Visualize Mode of QualNet Architect .. 449

5.2.1 Communication between QualNet Simulator and QualNet Architect 449

5.2.1.1 Initializing QualNet .. 450

5.2.1.2 Runtime Interaction ... 451

5.2.1.3 Finalization .. 452

5.2.2 Adding Customized Animation to a Protocol.. 453

5.2.3 Adding Dynamic Statistics.. 455

5.2.3.1 Defining Statistic Handles ... 456

5.2.3.2 Initializing Statistic Handles... 456

5.2.3.3 Modifying the Application Layer Dynamic Statistics Function 457

5.2.3.4 Writing the Dynamic Statistics Function for MYPROTOCOL 459

5.3 Customizing QualNet Packet Tracer ... 460

5.3.1 Trace File Generated by Simulator .. 460

5.3.2 Definition Files Used by Packet Tracer .. 461

5.3.3 Packet Tracer Display .. 463

5.3.4 Adding Trace Capability for a New Header.. 464

5.3.4.1 Data Type Definitions .. 464

5.3.4.1.1 The basic Data Type ...465

5.3.4.1.2 The float Data Type...465

5.3.4.1.3 The char and string Data Types ..465

5.3.4.1.4 The enum Data Type...466

5.3.4.1.5 The group Data Type ..467

5.3.4.2 Data Display Definitions .. 467

5.3.4.3 Protocol Header Definitions... 468

Chapter 6 Interfacing with QualNet: External Interface API................ 469

6.1 Tutorial ... 470

6.1.1 The TUTORIALTESTER Program ... 470

6.1.2 The INTERFACETUTORIAL Application Layer Protocol 471

6.1.3 The Interface Tutorial External Interface.. 472

6.2 Interface Registration ... 473

6.2.1 Registration Functions ... 473

6.2.2 Callback Functions... 474
QualNet 5.2 Programmer’s Guide xv

6.3 Utility Functions.. 476

6.3.1 External Interface API Utility Functions.. 476

6.3.2 Functions for Injecting Traffic from External Interfaces.................................. 481

6.3.3 Operating System-specific Utility Functions for Sockets................................ 488

6.3.3.1 Functions for Variable-sized Array Operations.. 489

6.3.3.2 Host-to-Network Byte Order Functions ... 490

6.3.3.3 External Socket Functions... 490

Chapter 7 Dynamic API .. 494

7.1 Implementation of the Dynamic API.. 495

7.1.1 Dynamic Objects .. 495

7.1.2 Built-in Dynamic Objects .. 495

7.1.3 Hierarchy of Objects... 495

7.1.4 Listening... 495

7.1.5 Data Component of a Dynamic Object... 496

7.1.6 Dynamic Commands.. 496

7.2 Using the Dynamic API from an External Interface ... 498

7.3 Dynamically Enabling a Protocol .. 500

7.3.1 Declare Dynamic Variables.. 500

7.3.2 Adding a Dynamic Object to the Hierarchy .. 500

7.3.3 Object Permissions .. 503

7.3.4 Initializing a Dynamically Enabled Protocol.. 503

7.3.5 Dynamic Strings ... 504

7.4 Defining New Dynamic Data Types ... 504

7.4.1 Defining the Data Component.. 504

7.4.2 Defining the Object Component ... 505

Appendix A Coding Guidelines for 64-bit Platforms 507

A.1 Introduction... 507

A.2 Coding Guidelines and Compatibility Issues .. 507

A.3 References .. 511

Appendix B Coding Guidelines for Multi-Processor Platforms 512

B.1 General Guidelines... 512

B.1.1 Global Variables .. 512

B.1.2 Accessing Other Nodes ... 513

B.1.3 MAC Lookahead .. 515

B.1.4 Inter-Layer APIs... 518

B.2 External Interface Issues ... 518
xvi QualNet 5.2 Programmer’s Guide

B.2.1 Node Lists.. 518

B.2.2 Loose Events ... 518

B.2.3 Partition Communication.. 520

B.2.4 Forwarding Packets to External Interfaces .. 520
QualNet 5.2 Programmer’s Guide xvii

Preface

.
Who Should Read this Guide

The intended audience of QualNet 5.2 Programmer’s Guide are programmers who want to use the
interface and programming functions in QualNet for their own simulation purposes and to develop
customized protocol models. It assumes you are familiar with the programming features of your operating
system (Windows XP, Linux or Mac OS X) and with the C++ programming environment. Additionally, this
guide assumes you are familiar with network programming terminology and concepts.

.
How this Guide is Organized

This guide contains the following information:

• Chapter 1 introduces the different components of QualNet and the protocol stack that forms the basis of
the QualNet architecture.

• Chapter 2 gives an overview of the QualNet directory and file organization. It also provides instructions
for compiling and debugging QualNet, and for activating an add-on module.

• Chapter 3 gives an overview of the QualNet simulation engine. It introduces discrete-event simulation
and describes how protocols are modeled in QualNet. It describes the types of events used in QualNet
and their implementation. This chapter also introduces the hierarchical architecture of the QualNet
simulation engine.

• Chapter 4 describes the procedures for developing and adding a custom model to QualNet. It contains
the following sections:

Section 4.1 describes some tasks common to developing most models: Reading user-specified
configuration parameters from an input file, Programming with message info fields, and Random
number generation.

Section 4.2 describes the Application Layer protocols implemented in QualNet, the directories and
files relevant to the Application Layer, and Application Layer data structures and APIs. This chapter
gives a detailed description of the procedure to develop and add an Application Layer protocol to
QualNet. Two types of protocols are covered in this section: traffic-generating protocols and
Application Layer routing protocols.

Section 4.3 describes the Transport Layer protocols implemented in QualNet, the directories and
files relevant to the Transport Layer, and Transport Layer data structures and APIs. This section
xviii QualNet 5.2 Programmer’s Guide

gives a detailed description of the procedure to develop and add a Transport Layer protocol to
QualNet.

Section 4.4 describes the Network Layer protocols implemented in QualNet, the directories and files
relevant to the Network Layer, and Network Layer data structures and APIs. This section gives a
detailed description of the procedure to develop and add a Network Layer protocol to QualNet. The
following types of protocols are covered in this section: Network Layer unicast routing protocols,
Network Layer multicast routing protocols, queueing protocols, and schedulers.

Section 4.5 describes the MAC Layer protocols implemented in QualNet, the directories and files
relevant to the MAC Layer, and MAC Layer data structures and APIs. This chapter gives a detailed
description of the procedure to develop and add wired and wireless MAC protocols to QualNet.

Section 4.6 describes the Physical Layer protocols implemented in QualNet, the directories and files
relevant to the Physical Layer, and Physical Layer data structures and APIs. This section gives a
detailed description of the procedure to develop and add PHY and antenna models to QualNet.

Section 4.7 describes the communication medium models implemented in QualNet, the directories
and files relevant to the communication medium, and communication medium data structures and
APIs. This section gives a detailed description of the procedure to develop and add a
communication medium model to QualNet.

Section 4.8 describes the node mobility models implemented in QualNet, the directories, files, and
data structures relevant to node mobility models. This section gives a detailed description of the
procedure to develop and add a node mobility model to QualNet.

Section 4.9 describes the procedure to add trace collection to a protocol.

Section 4.10 describes the procedure to develop and add a custom add-on module to QualNet.

Section 4.11 describes the procedure to enable communication between non-adjacent layers and
communication among layers across nodes.

• Chapter 5 describes the GUI component of QualNet and how to use it for protocol development.

• Chapter 6 describes the external interface API that allows QualNet to interface with external entities
such as other programs or physical devices.

• Chapter 7 describes the dynamic API that allows users and programs to dynamically modify and
monitor a QualNet simulation.

• Appendix A lists some coding guidelines and compatibility issues when developing QualNet models for
64-bit platforms.

• Appendix B lists some coding guidelines for developing QualNet models for multi-processor
architectures.
QualNet 5.2 Programmer’s Guide xix

.
QualNet Document List

The following table shows the QualNet Documentation Set and offers a brief description of each document.

Document Description

QualNet API Reference Guide This guide is a supplement to QualNet Programmer’s Guide and
provides detailed information on the QualNet API functions and
parameters. This is avaialble in both PDF and HTML formats.

QualNet Distributed Reference Guide This guide provides instructions for running QualNet on a
distributed architecture.

QualNet Installation Guide This guide provides detailed steps for installing QualNet on Linux/
Mac and Windows platforms.

QualNet Model Libraries This set of documents contains detailed reference information on all
QualNet models and includes the following protocol libraries. See
QualNet Model Library Index for an alphabetical list of all our
models and a reference to which library they can be found in.

Advanced Wireless
ALE/ASAPS Advanced Propagation
Cellular
Developer
LTE
Multimedia and Enterprise
Satellite
Sensor Networks
Standard Interfaces
TIREM Advanced Propagation
UMTS
Urban Propagation
Wireless

QualNet Product Tour This tour provides an introduction to QualNet by means of an
example.

QualNet Programmer’s Guide This is a guide to the QualNet programming interface and functions,
allowing users to develop and customize protocol models.

QualNet User’s Guide This is a detailed guide for using QualNet and works in combination
with the QualNet Model Libraries set of documents.
xx QualNet 5.2 Programmer’s Guide

.
Document Conventions

QualNet documents use the following conventions:

.
More Information

• For more information on QualNet, please contact QualNet Sales at sales@scalable-networks.com or
visit the Scalable Network Technologies Website (http://www.scalable-networks.com) and click on
Products.

• For technical help on QualNet, please contact QualNet Support at support@scalable-networks.com or
visit the Scalable Network Technologies Website (http://www.scalable-networks.com) and click on
Support.

• For help on QualNet documentation, please contact QualNet Support at support@scalable-
networks.com or visit the Scalable Network Technologies Website (http://www.scalable-networks.com)
and click on Documentation.

Convention Description

Book Title Title of a document.

Command Input A command name or qualified command phrase, daemon, file, or option name.

Command Output Text displayed by the computer.

 Note: or Notes: Information of special interest.

[] In syntax definitions, square brackets indicate items that are optional.

Code Segment Segment of code from QualNet source files used for illustration.

Added Code Example of code that the user should add to existing QualNet functions and declarations
to add a custom model to QualNet. A vertical margin in the left column indicates new
lines of code that need to be added.

Ellipses (...) Ellipses are used to indicate lines of code from QualNet source files that have been
omitted from an example for the sake of brevity.
QualNet 5.2 Programmer’s Guide xxi

mailto:sales@scalable-networks.com

sales@scalable-networks.com
mailto: support@scalable-networks.com
sales@scalable-networks.com
mailto: support@scalable-networks.com
mailto: support@scalable-networks.com
sales@scalable-networks.com

1 Introduction

QualNet provides a comprehensive set of tools with all the components for custom network modeling and
simulation projects. QualNet's unparalleled speed, scalability, and fidelity make it easy for modelers to
optimize existing networks through quick model setup and in-depth analysis tools. Models in source form
provide developers with a solid library on which to build and experiment with new network functionality.
The end result is accurate prediction of network performance for a diverse set of application requirements
and uses. From wired LANs and WANs, to cellular, satellite, WLANs and mobile ad hoc networks,
QualNet's library is extensive. Because of its efficient kernel, QualNet models large scale networks with
heavy traffic and mobility in reasonable simulation times.

This chapter gives a brief introduction to the different components of QualNet, and introduces the protocol
stack that forms the basis of QualNet architecture.

.
1.1 QualNet Components

QualNet has several core components, as well as various add-on components. This section provides a
brief description of the core components of QualNet. Detailed descriptions, functions, and usage
instructions for each of the QualNet components are available in QualNet User’s Guide.

QualNet Simulator

QualNet Simulator is a state-of-the-art simulator for large, heterogeneous networks and the distributed
applications that execute on those networks. QualNet Simulator is an extremely scalable simulation
engine, accommodating high-fidelity models of networks of tens of thousands of nodes. QualNet makes
good use of computational resources and models large-scale networks with heavy traffic and mobility, in
reasonable simulation times.

QualNet Simulator has the following attractive features:

• Fast model set up with a powerful Graphical User Interface (GUI) for custom code development and
reporting options

• Instant playback of simulation results to minimize unnecessary model executions

• Fast simulation results for thorough exploration of model parameters

• Scalable up to tens of thousands of nodes

• Real-time simulation for man-in-the-loop and hardware-in-the-loop models

• Multi-platform support
QualNet 5.2 Programmer’s Guide 1

Chapter 1 QualNet Protocol Stack
QualNet Architect

QualNet Architect is a graphical tool that provides an intuitive model set up and execution capability.
Architect has two modes: Design mode and Visualize mode.

In Design mode, Architect is used to create and design experiments. Architect enables a user to define the
geographical distribution, physical connections and the functional parameters of the network nodes, all
using intuitive click and drag tools, and to define network layer protocols and traffic characteristics for each
node.

In Visualize mode, Architect is used to execute and animate experiments created in the Design mode.
Using Architect, a user can watch traffic flow through the network and create dynamic graphs of critical
performance metrics as a simulation is running.

QualNet Analyzer

QualNet Analyzer statistical graphing tool that displays network statistics generated from a QualNet
experiment. Using the Analyzer, a user can view statistics as they are being generated, as well as compare
results from different experiments.

.
1.2 QualNet Protocol Stack

QualNet uses a layered architecture similar to that of the TCP/IP network protocol stack. Within that
architecture, data moves between adjacent layers. QualNet's protocol stack consists of, from top to
bottom, the Application, Transport, Network, Link (MAC) and Physical Layers.

Adjacent layers in the protocol stack communicate via well-defined APIs, and generally, layer
communication occurs only between adjacent layers. For example, Transport Layer protocols can get and
pass data to and from the Application and Network Layer protocols, but cannot do so with the Link (MAC)
Layer protocols or the Physical Layer protocols. This rule concerning communication only between
adjacent layers may be circumvented by the programmer, as explained in Section 4.11.

Figure 1-1 depicts the QualNet protocol stack and the general functionality of each layer.
QualNet 5.2 Programmer’s Guide 2

QualNet Protocol Stack Chapter 1
FIGURE 1-1. QualNet Protocol Stack

1.2.1 Application Layer

The Application Layer is responsible for traffic generation and application level routing. Protocols written at
the Application Layer rely on the Transport Layer to deliver application-level data from the source to the
destination. Thus, Application Layer protocols pass data down to the Transport Layer at the source node,
and receive data from the Transport Layer at the destination node. Examples of traffic- generating
Application Layer protocols implemented in QualNet are Constant Bit Rate (CBR), FTP, and Telnet.
Examples of Application Layer routing protocols implemented in QualNet are RIP, Bellman-Ford, and BGP.

Section 4.2 provides implementation details of Application Layer protocols in QualNet and describes how
to develop a custom Application Layer protocol.

1.2.2 Transport Layer

The Transport Layer provides end-to-end data transmission services to the Application Layer. Protocols
written at the Transport Layer receive data from the Application Layer and rely on the Network Layer for
data forwarding at the source node, and receive data from the Network Layer and pass data to the
Application Layer at the destination node. Examples of Transport Layer protocols include UDP, TCP and
RSVP-TE.

Section 4.3 provides implementation details of Transport Layer protocols in QualNet and describes how to
develop a custom Transport Layer protocol.

Application

Transport

Network

Provides traffic generation and

Provides link-by-link transmission of data

Provides packet-forwarding, queuing/

Provides end-to-end transmission

Provides raw bit transmission over

of data

scheduling and network-level routing

communication channel

application-level routing

Link (MAC)

Physical
3 QualNet 5.2 Programmer’s Guide

Chapter 1 QualNet Protocol Stack
1.2.3 Network Layer

The Network Layer is responsible for data forwarding and queuing/scheduling. The Internet Protocol (IP)
resides at this layer and is responsible for packet forwarding. At the source node, the Network Layer
receives data from the Transport Layer and relies on the Link (MAC) Layer for link-by-link data delivery. At
the destination node, the Network Layer receives data from the Link (MAC) Layer and passes the data up
to the Transport Layer.

The Network Layer also implements certain types of routing protocols. Examples of Network Layer routing
protocols implemented in QualNet are AODV, DSR, OSPF, and DVMRP. Examples of queuing/scheduling
protocols implemented in QualNet are FIFO, RED, RIO, WFQ, and WRR.

Section 4.4 provides implementation details of Network Layer protocols in QualNet and describes how to
develop a custom Network Layer protocol. The following types of protocols are covered in this section:
Network Layer unicast routing protocols, Network Layer multicast routing protocols, queuing protocols, and
schedulers.

1.2.4 Link (MAC) Layer

The Link (MAC) Layer provides link-by-link transmission. At the sending side, the Link (MAC) Layer
receives data from the Network Layer and passes the data to the Physical Layer for transmission over the
wired or wireless channel. At the receiving side, the Link (MAC) Layer receives data from the Physical
Layer and forwards the data up to the Network Layer. Examples of protocols at the Link (MAC) Layer
implemented in QualNet are point-to-point, IEEE 802.3, IEEE 802.11, and CSMA.

Section 4.5 provides implementation details of MAC Layer protocols in QualNet and describes how to
develop a custom MAC Layer protocol. Procedures for both wired and wireless MAC protocols are covered
in this section.

1.2.5 Physical Layer

The Physical Layer is responsible for transmitting and receiving raw bits from the wired and wireless
channel. At the source node, the Physical Layer receives data from the Link (MAC) Layer and sends the
data to the Physical Layer of the destination node. At the destination node, the Physical Layer receives
data from the Physical Layer of the source node and passes the data to the Link (MAC) Layer.

Examples of Physical Layer protocols implemented in QualNet are wired point-to-point links, IEEE 802.3,
and IEEE 802.11.

Section 4.6 provides implementation details of Physical Layer protocols in QualNet and describes how to
develop a custom Physical Layer protocol.

Note: For wired networks, the Physical Layer code is incorporated into the Link (MAC) Layer.
QualNet 5.2 Programmer’s Guide 4

QualNet Protocol Stack Chapter 1
1.2.6 Communication Medium

The communication medium transmits signals between nodes. It interfaces with the Physical Layer entities
at the nodes. A wireless communication medium model in QualNet simulates the propagation of signals
between nodes, taking into account both propagation delays and signal attenuation due to path loss,
fading, and shadowing.

In QualNet, a communication medium model has three components: a path loss model, a fading model,
and a shadowing model. Path loss models in QualNet include free space, two ray, and Irregular Terrain
Model (ITM). QualNet implements the Ricean fading model. Rayleigh fading is a special case of Ricean
fading. QualNet provides models for two shadowing models: constant and lognormal.

Section 4.7 provides implementation details of communication medium models in QualNet and describes
how to develop a custom communication medium model.

1.2.7 Node Mobility

In QualNet, mobility models work together with node placement models and terrain models to simulate the
mobility behavior of nodes. Node mobility models in QualNet include random waypoint, group mobility,
pedestrian mobility, and file-base mobility.

Section 4.8 gives a detailed description of how to add a mobility model to QualNet.
5 QualNet 5.2 Programmer’s Guide

2 QualNet File Organization, Compilation
and Debugging

In this chapter, we describe the file organization in QualNet and how to compile, install addons, and debug
QualNet.

Section 2.1 describes the directory structure of QualNet.

Section 2.2 describes how to compile QualNet on Windows platforms. Section 2.3 describes how to
compile QualNet on Linux platforms. Section 2.4 describes how to compile QualNet on Mac OS X
platforms. (For compiling QualNet on distributed platforms, refer to Distributed Reference Guide.)

Section 2.5 describes how to activate and deactivate QualNet addons.

Section 2.6 describes advanced options for compiling QualNet.

Section 2.7 describes how to debug QualNet.
QualNet 5.2 Programmer’s Guide 6

File Organization Chapter 2
.
2.1 File Organization

QualNet distribution files are grouped into several subdirectories. This allows users to quickly find source
code, binary object files, configuration files, documentation, or samples. Table 2-1 lists the subdirectories
and their contents.

Note: In this document, QUALNET_HOME refers to the QualNet installation directory. This is
stored as an environment variable for Windows, Linux, and Mac OS X platforms.

TABLE 2-1. Default QualNet Subdirectories

Subdirectory Description

QUALNET_HOME/addons Components developed as custom add-on modules

QUALNET_HOME/bin Executable and other runtime files, such as DLLs

QUALNET_HOME/contributed Files related to models contributed by third parties

QUALNET_HOME/data Data files for the Wireless Model Library, including antenna
configurations, modulation schemes, and sample terrain files.

QUALNET_HOME/documentation Documentation (User’s Guide, Release Notes, etc.)

QUALNET_HOME/gui Graphical components, including icons, and GUI configuration files

QUALNET_HOME/include QualNet kernel header files

QUALNET_HOME/installers Installers for supplemental third party software

QUALNET_HOME/interfaces Code to interface QualNet with third party tools or external networks,
such as HLA and DIS

QUALNET_HOME/kernel QualNet kernel objects used in the build process

QUALNET_HOME/lib Third party software libraries used in the build process

QUALNET_HOME/libraries Source code for models in QualNet model libraries, such as
Developer, Wireless, and Multimedia & Enterprise.

QUALNET_HOME/license_dir License files and license libraries required for the build process

QUALNET_HOME/main Kernel source files and Makefiles

QUALNET_HOME/scenarios Sample scenarios
7 QualNet 5.2 Programmer’s Guide

Chapter 2 Compiling QualNet on Windows
.
2.2 Compiling QualNet on Windows

This section describes how to compile QualNet on Windows platforms. Section 2.2.1 lists the supported
C++ compilers. Section 2.2.2 describes the precompiled executable files included in the QualNet
distribution. Section 2.2.3 gives detailed instructions for compiling QualNet.

2.2.1 C++ Compiler

One of the C++ compilers listed in Table 2-2 is required to compile QualNet. For convenience, this guide
will refer to the compilers by their abbreviations.

2.2.2 Executable Files

For Windows platforms, the QualNet distribution includes the following executable files:

• qualnet-precompiled-32bit.exe: This is a 32-bit executable that can run on both 32-bit and 64-bit
platforms.

• qualnet-precompiled-64bit.exe (included only for 64-bit platforms): This is a 64-bit executable that can
run on 64-bit platforms.

• qualnet.exe: This is a copy of qualnet-precompiled-32bit.exe. If you have a 64-bit platform and want to
use the 64-bit executable, then copy the file qualnet-precompiled-64bit.exe to qualnet.exe.

Note that qualnet.exe is overwritten every time you recompile QualNet. If you recompile QualNet but
want to use the pre-built executable, then copy the file qualnet-precompiled-32bit.exe (or qualnet-
precompiled-64bit.exe) to qualnet.exe.

These executable files have been compiled with all model libraries that do not require third-party software
(see Section 2.5). Your license file will enable the model libraries that are part of the base QualNet
Developer distribution (Developer, Multimedia and Enterprise, and Wireless Model Libraries) and any
additional model libraries purchased by you. QualNet does not need to be recompiled in order to use the
models in these libraries.

TABLE 2-2. C++ Compilers for Windows

C++ Compiler Abbreviation

Microsoft Visual Studio 2008 VC9

Microsoft Visual C++ 2008 Express Edition VC9 Express

Note: Microsoft Visual C++ 2008 Express Edition is available as a free download.

To use Microsoft Visual C++ 2008 Express Edition on a 64-bit platform,
Windows /.NET 3.5 Platform SDK must also be installed. Windows /.NET 3.5 Platform
SDK is also available as a free download.

Go to the Microsoft website to download these software packages.

Note: For 64-bit platforms, if you copy qualnet-precompiled-32bit to qualnet.exe, you must also
copy libexpat.dll and pthreadVC2.dll from QUALNET_HOME/lib/windows to
QUALNET_HOME/bin. If you copy qualnet-precompiled-64bit.exe to qualnet.exe, you
must also copy libexpat.dll and pthreadVC2.dll from QUALNET_HOME/lib/windows-x64 to
QUALNET_HOME/bin.
QualNet 5.2 Programmer’s Guide 8

Compiling QualNet on Windows Chapter 2
However, QualNet will need to be recompiled if the source code is modified or certain addons are included
(see Section 2.5).

2.2.3 Compiling QualNet

To compile QualNet from the command line, follow the instructions given in Section 2.2.3.1. To compile
QualNet from the VC9 or VC9 Express IDE, follow the instructions given in Section 2.2.3.2.

2.2.3.1 Compiling from Command Line

To compile QualNet from the command line, perform the steps listed below.

1. If you are compiling QualNet on a 32-bit platform and QualNet desktop shortcuts are installed, open the

QualNet Developer command window by double-clicking on the following icon on the desktop.

Verify that the environment variables are properly set by typing the following command: cl.

The following output verifies that the configuration is correct:

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.42
for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

usage: cl [option...] filename... [/link linkoption...]

(The compiler version in the above output may differ depending on which version of C++ is installed.)

If the configuration is correct, then skip step 2 and go to step 3.

If a “file not found” error is displayed, then go to step 2.

2. If you are compiling QualNet on a 64-bit platform, QualNet desktop shortcuts are not installed, or a “file

not found” error was displayed in step 1, open a command window using one of the steps listed below.

• To create a 32-bit executable using VC9 on 32-bit or 64-bit platforms, use the following command:

Start > All Programs > Microsoft Visual Studio 2008 > Visual Studio Tools > Visual Studio
2008 Command Prompt

• To create a 32-bit executable using VC9 Express on 32-bit or 64-bit platforms, use the following
command:

Start > All Programs > Visual C++ 2008 Express Edition > Visual Studio Tools > Visual
Studio 2008 Command Prompt

• To create a 64-bit executable using VC9 on 64-bit platforms, use the following command:

Start > All Programs > Microsoft Visual Studio 2008 > Visual Studio Tools > Visual Studio
2008 x64 Win64 Command Prompt
9 QualNet 5.2 Programmer’s Guide

Chapter 2 Compiling QualNet on Windows
• To create a 64-bit executable using VC9 Express on 64-bit platforms, use the following command:

Start > All Programs > Microsoft Platform SDK ... > Open Build Environment Window >
Windows XP 64-bit Build Environment > Set Windows XP x64 Build Environment (Debug)

3. Go to QUALNET_HOME/main directory.

4. While installing QualNet, the installer creates a makefile (called Makefile) for the 32-bit executable for

the most recent version of C++ compiler installed on your system into the QUALNET_HOME/main

directory.

QUALNET_HOME/main also includes makefiles for different combinations of compilers and platforms
(see Table 2-3). If Makefile does not exist in QUALNET_HOME/main directory or if you want to use a
different makefile, then make a copy of the appropriate makefile.

For example, for VC9 on a 32-bit platform, use the following command to make a copy of the
makefile:

copy Makefile-windows-vc9 Makefile

5. Compile QualNet by using the following command (it takes several minutes for QualNet to compile):

nmake

This creates the QualNet executable in the QUALNET_HOME/bin directory. In Windows, the
executable is called qualnet.exe.

TABLE 2-3. Windows Makefiles

Compiler
Makefile for 32-bit Executable

(for 32-bit and 64-bit Platforms)
Makefile for 64-bit Executable

(for 64-bit Platforms)

VC9 Makefile-windows-vc9 Makefile-windows-x64-vc9

VC9 Express Makefile-windows-vc9 Makefile-windows-x64-vc9e
QualNet 5.2 Programmer’s Guide 10

Compiling QualNet on Windows Chapter 2
6. To recompile QualNet, run nmake again. However, it is sometimes useful to delete all object files before

recompiling. Use the following commands to remove all object (.obj) files and recompile:

nmake clean
nmake

2.2.3.2 Compiling from Visual Studio 2008 IDE
This section describes how to compile QualNet using the Microsoft Visual Studio 2008 IDE. The Visual
C++ 2008 Express Edition IDE can be used in a similar way to compile QualNet.

Configuring Microsoft Visual Studio 2008 IDE

If Microsoft Visual Studio 2008 or Visual C++ 2008 Express Edition IDE is used, then the IDE must be
configured before QualNet can be compiled. This configuration needs to be done only once. Perform the
following steps to configure the IDE.

1. Using a text editor, create a file named Makefile in the QUALNET_HOME directory. This file contains
commands to redirect to a makefile in QUALNET_HOME/main. (The indentations in the following file
are tabs, not spaces.)

• If you are compiling the 32-bit QualNet, Makefile should contain the following lines:

all:
cd main
nmake -f Makefile-windows-vc9

rebuild: clean
cd main
nmake -f Makefile-windows-vc9

clean:
cd main
nmake -f Makefile-windows-vc9 clean

• If you are compiling the 64-bit QualNet using Microsoft Visual Studio 2008 IDE, Makefile should
contain the following lines:

all:
cd main
nmake -f Makefile-windows-x64-vc9

rebuild: clean
cd main
nmake -f Makefile-windows-x64-vc9

clean:
cd main
nmake -f Makefile-windows-x64-vc9 clean
11 QualNet 5.2 Programmer’s Guide

Chapter 2 Compiling QualNet on Windows
• If you are compiling the 64-bit QualNet using Microsoft Visual C++ 2008 Express Edition IDE,
Makefile should contain the following lines:

all:
cd main
nmake -f Makefile-windows-x64-vc9e

rebuild: clean
cd main
nmake -f Makefile-windows-x64-vc9e

clean:
cd main
nmake -f Makefile-windows-x64-vc9e clean

2. Open Microsoft Visual Studio 2008.

3. Select File > New > Project From Existing Code.

4. Enter the following project information:

• Project file location: C:\snt\qualnet\5.2

• Project name: qualnet

• Folder: C:\snt\qualnet\5.2

5. Click Next to continue.
QualNet 5.2 Programmer’s Guide 12

Compiling QualNet on Windows Chapter 2
6. In the next window, check the following option box:

• How do you want to build the project?: Use external build system

7. Click Next to continue.

8. Set the following debug configuration settings:

• Build command line: nmake

• Rebuild command line: nmake rebuild

• Clean command line: nmake clean

• Output (for debugging): bin\qualnet.exe

9. Click Finish to accept the settings.

Compiling from Microsoft Visual Studio 2008 IDE

Once Microsoft Visual Studio 2008 or Visual C++ 2008 Express Edition IDE has been configured, it can be
used as follows:

• Select Build > Build Solution to build QualNet.

• Select Build > Rebuild Solution to clean the object files and rebuild QualNet.

• Select Build > Clean Solution to clean the object files.
13 QualNet 5.2 Programmer’s Guide

Chapter 2 Compiling QualNet on Linux
.
2.3 Compiling QualNet on Linux

This section describes how to compile QualNet on Linux platforms. Section 2.3.1 lists the third-party
software (expat development library and supported C++ compilers) required to compile QualNet.
Section 2.3.2 describes the precompiled executable files included in the QualNet distribution. Section 2.3.3
gives detailed instructions for compiling QualNet.

2.3.1 Third party Software

The expat development library and a C/C++ compiler are required to recompile QualNet. This section
describes how to install the required software on a Linux system.

2.3.1.1 Expat Development Library
The expat development library is needed to compile QualNet on Linux systems.

Install the expat development library from the Linux installation media or download site. Consult your
system administrator for help with installing the expat development library.

2.3.1.2 C/C++ Compiler
To recompile QualNet source code or custom addons, a C compiler (gcc) and C++ compiler (g++) are
required. Install the version of gcc appropriate for your system.

The version of gcc depends on the glibc version of the Linux distribution. To determine your version of
glibc, do the following:

• For Debian-based distributions (such as Ubuntu), run the following command:

dpkg -s libc6

• For the other Linux distributions, run the following command:

rpm -q glibc

See Table 2-4 to determine the gcc version required for your system.

TABLE 2-4. C++ Compilers for Linux

Distribution glibc Version gcc Version

CentOS 5.3 2.5 4.1

CentOS 5.4 2.5 4.1

openSUSE 10.2 2.5 4.1

openSUSE 11.1 2.9 4.3

Red Hat Enterprise Linux 5.3 2.5 4.1

Red Hat Enterprise Linux 5.4 2.5 4.1

SUSE Linux Enterprise Server 10 SP2 2.4 4.1

SUSE Linux Enterprise Server 11 2.9 4.3

Ubuntu 9.10 (Karmic) 2.10 4.4
QualNet 5.2 Programmer’s Guide 14

Compiling QualNet on Linux Chapter 2
Install the right version of gcc from the Linux installation media or download site. Consult your system
administrator for help with installing gcc.

Most gcc installations include g++. If g++ is not included, then install the version of g++ compatible with the
version of gcc installed. Consult your system administrator for help with installing g++.

2.3.2 Executable Files

For Linux platforms, the QualNet distribution includes the following executable files:

• qualnet-precompiled-32bit (included only for 32-bit platforms): This is a 32-bit executable that can run
on 32-bit platforms.

• qualnet-precompiled-64bit (included only for 64-bit platforms): This is a 64-bit executable that can run
on 64-bit platforms.

• qualnet: This is a copy of qualnet-precompiled-32bit for 32-bit platforms and a copy of qualnet-
precompiled-64bit for 64-bit platforms.

Note that the file qualnet is overwritten every time you recompile QualNet. If you recompile QualNet but
want to use the pre-built executable, then copy the file qualnet-precompiled-32bit (or qualnet-
precompiled-64bit) to qualnet.

These executable files have been compiled with all model libraries that do not require third-party software
(see Section 2.5). Your license file will enable the model libraries that are part of the base QualNet
Developer distribution (Developer, Multimedia and Enterprise, and Wireless Model Libraries) and any
additional model libraries purchased by you. QualNet does not need to be recompiled in order to use the
models in these libraries.

However, QualNet will need to be recompiled if the source code is modified or certain addons are included
(see Section 2.5).

Note: To check the version of gcc installed on your system, type the following command in a
command window: gcc -v.

Note: To enquire about QualNet support on operating systems or compilers not listed in Table 2-
4, contact sales@scalable-networks.com.

Note: The executable files will run only on the machine on which QualNet is installed. To use
QualNet on a different machine, it must be installed on that machine.
15 QualNet 5.2 Programmer’s Guide

Chapter 2 Compiling QualNet on Linux
2.3.3 Compiling QualNet

To compile QualNet on a Linux system, perform the following steps:

1. Open a command window.

2. Go to QUALNET_HOME/main folder.

3. QUALNET_HOME/main includes makefiles for different combinations of glibc and gcc versions. To

automatically select the makefile for your system, type the following command:

./configure.sh

This script will check whether the expat development library and C/C++ compiler required for compiling
QualNet on your system are already installed. If the required software is not found on your system, the
script will prompt you to install the software. Install the required software and run the script again.

If the required software is found on the system, the script will prompt you for the model libraries that
should be compiled with QualNet and will create a file called Makefile in the folder QUALNET_HOME/
main.

If the script is unable to create Makefile or if you want to select the makefile yourself, then make a copy
of the makefile appropriate for the glibc and gcc versions installed on your system (see Table 2-5).

Note: Once you have created the makefile using this script, you do not need to run the script
again unless you want to change the list of libraries to be compiled with QualNet.

Notes: 1. To check the version of gcc installed on your system, type the following command in a

command window: gcc -v.

2. To check the version of glibc installed on your system, type one the following

commands in a command window:

• For Debian-based distributions (such as Ubuntu): dpkg -s libc6

• For the other Linux distributions: rpm -q glibc

3. If there is no makefile listed for the glibc and gcc versions installed on your system, try

the makefile that is closest to your versions. However, the makefile may not work for

your system. If you need help, contact support@scalable-networks.com.
QualNet 5.2 Programmer’s Guide 16

Compiling QualNet on Linux Chapter 2
For example, for Red Hat Enterprise Linux 5.3 and other Linux distributions with glibc 2.5 and gcc
4.1 on a 32-bit platform, use the following command to make a copy of the makefile:

cp Makefile-linux-glibc-2.5-gcc-4.1 Makefile

4. Compile QualNet by using the following command (it takes several minutes for QualNet to compile):

make

This creates the QualNet executable in the QUALNET_HOME/bin directory. For Linux systems, the
executable is called qualnet.

To recompile QualNet, run make again. However, it is sometimes useful to delete all object files before
recompiling. Use the following commands to remove all object (.o) files and recompile:

TABLE 2-5. Linux Makefiles

Distribution glibc
Version

gcc
Version

Makefile for 32-bit
Executable

(for 32-bit and 64-bit
Platforms)

Makefile for 64-bit
Executable

(for 64-bit Platforms)

SUSE Linux Enterprise Server
10 SP2

2.4 4.1 Makefile-linux-glibc-2.4-
gcc-4.1

Makefile-linux-x86_64-
glibc-2.4-gcc-4.1

CentOS 5.3

CentOS 5.4

openSUSE 10.2

Red Hat Enterprise Linux 5.3

Red Hat Enterprise Linux 5.4

2.5 4.1 Makefile-linux-glibc-2.5-
gcc-4.1

Makefile-linux-x86_64-
glibc-2.5-gcc-4.1

openSUSE 11.1

SUSE Linux Enterprise Server 11

2.9 4.3 Makefile-linux-glibc-2.9-
gcc-4.3

Makefile-linux-x86_64-
glibc-2.9-gcc-4.3

Ubuntu 9.10 (Karmic) 2.10 4.4 Makefile-linux-glibc-
2.10-gcc-4.4

Makefile-linux-x86_64-
glibc-2.10-gcc-4.4
17 QualNet 5.2 Programmer’s Guide

Chapter 2 Compiling QualNet on Mac OS X
make clean
make

.
2.4 Compiling QualNet on Mac OS X

This section describes how to compile QualNet on Mac OS X platforms. Section 2.4.1 lists the supported
C++ compilers. Section 2.4.2 describes the precompiled executable files included in the QualNet
distribution. Section 2.4.3 gives detailed instructions for compiling QualNet.

2.4.1 C/C++ Compilers

To compile QualNet source code or custom addons, the compilers listed in Table 2-6 are required.

The proper version of g++ and gcc must be installed on your system in order to compile QualNet.

2.4.2 Executable Files

For Mac OS X platforms, the QualNet distribution includes the following executable files:

qualnet-precompiled-leopard-32bit: This is pre-built executable for Leopard platforms.

• qualnet-precompiled-snow-leopard-32bit: This is pre-built 32-bit executable for Snow Leopard
platforms.

• qualnet-precompiled-snow-leopard-64bit: This is pre-built 64-bit executable for Snow Leopard
platforms.

• qualnet: This is a copy of qualnet-precompiled-snow-leopard-32bit.

Note that the file qualnet is overwritten every time you recompile QualNet. If you recompile QualNet but
want to use the pre-built executable, then copy the appropriate pre-built executable file to qualnet.

These executable files have been compiled with all model libraries that do not require third-party software
(see Section 2.5). Your license file will enable the model libraries that are part of the base QualNet
Developer distribution (Developer, Multimedia and Enterprise, and Wireless Model Libraries) and any
additional model libraries purchased by you. QualNet does not need to be recompiled in order to use the
models in these libraries.

However, QualNet will need to be recompiled if the source code is modified or certain addons are included
(see Section 2.5).

2.4.3 Compiling QualNet

To compile QualNet on a Mac OS X system, perform the following steps:

TABLE 2-6. C/C++ Compilers for Mac OS X

Platform g++ Version gcc Version

Mac OS X 10.5 (Leopard) 4.0 4.0

Mac OS X 10.6 (Snow Leopard) 4.2 4.2
QualNet 5.2 Programmer’s Guide 18

Activating and Deactivating Addons Chapter 2
1. Open a command window.

2. Go to QUALNET_HOME/main directory.

3. QUALNET_HOME/main includes makefiles for different Mac OS X versions. Make a copy of the

makefile appropriate for your platform (see Table 2-7).

For example, to create a 32-bit executable on Snow Leopard, use the following command to make a
copy of the makefile:

cp Makefile-mac-x86-osx-10.6 Makefile

4. Compile QualNet by using the following command (it takes several minutes for QualNet to compile):

make

This creates the QualNet executable in the QUALNET_HOME/bin directory. For Mac OS X systems,
the executable is called qualnet.

To recompile QualNet, run make again. However, it is sometimes useful to delete all object files before
recompiling. Use the following commands to remove all object (.o) files and recompile:

make clean
make

.
2.5 Activating and Deactivating Addons

Addons are components of QualNet which provide enhanced features and functionality. Some of these are
included with the QualNet distribution, whereas others are distributed separately. Addons may contain
additional source code, pre-compiled library files, and third party utilities. Addons can be activated or
deactivated independently.

QualNet addons fall into the following classes:

• Libraries: Protocol (model) libraries sold with QualNet

• Interfaces: External interfaces requiring third party software

• Custom addons: Special purpose addon modules and user-developed addons

• Contributed models: Models developed and provided by Scalable Network Technologies customers for
distribution

TABLE 2-7. Mac OS X Makefiles

Platform Makefile for 32-bit Executable Makefile for 64-bit Executable

Leopard Makefile-mac-x86-osx-10.5 N/A

Snow Leopard
(32-bit kernel mode)

Makefile-mac-x86-osx-10.6 Makefile-mac-x86_64-osx-10.6
19 QualNet 5.2 Programmer’s Guide

Chapter 2 Activating and Deactivating Addons
Model Libraries Precompiled with QualNet

The source code, scenarios, and documentation for the following model libraries are included in the
QualNet distribution. In addition, the precompiled executable files included in the distribution (see
Section 2.2.2, Section 2.3.2, and Section 2.4.2) have been compiled with these libraries:

• Developer (including STK interface)

• Multimedia and Enterprise

• Wireless

• Advanced Wireless

• Cellular

• Satellite

• Sensor Networks Model Library

• UMTS

• Urban Propagation

To deactivate or reactivate any of these libraries (except Developer, Multimedia and Enterprise, and
Wireless), see Section 2.5.1 (for Windows), Section 2.5.2 (for Linux), or Section 2.5.3 (for Mac OS X).

Model Libraries Included with QualNet that Require Compilation

The source code, scenarios, and documentation for the following model libraries and components are
included in the QualNet distribution. However, the precompiled executable files included in the distribution
have not been compiled with these libraries and components:

• ALE/ASAPS Advanced Propagation

• TIREM Advanced Propagation

• Standard Interfaces - HLA

• Standard Interfaces - DIS

The libraries and components listed above require third-party software. In order to use these, you must
install the additional software and recompile QualNet. For details of installing the additional software, refer
to the model library documentation. For details of compiling QualNet with any of these libraries or
components, see Section 2.5.1 (for Windows), Section 2.5.2 (for Linux), or Section 2.5.3 (for Mac OS X).

Model Libraries and Addons Not Included in QualNet Distribution

Any model library or addon not included in the QualNet distribution will need to be downloaded separately
and QualNet will need to be recompiled in order to use the library or addon. For instructions for
downloading the model library or addon and any additional requirements, refer to the library or addon
documentation. For details of compiling QualNet with the model library or addon, see Section 2.5.1 (for
Windows), Section 2.5.2 (for Linux), or Section 2.5.3 (for Mac OS X).

Section 2.5.1 describes how to activate and deactivate addons on Windows systems. Section 2.5.2
describes how to activate and deactivate addons on Linux systems. Section 2.5.3 describes how to
activate and deactivate addons on Mac OS X systems.

Note: In the following sections, we use the Satellite Library addon as an example. Users should
modify the addon name in the following instructions to match the name of the addon they
want to activate or deactivate.
QualNet 5.2 Programmer’s Guide 20

Activating and Deactivating Addons Chapter 2
2.5.1 Activating and Deactivating Addons on Windows

To activate or adjective a QualNet addon on Windows, perform the following steps:

1. Open the file QUALNET_HOME/main/Makefile-addons-windows with a text editor.

2. To activate the addon, locate and uncomment the include statement for the addon makefile.

For the Satellite Library, change the line

#include ../libraries/satellite/Makefile-windows

to
include ../libraries/satellite/Makefile-windows

To deactivate the addon, comment out the include statement for the addon makefile.

If you want to activate an addon for which there is no include statement, then add an include statement
for the addon makefile similar to the one for the Satellite Library.

3. Recompile QualNet, as described in Section 2.2.3.

2.5.2 Activating Addons on Linux

On linux systems, model libraries and addons can be activated or deactivated manually (see
Section 2.5.2.1) or by using the configure.sh script (see Section 2.5.2.2).

2.5.2.1 Activating Addons Manually

To manually activate or deactivate a QualNet addon on Linux systems, perform the following steps:

1. Open the file QUALNET_HOME/main/Makefile-addons-unix with a text editor.

2. To activate the addon, locate and uncomment the include statement for the addon makefile.

For the Satellite Library, change the line

#include ../libraries/satellite/Makefile-unix

to
include ../libraries/satellite/Makefile-unix

To deactivate the addon, comment out the include statement for the addon makefile.

If you want to activate an addon for which there is no include statement, then add an include statement
for the addon makefile similar to the one for the Satellite Library.

3. Recompile QualNet, as described Section 2.3.3.

Note: Delete all object (.obj) files before recompiling by using the nmake clean command.

Note: Delete all object (.o) files before recompiling by using the make clean command.
21 QualNet 5.2 Programmer’s Guide

Chapter 2 Activating and Deactivating Addons
2.5.2.2 Activating Addons using the Script
To activate or deactivate one or more model libraries included in the QualNet distribution on Linux
systems, run the configure.sh script, as described in Section 2.3.3, to create a makefile that enables
the desired libraries. Recompile QualNet, as described in Section 2.3.3.

To activate any other model library or addon, perform the following steps:

1. Create the makefile by running the configure.sh script.

2. Open the file QUALNET_HOME/main/Makefile-addons-unix with a text editor.

3. Add an include statement for the addon makefile similar to the following (the following assumes that the

name of the addon to be activated is myaddon):

INSERT LIBRARIES HERE
include ../libraries/developer/Makefile-unix
include ../libraries/multimedia_enterprise/Makefile-unix
include ../libraries/wireless/Makefile-unix
include ../libraries/myaddon/Makefile-unix
...

4. Recompile QualNet, as described in Section 2.3.3.

2.5.3 Activating Addons on Mac OS X

To activate or deactivate a QualNet addon on Mac OS X systems, perform the following steps:

1. Open the file QUALNET_HOME/main/Makefile-addons-unix with a text editor.

2. To activate the addon, locate and uncomment the include statement for the addon makefile.

For the Satellite Library, change the line

#include ../libraries/satellite/Makefile-unix

to
include ../libraries/satellite/Makefile-unix

To deactivate the addon, comment out the include statement for the addon makefile.

If you want to activate an addon for which there is no include statement, then add an include statement
for the addon makefile similar to the one for the Satellite Library.

3. Recompile QualNet, as described Section 2.4.3.

Note: Delete all object (.o) files before recompiling by using the make clean command.

Note: Delete all object (.o) files before recompiling by using the make clean command.
QualNet 5.2 Programmer’s Guide 22

Advanced Compilation Options Chapter 2
.
2.6 Advanced Compilation Options

The folder QUALNET_HOME/main contains several Makefiles which are used for building QualNet. The
Makefiles have been structured in a platform-independent way so that minimal changes are required to
modify the build process. The Makefile organization is shown in Table 2-8.

The common files included in Windows and UNIX (Linux and Mac OS X) Makefiles are different because
the Visual C++ development environment differs from UNIX compilers and they have different sets of
commands. However, the general organization of the files is similar. The Makefile-[platform] files are used
to make changes to the OPT, DEBUG and FLAGS macros as appropriate for that platform. Other
modifications should be made to the files that it includes. For instance, the user can add or modify compiler
flags in Makefile-unix-common and Makefile-windows-common files.

Example:

The following segment from QUALNET_HOME/main/Makefile-windows-common shows how to add a
compiler option:

CXXFLAGS = \
/GX /MT /nologo \
$(INCLUDE_DIRS) \
$(FLAGS) \
$(DEBUG) \
$(OPT) \
$(ADDON_OPTIONS) \
-DTEST_FLAG

To compile customized source files into QualNet, follow the instructions in Section 4.10 for creating an
Addon, Library or Interface.

TABLE 2-8. Makefile Organization

File Description

Makefile-addons-unix Makefile to include different addons for Linux and Mac
OS X platforms.

Makefile-addons-windows Makefile to include different addons for Windows
platforms.

Makefile-common Platform-neutral makefile. Defines the master list of
source files, include directories, and kernel object files.

Makefile-unix-common Rules for Linux and Mac OS X platforms. Included in the
Linux makefiles.

Makefile-unix-first-target Contains target ‘all’ for Linux and Mac OS X platforms.
Included in the Linux makefiles.

Makefile-windows-common Rules for Windows platforms. Included in the Windows
makefiles (seeTable 2-3).

Makefile-windows-first-target Contains target ‘all’ for Windows platforms.Included in
the Windows makefiles (seeTable 2-3).

Makefile-windows-targets Rules for Windows platforms defined last so they can
use macro values such as $(OPT) and $(DEBUG).
Included in the Windows makefiles (seeTable 2-3).
23 QualNet 5.2 Programmer’s Guide

Chapter 2 Debugging QualNet
.
2.7 Debugging QualNet

This section describes how to debug QualNet on Windows systems (see Section 2.7.1) and on Linux and
Mac OS X systems (see Section 2.7.2)

2.7.1 Debugging on Windows

To run the debugger, QualNet must be compiled with the debug option. (By default, QualNet is compiled
with the optimization option for runtime efficiency.) This section describes how to compile QualNet with the
debug option and how to debug QualNet in Visual C++ 2008 Express Edition (debugging in Microsoft
Visual Studio 2005 and Microsoft Visual Studio 2008 is similar).

Compiling QualNet with Debug Option

Perform the following steps to recompile QualNet with the debug option:

1. Open the command window for your compiler as described in section Section 2.2.3.1. Go to

QUALNET_HOME/main.

2. Copy the makefile for your compiler (see Section 2.2.3) to Makefile.

3. Edit Makefile as follows:

• Enable the DEBUG line by removing the ‘#’ character so it is displayed as:

DEBUG = /Zi

• Disable the OPT line by inserting a ‘#’ character at the beginning of the line so it is displayed as:

OPT = /Ox /Ob2

4. Recompile QualNet by typing the following commands:

nmake clean
nmake
QualNet 5.2 Programmer’s Guide 24

Debugging QualNet Chapter 2
Debugging in Visual C++ 2008 Express Edition

To debug QualNet, perform the steps described below if you are using Visual C++ 2008 Express Edition.
(Steps to debug in Microsoft Visual Studio 2008 are similar).

1. Start Visual C++ 2008 Express Edition.

2. Select File > Open > Project/Solution and select the executable file (qualnet.exe).

3. Select Project > Properties > Configuration Properties > Debugging.

Set Command to the path where the executable is located.

Set Command Arguments to the name of the scenario configuration (.config) file to be debugged.

Set Working Directory to the directory where the scenario configuration file is located.

4. Set the breakpoints as desired and debug using the commands listed in the Debug menu.

Notes: 1. When starting the program, several messages in one of the debugger status windows

may be displayed that look like the following:

Loaded 'C:\WINNT\SYSTEM32\COMCTL32.DLL', no matching
symbolic information found.

This is normal.

2. If the following error occurs, the configuration file specified in the Project > Properties

window is not in the working directory specified:

The thread 0x498 has exited with code 3 (0x3).
The program 'C:\snt\qualnet\5.2\bin\qualnet.exe' has
exited with code 3 (0x3).
25 QualNet 5.2 Programmer’s Guide

Chapter 2 Debugging QualNet
2.7.2 Debugging on Linux and Mac OS X Systems

To run the debugger on UNIX systems, QualNet must be compiled with the debug option. The Linux and
Mac OS X Makefiles already contain the -g compiler option by default to include debugging information in
the QualNet executable.

Compiling QualNet with Debug Option

By default, the optimization option of the compiler is enabled in the Linux and Mac OS X Makefiles. When
the optimization option is enabled, the compiler may optimize the program for better performance.
However, for better source level debugging, the optimization option of the compiler should be disabled and
the debug option should be enabled.

Perform following steps to recompile QualNet with the debug option enabled:

1. Go to QUALNET_HOME/main. Copy the makefile for your compiler (see Section 2.3.3 and

Section 2.4.3) to Makefile.

2. Edit Makefile as follows:

• Enable the DEBUG line by removing the ‘#’ character so it is displayed as:

DEBUG = -g

• Disable the OPT line by inserting a ‘#’ character at the beginning of the line so it is displayed as:

OPT = -O3

3. Recompile QualNet by typing the following commands:

make clean
make
QualNet 5.2 Programmer’s Guide 26

Debugging QualNet Chapter 2
Running the Debugger

QualNet can be run from within debug tools such as gdb or dbx. Here, we use gdb as an example.

To run gdb, perform the following steps:

1. Open a command window. Go to the directory where the scenario to be debugged is located.

2. Load the QualNet executable into gdb by typing the following command (this assumes that QualNet is

installed in /home/username/snt/qualnet/5.2):

gdb /home/username/snt/qualnet/5.2/bin/qualnet

3. From within the gdb environment, run your scenario in gdb by typing the following command (assuming

the scenario configuration file is myscenario.config):

run myscenario.config

4. To exit gdb, type following command in gdb:

quit

Refer to gdb user manual for more information on how to debug a program in gdb.
27 QualNet 5.2 Programmer’s Guide

3 Simulator Basics

In this chapter, we discuss the basics of QualNet Simulator. Section 3.1 provides an overview of discrete-
event simulation, and Section 3.2 describes how protocols are modeled in QualNet. Section 3.3 provides
implementation details of discrete-event simulation in QualNet, while Section 3.4 describes the
architecture of QualNet Simulator.

.
3.1 Overview of Discrete-event Simulation

QualNet is a discrete-event simulator. In discrete-event simulation, a system is modeled as it evolves over
time by a representation in which the system state changes instantaneously when an event occurs, where
an event is defined as an instantaneous occurrence that causes the system to change its state or to
perform a specific action. Examples of events are: arrival of a packet, a periodic alarm informing a routing
protocol to send out routing update to neighbors, etc. Examples of actions to take when an event occurs
are: sending a packet to an adjacent layer, updating state variables, starting or restarting a timer, etc.

In discrete-event simulation, the simulator maintains an event queue. Associated with each event is its
event time, i.e., the time at which the event is set to occur. Events in the event queue are sorted by the
event time. The simulator also maintains a simulation clock which is used to simulate time. The simulation
clock is advanced in discrete steps, as explained below.

The simulator operates by continually repeating the following series of steps until the end of simulation:

• The simulator removes the first event from the event queue, i.e., the event scheduled for the earliest
time.

• The simulator sets the simulation clock to the event time of the event. This may result in advancing the
simulation clock.

• The simulator handles the event, i.e., it executes the actions associated with the event. This may result
in changing the system state, scheduling other events, or both. If other events are scheduled, they may
be scheduled to occur at the current time or in the future.
QualNet 5.2 Programmer’s Guide 28

Modeling Protocols in QualNet Chapter 3
.
3.2 Modeling Protocols in QualNet

As discussed in Section 1.2, each node in QualNet runs a protocol stack, shown in Figure 1-1. Each layer
provides a service to the layer above it, by using the services of the layers below it.

Each protocol operates at one of the layers of the stack. Protocols in QualNet essentially operate as a
finite state machine. The occurrence of an event corresponds to a transition in the finite state machine. The
interface between the layers is also event based. Each protocol can either create events that make it
change its own state (or perform some event handling), or create events that are processed by another
protocol. To pass data to, or request a service from, an adjacent layer, a protocol creates an event for that
layer.

Figure 3-1 shows the finite state machine representation of a protocol in QualNet. At the heart of a protocol
model is an Event Dispatcher, which consists of a Wait For Event state and one or more Event Handler
states (see Figure 3-1). In the Wait For Event state, the protocol waits for an event to occur. When an event
for the protocol occurs, the protocol transitions to the Event Handler state corresponding to that event
(e.g., when Event 1 occurs, the protocol transitions to the Event 1 Handler state). In this Event Handler
state, the protocol performs the actions corresponding to the event, and then returns to the Wait For Event
state. Actions performed in the Event Handler state may include updating the protocol state, or scheduling
other events, or both.

FIGURE 3-1. Protocol Model in QualNet

Besides the Event Dispatcher, the protocol finite state machine has two other states: the Initialization state
and the Finalization state. In the Initialization state, the protocol reads external input to configure its initial
state. The protocol then transitions to the Wait For Event state.

The transition to the Finalization state occurs automatically at the end of simulation. In the Finalization
state, protocol statistics collected during the simulation are printed.

Initialization

Finalization

Event 1 Event 2
Wait For Event

Event Dispatcher

Event 1 Handler Event 2 Handler
29 QualNet 5.2 Programmer’s Guide

Chapter 3 Discrete-event Simulation in QualNet
.
3.3 Discrete-event Simulation in QualNet

This section describes implementation details of discrete-event simulation in QualNet: types of events,
data structures and classes to implement events, and API functions for event operations.

3.3.1 Events and Messages

In QualNet, the class used to represent an event is called a message. A message holds information about
the event such as the type of event, and the associated data. In the context of QualNet, the terms event
and message are often used interchangeably.

There are two types of events in QualNet: packet events and timer events. Packet events are used to
simulate exchange of data packets between layers or between nodes. Packet events are also used for
modeling communication between different entities at the same layer. Timer events are used to simulate
time-outs and are internal to a protocol. Packets events are discussed in Section 3.3.2.1 and timer events
are discussed in Section 3.3.2.2.

In this section, we describe the message class and the APIs for message operations.

3.3.1.1 Message Class
The class Message, defined in file QUALNET_HOME/include/message.h, is used to implement events.
Figure 3-2 shows the main components of this class. Both packet and timer events are implemented using
the Message class.

class Message
{
private:
 static const UInt8 SENT = 0x01; // Message is being sent
 ...
public:
 // The default constructor should not be used unless under specific
 // circumstances. The message is not initialized here.
 Message();
 ...
 short layerType; // Layer which will receive the message.
 short protocolType; // Protocol which will receive the
 // message in the layer.
 short instanceId; // Which instance to give message to (for multiple
 // copies of a protocol or application).
 short eventType; // Message's event type.
 ...
 int packetSize; // Size of the packet field.
 char *packet; // Simulates a data packet, including headers.
 ...
 int virtualPayLoadSize; // Size of “virtual” data.

 clocktype packetCreationTime; // If this is a packet, it’s creation time.
 ...
 std::vector<MessageInfoHeader> infoArray;
 ...
}

FIGURE 3-2. Message Class
QualNet 5.2 Programmer’s Guide 30

Discrete-event Simulation in QualNet Chapter 3
Some of the members of the Message class are explained below.

• layerType: This is the layer associated with the event.

• protocolType: This is the protocol associated with the event.

• instanceId: If there are multiple instances of a protocol, this field denotes the instance of the protocol
associated with the event.

• eventType: This is the type of the event. Event types are listed in QUALNET_HOME/include/api.h.

• packet: If the class instance is used to simulate an actual data packet in the network, this field stores
the packet. Headers added by different layers are included in this field.

• packetSize: This is the size of the packet field.

• virtualPayLoadSize: This is the size of that part of user data whose contents are not important and
hence is not allocated any memory, but whose size affects the calculation of transmission time and
buffer size.

• packetCreationTime: If the class instance is used to simulate an actual packet in the network, this
field stores the packet’s creation time.

• infoArray: This is an array that stores additional information that is used in the processing of the
event and for information that needs to be transported between layers or nodes. See Section 3.3.1.1.1
for details of this field.

3.3.1.1.1 Message infoArray Member

The message infoArray member is an array used to store extra information about the message that is
used for processing the message as well as information that needs to be transported between layers or
nodes. This information does not affect the transmission delay calculations because it does not model the
actual data being transmitted.

Each element of the array is a structure of type MessageInfoHeader, which is declared in
QUALNET_HOME/include/message.h and is shown in Figure 3-3.

typedef struct message_info_header_str
{
 unsigned short infoType; // type of the info field
 unsigned short infoSize; // size of buffer pointed to by "info" variable
 char* info; // pointer to buffer for holding info
} MessageInfoHeader;

FIGURE 3-3. MessageInfoHeader Data Structure
31 QualNet 5.2 Programmer’s Guide

Chapter 3 Discrete-event Simulation in QualNet
The fields of the MessageInfoHeader data structure are explained below.

• infoType: This indicates the type of the information contained in this struct. The value of this field can
be one of the enumerations of the type MessageInfoType which is declared in QUALNET_HOME/
include/message.h and is shown in Figure 3-4. Users can add additional members to this enumeration
for their use, as explained in Section 4.1.2.

• infoSize: This is the size of the info field of this struct.

• info: This is the pointer to the buffer that stores the information.

typedef enum message_info_type_str
{
 INFO_TYPE_UNDEFINED = 0, // an empty info field.
 INFO_TYPE_DEFAULT = 1, // default info type used in situations where
 // specific type is given to the info field.
 INFO_TYPE_AbstractCFPropagation, // type for abstract contention free
 // propagation info field.
 INFO_TYPE_AppName, // Pass the App name down to IP layer
 INFO_TYPE_StatCategoryName,
 INFO_TYPE_DscpName,
 ...
 INFO_TYPE_TransStatsDbContent,
 INFO_TYPE_NetStatsDbContent,
 ...
} MessageInfoType;

FIGURE 3-4. MessageInfoType Enumeration Type

Different elements of the infoArray field can be used for different purposes, for both timer events and
packet events. For example, one of the elements of the array can be used to store additional information
associated with a timer, e.g., for a timer indicating that a route has expired, the destination address for the
expired route can be stored in one of the elements of infoArray. This can assist the timer event handler
to locate and remove the correct entry in the routing table.

QualNet provides several APIs to manipulate the infoArray field. See Section 4.1.2 for a more detailed
description of the infoArray field and its associated APIs.

3.3.1.1.2 Message packet Field

The message packet field simulates the actual data being transmitted. Unlike the infoArray field, the
size of this field, indicated by the packetSize member of the Message class, does affect the
transmission delay calculations.
QualNet 5.2 Programmer’s Guide 32

Discrete-event Simulation in QualNet Chapter 3
3.3.1.2 Message APIs
Several API functions are available in QualNet for message operations. The message APIs can be called
from any layer. The prototypes for these functions can be found in the file QUALNET_HOME/include/
message.h. The implementation code for these functions can be found in the file QUALNET_HOME/main/
message.cpp. Some of the message APIs are listed below. Refer to API Reference Guide or the file
message.h for a complete list of message APIs and their parameters.

• MESSAGE_Send: This function schedules the specified event (message) to occur after the specified
delay.

Do not alter any fields of the message class instance after an event has been scheduled by
calling MESSAGE_Send.

• MESSAGE_Alloc: This function allocates a new message structure and sets the layerType,
protocolType and eventType fields of the structure to the values passed to the function as
parameters.

• MESSAGE_Free: This function frees the message specified. The packet and infoArray fields of the
message are freed, and then the message itself is freed.

• MESSAGE_AddInfo: This function allocates one element of the infoArray field of the specified
message. The type and size of the associated info field are passed as parameters.

• MESSAGE_ReturnInfo: This function takes the infoType as a parameter and returns a pointer to the
associated info field of the specified message.

• MESSAGE_ReturnInfoSize: This function takes the infoType as a parameter and returns the
associated infoSize field of the specified message.

• MESSAGE_PacketAlloc: This function allocates the packet field of the specified message. The size of
the packet field and the name of the protocol that creates the packet are passed as parameters.

• MESSAGE_ReturnPacket: This function returns a pointer to the packet field of the specified message.

• MESSAGE_ReturnActualPacketSize: This function returns the packetSize field of the specified
message.

• MESSAGE_CancelSelfMsg: This function cancels a message that had been scheduled earlier.

Do not free the message explicitly or re-use the message after canceling it. The function
MESSAGE_CancelSelfMsg also frees the memory associated with the message.

• MESSAGE_AddHeader: This function adds a header to the packet enclosed in the specified message.
The packetSize field of the message is incremented by the size of the header and the packet field
points to the newly allocated header. The header size and the name of the protocol that adds the
header are passed as a parameters.

• MESSAGE_RemoveHeader: This function removes a header from the packet enclosed in the specified
message. The packetSize field of the message is decremented by the size of the header, and the
packet field points to the space after the removed header. The header size and the name of the
protocol that removes the header are passed as parameters.

• MESSAGE_GetLayer: This function returns the layerType field of the specified message.

• MESSAGE_GetProtocol: This function returns the protocolType field of the specified message.

• MESSAGE_GetEvent: This function returns the eventType field of the specified message.
33 QualNet 5.2 Programmer’s Guide

Chapter 3 Discrete-event Simulation in QualNet
3.3.2 Types of Events

In QualNet, there are two types of events: packet events and timer events. Although both packet and timer
events are defined using the same Message class (see Section 3.3.1.1), they vary in their purpose and the
manner in which they are handled by QualNet.

3.3.2.1 Packet Events
Packet events are used to simulate transmission of packets across the network. A packet is defined as a
unit of virtual or real data at any layer of the protocol stack. When a node needs to send a packet to an
adjacent layer in the QualNet protocol stack, it schedules a packet event at the adjacent layer. The
occurrence of the packet event at the adjacent layer simulates the arrival of the packet.

When a protocol residing at a particular layer at one node sends packets the corresponding protocol at the
same layer at another node, the packet is passed down through the protocol stack at the sending node,
across the network, and then up through the protocol stack at the receiving node. At each level of the
protocol stack at the sending node, header information is added to the packet as it is sent to the layer
below. Each layer is responsible for sending the packet to its adjacent layer. At the receiving node, each
layer strips off its header and sends the packet to the layer above, until the original packet is finally
available to the receiving protocol. Figure 3-5 shows an example of this process for the case when the
originating protocol resides at the Application Layer. The steps in this process are listed below.

• The originating protocol creates a new message by using the API MESSAGE_Alloc. The protocol
creates the packet field of this message by using the API MESSAGE_PacketAlloc.

• The protocol puts the data to be sent to the receiving node in the packet field of the message, sets the
other fields of the message appropriately, and sends the message to the next layer (Transport Layer in
this case) by using the API MESSAGE_Send. Function MESSAGE_Send schedules a packet event for
the next layer to occur after a delay that is specified as a parameter.

• When the packet is received by the Transport Layer protocol, the Transport Layer protocol appends its
header to the packet by using the API MESSAGE_AddHeader and sets the header fields appropriately.
The Transport Layer protocol then sends the resulting packet to the next layer in the stack by using the
API MESSAGE_Send.

• The previous step is repeated at each layer in the protocol stack: Each layer adds its header to the
packet and sends the resulting packet to the next layer.

• When the packet arrives at the Physical Layer of the source node, it schedules a packet receive event
for the Physical Layer at the destination node.

• When a layer at the destination node receives a packet, it removes the corresponding header using the
API MESSAGE_RemoveHeader, and sends the resulting packet to the next higher layer in the protocol
stack using the API MESSAGE_Send.

• The previous step is repeated at each layer in the protocol stack: Each layer removes its header and
sends the resulting packet to the next higher layer.

• When the packet arrives at the Application Layer at the destination node, the receiving protocol
processes the packet and frees the message using the API MESSAGE_Free.
QualNet 5.2 Programmer’s Guide 34

Discrete-event Simulation in QualNet Chapter 3

FIGURE 3-5. The Life Cycle of a Packet

In QualNet, communication between adjacent layers can take place by using message APIs, as shown in
Figure 3-5, or by using layer-specific APIs. Message APIs are generic and can be used at any layer, while
layer-specific APIs are specific to a particular layer. Section 3.3.2.1.1 gives an overview of the use of layer-
specific APIs for packet exchange between layers. Section 3.3.2.1.2 gives an overview of the use of
message APIs for packet exchange between layers

3.3.2.1.1 Sending Packets Using Layer-specific APIs

To simplify protocol development, QualNet provides layer-specific API functions to send packets. Rather
than using the raw message API as shown in Figure 3-5, the protocol developer can simply use the layer-
specific API functions to send packets from a particular layer. The layer-specific API functions are
responsible for scheduling events at the adjacent layers as a packet travels through the protocol stack. The
APIs provided at each layer encapsulate the message APIs and hides details of scheduling events at the
adjacent layer, thus providing easy-to-use functions for sending out packets from a specific layer of the
protocol stack.

The layer-specific API functions vary for each layer. The API calls available at each layer are discussed in
the corresponding section of Chapter 4. To understand the available APIs at each layer, refer to the API
functions used for sending packets in the source code of QualNet implementation of protocols operating at
that layer. As an example, we give an overview of using the layer-specific packet exchange APIs available
at the Application Layer in this section.

Packet exchanges at the Application Layer fall into two categories:

• Exchanging packets with the UDP protocol at the Transport Layer

• Exchanging packets with the TCP protocol at the Transport Layer
35 QualNet 5.2 Programmer’s Guide

Chapter 3 Discrete-event Simulation in QualNet
Table 3-1 lists the API calls available for sending packets at the Application Layer using UDP at the
Transport Layer. Table 3-2 lists the API calls available for sending packets at the Application Layer using
TCP at the Transport Layer. These functions are defined in QUALNET_HOME/main/app_util.cpp. The
underlying code for each of these functions creates and sends messages using the message APIs
discussed in Section 3.3.1.2.

The APP_UdpSendNewHeaderVirtualDataWithPriority function is overloaded and can also be
used to send to a particular port number.

TABLE 3-1. API Functions for Sending Packets via UDP

API Function Description

APP_UdpSendNewData Sends user data via UDP to a destination after a
user-specified delay.

APP_UdpSendNewDataWithPriority Sends user data via UDP to a destination after a
user-specified delay with a user-specified priority
value.

APP_UdpSendNewHeaderData Appends an application header to user data and
sends it via UDP to a destination after a user-
specified delay.

APP_UdpSendNewHeaderDataWithPriority Appends an application header to user data and
sends it via UDP to a destination after a user-
specified delay with a user-specified priority

APP_UdpSendNewHeaderVirtualDataWithPriority Sends a packet composed of an application
header containing useful information and user data
whose contents are unimportant and serve only to
add to resource consumption (queue capacity,
transmission delays, etc.), via UDP to a destination
after a user-specified delay with a user-specified
priority value.

TABLE 3-2. API Functions for Sending Packets via TCP

API Function Description

APP_TcpSendData Sends user data via TCP to a destination.

APP_TcpSendNewHeaderVirtualData Sends a packet composed of an application
header containing useful information and user data
whose contents are unimportant and serve only to
add to resource consumption (queue capacity,
transmission delays, etc.), via TCP to a
destination.
QualNet 5.2 Programmer’s Guide 36

Discrete-event Simulation in QualNet Chapter 3
Figure 3-6 shows a code segment from the RIP implementation function RipSendResponse that uses the
API function APP_UdpSendNewDataWithPriority to send a packet from the Application Layer. Function
RipSendResponse is implemented in QUALNET_HOME/libraries/developer/src/routing_rip.cpp. Notice
that initially a variable, response, is defined. This variable is the user data. This variable is then filled with
information (RIP command and RIP version information). Next, the function assigns the destination
address and calls the API function APP_UdpSendNewDataWithPriority to send the packet. The
parameters of this API function are explained below.

• node: Pointer to the node

• appType: Application type

• sourceAddr: Source address

• sourcePort: Source port number

• destAddr: Destination address

• outgoingInterface: Outgoing interface index

• payload: Pointer to user data

• payloadSize: Size of user data

• TosType: Priority for the packet

• delay: Delay after which data is to be sent

• traceProtocol: Trace protocol
37 QualNet 5.2 Programmer’s Guide

Chapter 3 Discrete-event Simulation in QualNet
static void RipSendResponse(Node* node, int interfaceIndex,
 RipResponseType type)
{
 ...
 unsigned routeIndex;
 RipResponse response;
 response.command = RIP_RESPONSE; // Response message
 ...
 routeIndex = 0;
 while (routeIndex < dataPtr->numRoutes)
 {
 int rteIndex;
 ...
 if (rteIndex != 0)
 {
 NodeAddress destAddress;
 if (NetworkIpIsWiredNetwork(node, interfaceIndex))
 {
 destAddress = NetworkIpGetInterfaceBroadcastAddress(
 node,
 interfaceIndex);
 }
 else
 {
 destAddress = ANY_DEST;
 }

 APP_UdpSendNewDataWithPriority(
 node,
 APP_ROUTING_RIP,
 NetworkIpGetInterfaceAddress(node, interfaceIndex),
 APP_ROUTING_RIP,
 destAddress,
 interfaceIndex,
 (char*) &response,
 RIP_HEADER_SIZE + RIP_RTE_SIZE * rteIndex,
 IPTOS_PREC_INTERNETCONTROL,
 RANDOM_nrand(dataPtr->updateSeed)
 % (clocktype) RIP_STARTUP_DELAY,
 TRACE_RIP);
 ...
 }
 }
}

FIGURE 3-6. Sending a Packet Using a Layer-specific API

3.3.2.1.2 Sending Packets Using Message APIs

Layer-specific APIs provide a convenient means for sending packets through the protocol stack. However,
sometimes it may be desirable to bypass the layer-specific APIs. This may be due to certain specifics of
protocol design. This section describes how to send packets using message APIs.
QualNet 5.2 Programmer’s Guide 38

Discrete-event Simulation in QualNet Chapter 3
To understand the use of message APIs, take a look at the implementation of the layer-specific API,
APP_UdpSendNewDataWithPriority, used in function RipSendResponse (see Section 3.3.2.1.1) to send a
packet from the Application Layer to the UDP protocol at the Transport Layer.
APP_UdpSendNewdataWithPriority is implemented in QUALNET_HOME/main/app_util.cpp and is shown
in Figure 3-7.

void
APP_UdpSendNewDataWithPriority(
 Node *node,
 AppType appType,
 NodeAddress sourceAddr,
 short sourcePort,
 NodeAddress destAddr,
 int outgoingInterface,
 char *payload,
 int payloadSize,
 TosType priority,
 clocktype delay,
 TraceProtocolType traceProtocol)
{
 Message *msg;
 AppToUdpSend *info;
 ActionData acnData;

 msg = MESSAGE_Alloc(
 node,
 TRANSPORT_LAYER,
 TransportProtocol_UDP,
 MSG_TRANSPORT_FromAppSend);

 MESSAGE_PacketAlloc(node, msg, payloadSize, traceProtocol);

 memcpy(MESSAGE_ReturnPacket(msg), payload, payloadSize);
 MESSAGE_InfoAlloc(node, msg, sizeof(AppToUdpSend));
 info = (AppToUdpSend *) MESSAGE_ReturnInfo(msg);
 SetIPv4AddressInfo(&info->sourceAddr, sourceAddr);
 info->sourcePort = sourcePort;
 SetIPv4AddressInfo(&info->destAddr, destAddr);
 info->destPort = (short) appType;
 info->priority = priority;
 info->outgoingInterface = outgoingInterface;
 info->ttl = IPDEFTTL;

 //Trace Information
 acnData.actionType = SEND;
 acnData.actionComment = NO_COMMENT;
 TRACE_PrintTrace(node, msg, TRACE_APPLICATION_LAYER,
 PACKET_OUT, &acnData);

 MESSAGE_Send(node, msg, delay);
}

FIGURE 3-7. Implementation of APP_UdpSendNewDataWithPriority
39 QualNet 5.2 Programmer’s Guide

Chapter 3 Discrete-event Simulation in QualNet
Function APP_UdpSendNewDataWithPriority allocates a message variable msg using the API
MESSAGE_Alloc. This is followed by a call to MESSAGE_PacketAlloc to allocate the packet field of the
message. The third parameter to MESSAGE_PacketAlloc, payloadSize, is used to set the size of the
packet field. Once MESSAGE_PacketAlloc has been called, the packet field in the message structure
can be used to access this space. The API function MESSAGE_ReturnPacket is used to access the
packet field of the message.

The user data is then copied into the packet field using the memcpy function. Additional information can
be stored in the infoArray[0].info field of the message (see Section 3.3.1.1.1), which is allocated
using the API MESSAGE_InfoAlloc. (MESSGE_InfoAlloc is equivalent to using MESSAGE_AddInfo with
INFO_TYPE_DEFAULT as the info field type, and allocates the 0th element of infoArray). The API
MESSAGE_ReturnInfo is used to access the infoArray[0].info field of the message. After storing
information in the infoArray[0].info field of the message, the packet is sent to the next layer using
the MESSAGE_Send function. (When the message is allocated using MESSAGE_Alloc in the first step of
APP_UdpSendNewDataWithPriority, the layerType, protocolType and eventType fields are set to
TRANSPORT_LAYER, TransportProtocol_Udp and MSG_TRANSPORT_FromAppSend, respectively.
The result of calling MESSAGE_Send in the last step of APP_UdpSendNewDataWithPriority is to
schedule a MSG_TRANSPORT_FromAppSend event at the UDP protocol at the Transport Layer after a
delay specified by the third parameter of MESSAGE_Send.)

When a packet from the Application Layer arrives at the UDP protocol at the Transport Layer, UDP
appends a header to the packet and sends it to the next layer (Network Layer). This is done in the UDP
function TransportUdpSendToNetwork, which is implemented in QUALNET_HOME//libraries/developer/
src/transport_udp.cpp and is shown in Figure 3-8.
QualNet 5.2 Programmer’s Guide 40

Discrete-event Simulation in QualNet Chapter 3
void
TransportUdpSendToNetwork(Node *node, Message *msg)
{
 TransportDataUdp *udp = (TransportDataUdp *) node->transportData.udp;
 TransportUdpHeader *udpHdr;
 AppToUdpSend *info;

 if (udp->udpStatsEnabled == TRUE)
 {
 udp->statistics->numPktFromApp++;
 }

 MESSAGE_AddHeader(node, msg, sizeof(TransportUdpHeader), TRACE_UDP);

 udpHdr = (TransportUdpHeader *) msg->packet;
 info = (AppToUdpSend *) MESSAGE_ReturnInfo(msg);

 udpHdr->sourcePort = info->sourcePort;
 udpHdr->destPort = info->destPort;
 udpHdr->length = (unsigned short) MESSAGE_ReturnPacketSize(msg);
 udpHdr->checksum = 0; /* checksum not calculated */

 ActionData acnData;
 acnData.actionType = SEND;
 acnData.actionComment = NO_COMMENT;
 TRACE_PrintTrace(node,
 msg,
 TRACE_TRANSPORT_LAYER,
 PACKET_OUT,
 &acnData);

 NetworkIpReceivePacketFromTransportLayer(
 node,
 msg,
 info->sourceAddr,
 info->destAddr,
 info->outgoingInterface,
 info->priority,
 IPPROTO_UDP,
 FALSE,
 info->ttl);
}

FIGURE 3-8. Adding a Header at Transport Layer

In function TransportUdpSendToNetwork, the API function MESSAGE_AddHeader is used to add a
header before a packet. This function reserves additional space in the packet for a header. The header
size is specified by the third parameter of the function. MESSAGE_AddHeader also appropriately updates
the packetSize field in the message structure. After this function is called, the packet field in the
message structure points to the space occupied by this new header.

TransportUdpSendToNetwork next updates the header fields and calls the Transport Layer-specific API
function NetworkIpReceivePacketFromTransportLayer to send the packet to the next layer (the Network
Layer). In this way the packet travels down the protocol stack with each layer adding its own header. This
is graphically illustrated in Figure 3-5.
41 QualNet 5.2 Programmer’s Guide

Chapter 3 Discrete-event Simulation in QualNet
3.3.2.2 Timer Events
Timer events are used to perform the function of alarms. They essentially allow an application to schedule
events for itself at a future time. Periodic alarms are implemented by re-setting the timer event after it has
occurred. Timer events are set and received within a protocol and they do not travel through the protocol
stack.

Examples of timer events are:

• Timer alarm to send route updates every 5 seconds

• Timer alarm to remove expired route from routing table 3 seconds after it is installed

3.3.2.2.1 Setting Timers

Timer events are also implemented using the message class described in Section 3.3.1.1. To set a timer
event, allocate a new message using the function MESSAGE_Alloc (see Section 3.3.1.2). Pass as
parameters to the function the node pointer, the layer, the protocol and the event type. The event types are
defined in QUALNET_HOME/include/api.h.

For example, the following code schedules an event of type MSG_APP_RIP_RegularUpdateAlarm for
the RIP protocol at the Application Layer to occur after a delay of 5 seconds from the current simulation time.

Message *newMsg;
clocktype delay;
newMsg = MESSAGE_Alloc(node,

APP_LAYER,
APP_ROUTING_RIP,
MSG_APP_RIP_RegularUpdateAlarm);

delay = 5* SECOND;
MESSAGE_Send(node, newMsg, delay);

Note that if the delay is set to 0, the event occurs after the current function finishes execution but before
the simulation clock is advanced.

It may be required to store some additional information with a timer. The message infoArray field is
used with timers for this purpose. As an example, consider a time-out timer to receive an acknowledgment
for a transmitted packet. In this case, the infoArray[0].info field of the message can store the
sequence number and destination IP address of the packet for which an acknowledgment is expected. See
Section 3.3.1.1.1 for more details of the message infoArray field.

3.3.2.2.2 Canceling Timers

The API function MESSAGE_CancelSelfMsg (see Section 3.3.1.2) is used to cancel a message in the
QualNet scheduler. The message must be a self message, i.e., a message the node sent to itself. The
function accepts a pointer to a node and a pointer to the message to be cancelled as arguments.

For example, consider the following function call:

MESSAGE_CancelSelfMsg(node, msgToCancelPtr)

In the function call above, msgToCancelPtr is a pointer to the original message that needs to be canceled.
To use this function, the pointer to the original message has to be retained.
QualNet 5.2 Programmer’s Guide 42

QualNet Simulator Architecture Chapter 3
.
3.4 QualNet Simulator Architecture

As discussed in Section 3.2, a protocol model in QualNet has three components: Initialization, Event
Handling, and Finalization. Each of these functions is performed hierarchically: first at the node level, then
at the layer level, and finally at the protocol level. The following sections describe the hierarchy of these
three functions.

3.4.1 Initialization Hierarchy

At the start of simulation, each node in the network is initialized. Function PARTITION_InitializeNodes,
defined in QUALNET_HOME/main/partition.cpp and shown in Figure 3-9, is the function which initializes
nodes. Function PARTITION_InitializeNodes initializes the layers of the protocol stack running at every
node by calling the initialization function for each layer. The layers are initialized in a bottom-up order,
starting from the bottom-most layer. Some layers, such as the MAC Layer, are initialized globally, while the
other layers are initialized one node at a time. For example, function MAC_Initialize initializes the MAC
Layer for all nodes, while function TRANSPORT_Initialize initializes the Transport Layer at a given node.
There are two initialization functions for the Application Layer: one for traffic-generating protocols and the
other for routing protocols running at the Application Layer (these are discussed in detail in Section 4.2).
Function APP_Initialize initializes the Application Layer routing protocols for a given node, and function
APP_InitializeApplications initializes the Application Layer traffic-generating protocols at all nodes.
43 QualNet 5.2 Programmer’s Guide

Chapter 3 QualNet Simulator Architecture
void PARTITION_InitializeNodes(PartitionData* partitionData)
{
 int i, j;
 Node* nextNode = NULL;
 ...
 // Initalize global antenna model
 ANTENNA_GlobalAntennaModelPreInitialize(partitionData);
 ANTENNA_GlobalAntennaPatternPreInitialize(partitionData);
 ...
 nextNode = partitionData->firstNode;
 while (nextNode != NULL) {
 ...
 NETWORK_PreInit(nextNode, nodeInput);
 PHY_Init(nextNode, nodeInput);
 ...
 nextNode = nextNode->nextNodeData;
 }
 ...
 // Initialize globally, rather than a node at a time.
 MAC_Initialize(partitionData->firstNode, nodeInput);
 ...
 nextNode = partitionData->firstNode;
 BOOL wasFound;
 char name[MAX_STRING_LENGTH];
 while (nextNode != NULL)
 {
 ...
 NETWORK_Initialize(nextNode, nodeInput);
 TRANSPORT_Initialize(nextNode, nodeInput);
 APP_Initialize(nextNode, nodeInput);
 ...
 nextNode = nextNode->nextNodeData;
 }

 // Initialize globally, rather than a node at a time.
 APP_InitializeApplications(partitionData->firstNode,
 nodeInput);
 ...
}

FIGURE 3-9. Node Initialization Function
QualNet 5.2 Programmer’s Guide 44

QualNet Simulator Architecture Chapter 3
Each layer initialization function, in turn, calls an initialization function for each protocol running at that
layer. For example, function TRANSPORT_Initialize, defined in QUALNET_HOME/main/transport.cpp and
shown in Figure 3-10, calls the initialization functions for the TCP and UDP protocols, TransportTcpInit and
TransportUdpInit, respectively. Function TransportTcpInit is defined in QUALNET_HOME/libraries/
developer/src/transport_tcp.cpp and function TransportUdpInit is defined in QUALNET_HOME/libraries/
developer/src/transport_udp.cpp.

void TRANSPORT_Initialize(Node * node,
 const NodeInput * nodeInput)
{
 ...

 node->transportData.tcp = NULL;
 node->transportData.udp = NULL;

 TransportTcpInit(node, nodeInput);
 TransportUdpInit(node, nodeInput);
 ...
 }

FIGURE 3-10. Layer Initialization Function
45 QualNet 5.2 Programmer’s Guide

Chapter 3 QualNet Simulator Architecture
The initialization function of a protocol creates and initializes the protocol state variables, as well as the
protocol statistics variables. For example, Figure 3-11 shows the initialization function for the UDP
protocol, TransportUdpInit. Function TransportUdpInit creates the UDP state variable udp, which is a data
structure of type TransportDataUdp. If UDP statistics collection is enabled, TransportUdpInit also
creates and initializes the UDP statistics variable, which is a data structure of type TransportUdpStat.
TransportDataUdp and TransportUdpStat are defined in QUALNET_HOME/include/transport.h and
QUALNET_HOMElibraries/developer/src/transport_udp.h, respectively.

void TransportUdpInit(Node *node, const NodeInput *nodeInput)
{
 char buf[MAX_STRING_LENGTH];
 BOOL retVal;
 TransportDataUdp* udp =
 (TransportDataUdp*)
 MEM_malloc(sizeof(TransportDataUdp));
 node->transportData.udp = udp;
 TransportUdpInitTrace(node, nodeInput);
 IO_ReadString(
 node->nodeId,
 ANY_ADDRESS,
 nodeInput,
 "UDP-STATISTICS",
 &retVal,
 buf);

 if (retVal == FALSE || strcmp(buf, "NO") == 0)
 {
 udp->udpStatsEnabled = FALSE;
 }
 else if (strcmp(buf, "YES") == 0)
 {
 udp->udpStatsEnabled = TRUE;
 }
 else
 {
 ...
 }
 if (udp->udpStatsEnabled == TRUE)
 {
 udp->statistics = (TransportUdpStat *)
 MEM_malloc(sizeof(TransportUdpStat));
 ...
 memset(udp->statistics, 0, sizeof(TransportUdpStat));
 ...;
 }
}

FIGURE 3-11. Protocol Initialization Function
QualNet 5.2 Programmer’s Guide 46

QualNet Simulator Architecture Chapter 3
3.4.2 Event Handling Hierarchy

When an event occurs, the QualNet kernel gets a handle to the node for which the event is scheduled. It
then calls a dispatcher function, NODE_ProcessEvent, defined in QUALNET_HOME/main/node.cpp and
shown in Figure 3-12. This function determines the layer for which the event has occurred and calls the
event dispatcher function for the appropriate layer, e.g., if the event is for the Application Layer,
NODE_ProcessEvent calls the Application Layer event dispatcher function, APP_ProcessEvent.

void NODE_ProcessEvent(Node *node, Message *msg)
{
 ...
 switch (MESSAGE_GetLayer(msg))
 {
 case PROP_LAYER:
 {
 ...
 PROP_ProcessEvent(node, msg);
 ...
 break;
 }
 case PHY_LAYER:
 {
 PHY_ProcessEvent(node, msg);
 break;
 }
 case MAC_LAYER:
 {
 MAC_ProcessEvent(node, msg);
 break;
 }
 case NETWORK_LAYER:
 {
 NETWORK_ProcessEvent(node, msg);
 break;
 }
 case TRANSPORT_LAYER:
 {
 TRANSPORT_ProcessEvent(node, msg);
 break;
 }
 case APP_LAYER:
 {
 APP_ProcessEvent(node, msg);
 break;
 }
 ...
 }
}

FIGURE 3-12. Node Event Handler Function
47 QualNet 5.2 Programmer’s Guide

Chapter 3 QualNet Simulator Architecture
The event dispatcher function for a layer determines the protocol for which the event has occurred, and
calls the event handler for that protocol. For example, when an event for the Bellman-Ford protocol occurs,
the Application Layer dispatcher function, APP_ProcessEvent, calls function RoutingBellmanfordLayer,
which is the event handler for the Bellman-Ford protocol. This is illustrated in Figure 3-13. Function
APP_ProcessEvent is defined in QUALNET_HOME/main/application.cpp.

void APP_ProcessEvent(Node *node, Message *msg)
{
 short protocolType;
 protocolType = APP_GetProtocolType(node,msg);

 switch(protocolType)
 {
 case APP_ROUTING_BELLMANFORD:
 {
 RoutingBellmanfordLayer(node, msg);
 break;
 }
 case APP_ROUTING_FISHEYE:
 {
 RoutingFisheyeLayer(node,msg);
 break;
 }
 ..
 case APP_FTP_CLIENT:
 {
 AppLayerFtpClient(node, msg);
 break;
 }
 case APP_FTP_SERVER:
 {
 AppLayerFtpServer(node, msg);
 break;
 }
 ...
 }//switch//
}

FIGURE 3-13. Layer Event Dispatcher Function
QualNet 5.2 Programmer’s Guide 48

QualNet Simulator Architecture Chapter 3
The protocol event dispatcher, like the other dispatcher functions, consists of a switch statement. It calls
the event handler function for the event that has occurred. An event handler is specific to an event and
performs the required actions on the occurrence of that event. For example, the Bellman-Ford dispatcher
function, RoutingBellmanfordLayer, shown in Figure 3-14, calls function HandleFromTransport when an
event of type MSG_APP_FromTransport occurs. MSG_APP_FromTransport indicates that a packet has
been received from the Transport Layer, and function HandleFromTransport performs the actions required
to handle the received packet. Functions RoutingBellmanfordLayer and HandleFromTransport are defined
in QUALNET_HOME/libraries/developer/src/routing_bellmanford.cpp.

void RoutingBellmanfordLayer(Node *node, Message *msg)
{
 if (node->networkData.networkProtocol == IPV6_ONLY)
 {
 // Bellmanford is an IPv4 Network based routing protocol,
 // it can not be run on this node
 ...
 MESSAGE_Free(node, msg);

 return;
 }
 switch(msg->eventType)
 {
 case MSG_APP_PeriodicUpdateAlarm:
 {
 HandlePeriodicUpdateAlarm(node);
 break;
 }
 case MSG_APP_CheckRouteTimeoutAlarm:
 {
 HandleCheckRouteTimeoutAlarm(node);
 break;
 }
 case MSG_APP_TriggeredUpdateAlarm:
 {
 HandleTriggeredUpdateAlarm(node);
 break;
 }

 // Messages sent by UDP to Bellman-Ford.

 case MSG_APP_FromTransport:
 {
 HandleFromTransport(node, msg);
 break;
 }
 default:
 ERROR_ReportError("Invalid switch value");
 }

 // Done with the message, so free it.

 MESSAGE_Free(node, msg);
}

FIGURE 3-14. Protocol Event Dispatcher Function
49 QualNet 5.2 Programmer’s Guide

Chapter 3 QualNet Simulator Architecture
3.4.3 Finalization Hierarchy

At the end of simulation, the finalization function for each protocol is called to print the protocol statistics.
Like the initialization and event handling functions, the finalization function is called hierarchically.

Figure 3-15 shows the node finalization function, PARTITION_Finalize, which is defined in
QUALNET_HOME/main/partition.cpp. PARTITION_Finalize calls the finalization function for each layer in
the protocol stack running at each node. For example, MAC_Finalize is the finalization function for the
MAC Layer.

void PARTITION_Finalize(PartitionData* partitionData)
{
 if (partitionData->firstNode != NULL)
 {
 Node *nextNode = partitionData->firstNode;
 while (nextNode != NULL)
 {
 PHY_Finalize(nextNode);
 MAC_Finalize(nextNode);
 ...
 if ((nextNode->adaptationData.adaptationProtocol
 == ADAPTATION_PROTOCOL_NONE)
 || (nextNode->adaptationData.endSystem))
 {
 NETWORK_Finalize(nextNode);
 TRANSPORT_Finalize(nextNode);
 APP_Finalize(nextNode);
 USER_Finalize(nextNode);
 MOBILITY_Finalize(nextNode);
 }
 nextNode = nextNode->nextNodeData;
 }
 }
 ...
}

FIGURE 3-15. Node Finalization Function
QualNet 5.2 Programmer’s Guide 50

QualNet Simulator Architecture Chapter 3
The finalization function for a layer calls the finalization function for each protocol running at that layer. For
example, consider the MAC Layer finalization function, MAC_Finalize, defined in QUALNET_HOME/main/
mac.cpp and shown in Figure 3-16. For each interface of a node, MAC_Finalize calls the finalization
function for the MAC protocol running at that interface, e.g., if the CSMA protocol is running at an interface,
MAC_Finalize calls the CSMA finalization function MacCsmaFinalize.

void MAC_Finalize(Node *node)
{
 int interfaceIndex;
 ...
 for (interfaceIndex = 0;
 interfaceIndex < node->numberInterfaces;
 interfaceIndex++)
 {
 /* Select the MAC protocol model and finalize it. */

 if (node->macData[interfaceIndex])
 {
 switch
 (node->macData[interfaceIndex]->macProtocol)
 {
 case MAC_PROTOCOL_DOT11:
 {
 MacDot11Finalize(node, interfaceIndex);
 break;
 }
 case MAC_PROTOCOL_CSMA:
 {
 MacCsmaFinalize(node, interfaceIndex);
 break;
 }
 ...
 }
 ...
 }
 ...
}

FIGURE 3-16. Layer Finalization Function
51 QualNet 5.2 Programmer’s Guide

Chapter 3 QualNet Simulator Architecture
The finalization function for a protocol prints the statistics for the protocol if statistics collection is enabled
for the layer in which the protocol resides. For example, function MacCsmaFinalize, shown in Figure 3-17,
calls the function to print CSMA statistics, MacCsmaPrintStats, if statistics collection is enabled for the
MAC Layer. Functions MacCsmaFinalize and MacCsmaPrintStats are defined in QUALNET_HOME/
libraries/wireless/src/mac_csma.cpp.

void MacCsmaFinalize(Node *node, int interfaceIndex)
{
 MacDataCsma* csma = (MacDataCsma *)
 node->macData[interfaceIndex]->macVar;

 if (node->macData[interfaceIndex]->macStats == TRUE) {
 MacCsmaPrintStats(node, csma, interfaceIndex);
 }
}

FIGURE 3-17. Protocol Finalization Function
QualNet 5.2 Programmer’s Guide 52

4 Developing Protocol Models in QualNet

The QualNet protocol stack, shown in Figure 4-1, is similar to the TCP/IP protocol stack and consists of the
following five layers:

• Application Layer

• Transport Layer

• Network Layer

• MAC Layer

• Physical Layer

FIGURE 4-1. QualNet Protocol Stack

ApplicationCBR, FTP, HTTP, Telnet, RIP, OLSR, ...

TCP, UDP, RSVP-TE

IPv4, IPv6, ...OPSF, AODV, ...

Routing

IEEE 802.3, 802.11, Aloha, CSMA, ...

Bus, Point-to-point Radio, Free space,
ITM

Wired Wireless

Transport

Network

Link/MAC

Physical

Routed
QualNet 5.2
 53
 Programmer’s Guide

Chapter 4 General Programming Utility Functions
In Section 4.1, we describe the functions used to read configuration parameters. In Section 4.2 through
Section 4.6, we describe the procedure to add a custom protocol to each of the layers of the QualNet
protocol stack. In Section 4.7 and Section 4.8, we describe how to add communication medium models
and node mobility models, respectively. In Section 4.9, we describe the procedure to add trace collection to
a protocol. In Section 4.10, we describe the procedure to add a custom add-on module. In Section 4.11,
we describe the procedure to enable non-adjacent layers to communicate.

.
4.1 General Programming Utility Functions

4.1.1 Reading Input from a Configuration File

The QualNet configuration file is used to configure the protocol stack at each node and to specify the
parameters for each protocol. The default configuration file is QUALNET_HOME/scenarios/default/
default.config.

Protocol parameters are specified using the following format:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.

<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.

The types of variables that require instance identifiers are typically arrays of values. As an example,
consider the case of priority queues. In the default configuration each node has three priority queues on
each interface. The following is an example of specifying weights of the interface queues in the
configuration file:

QUEUE-WEIGHT[0] 0.5
QUEUE-WEIGHT[1] 0.3
QUEUE-WEIGHT[2] 0.2
QualNet 5.2 Programmer’s Guide 54

General Programming Utility Functions Chapter 4
The value specified for a variable in the configuration file can take several forms: string, integer, double,
float, and clocktype. QualNet provides API functions for reading each variable format from the
configuration file. Prototypes for I/O API functions are specified in QUALNET_HOME/include/fileio.h.
Some example I/O API functions are listed below. See the file fileio.h or API Reference Guide for a
complete list of API functions and their parameters.

1. IO_ReadString: This function is used to read a string value when a qualifier (identifier) is specified.

IO_ReadString is an overloaded function. One of the versions of this function is described here.

void
IO_ReadString(
 const NodeAddress nodeId,
 const NodeAddress interfaceAddress,
 const NodeInput *nodeInput,
 const char *index,
 BOOL *wasFound,
 char *readVal);

The node identifier (nodeId), node address (interfaceAddress), a pointer to the data
representation of the input file (nodeInput) and the variable name (index) are passed to the function.
If a match is found in the input file for the node identifier, node address and variable name, the function
sets the Boolean variable wasFound to TRUE and sets the destination string pointer (readVal) to the
string corresponding to the parameter value; if a match is not found, the function sets wasFound to
FALSE.

2. IO_ReadStringInstance: This function is used to read a string value when both a qualifier and an

instance are specified. IO_ReadStringInstance is an overloaded function. One of the versions of this

function is described here.

void
IO_ReadStringInstance(
 const NodeAddress nodeId,
 const NodeAddress interfaceAddress,
 const NodeInput *nodeInput,
 const char *parameterName,
 const int parameterInstanceNumber,
 const BOOL fallbackIfNoInstanceMatch,
 BOOL *wasFound,
 char *parameterValue);

Function IO_ReadStringIntance is similar to function IO_ReadString, but has two extra parameters. The
first, parameterInstanceNumber, identifies the parameter instance for which the value is to be read.
The other, fallbackIfNoInstanceMatch, is a boolean that specifies whether the fallback value for
the parameter is assigned to the specified parameter instance if there is no match for
parameterInstanceNumber.

3. IO_ReadCachedFile: This function is used to read and store the contents of a file when the name of the

file is used as a parameter value. IO_ReadCacheFile is an overloaded function. One of the versions of

this function is described here.
55 QualNet 5.2 Programmer’s Guide

Chapter 4 General Programming Utility Functions
void
IO_ReadCachedFile(
 const NodeAddress nodeId,
 const NodeAddress interfaceAddress,
 const NodeInput *nodeInput,
 const char *parameterName,
 BOOL *wasFound,
 NodeInput *parameterValue);

Function IO_ReadCachedFile is similar to function IO_ReadString, except that the contents of the file
specified as the parameter value are stored in parameterValue. parameterValue can then be
passed as a parameter to other IO read functions to extract numeric and string values from it.

4.1.2 Programming with Message Info Fields

The message data structure contains fields, called info fields, which are used to store extra information
used in the processing of the message as well as information that needs to be transported between layers.
This information is typically used only in simulation (i.e., it does not have a counterpart in real networks)
and, therefore, is not included in the packet payload. This information can be used for simulation tasks,
such as collecting statistics and exchanging information across layers or nodes.

The info field is a memory storage associated with a message. Any type of information can be stored in
this field. A message can have multiple info fields, each of which is identified by an info field type. Each
message contains an info field of the default info field type which can be used by all models. To have
exclusive use of an info field, a protocol model can define a new info field type and create, access, and
modify info fields of that type.

All info fields are freed automatically when the message is freed. Once a message is freed, its info fields
are not accessible anymore.

This section describes the APIs for manipulating info fields which should be sufficient for developing most
protocol models. The implementation of the info fields and the advanced info field APIs used for special
purposes are not discussed.

4.1.2.1 Info Field Type
The info field types are defined as items of the enumeration MessageInfoType in QUALNET_HOME/
include/message.h (see Figure 4-2).

typedef enum message_info_type_str
{
 INFO_TYPE_UNDEFINED = 0, // an empty info field.
 INFO_TYPE_DEFAULT = 1, // default info type used in situations where
 // specific type is given to the info field.
 INFO_TYPE_AbstractCFPropagation, // type for abstract contention free
 // propagation info field.
 INFO_TYPE_AppName, // Pass the App name down to IP layer
 INFO_TYPE_StatCategoryName,
 INFO_TYPE_DscpName,
 ...
 INFO_TYPE_ForwardTcpHeader,
} MessageInfoType;

FIGURE 4-2. Info Field Types
QualNet 5.2 Programmer’s Guide 56

General Programming Utility Functions Chapter 4
4.1.2.2 APIs for Info Field Operations
Several API functions are available in QualNet for operations on the info field. These APIs can be called
from any layer. The prototypes for these functions can be found in the file message.h. The implementation
code for these functions can be found in the file QUALNET_HOME/main/message.cpp. Refer to API
Reference Guide or the file message.h for a more detailed description of these APIs and their parameters.

• MESSAGE_AddInfo: This function creates an info field of the type and size that are passed as
parameters. If an info field of the same type already exists in the message, it is replaced with the new
info field with the new size. The function returns a pointer to the allocated space, which can be used to
access the memory allocated to this info field.

• MESSAGE_InfoAlloc: This function assigns an info field of type INFO_TYPE_DEFAULT. The size of the
field is passed as a parameter. It is the same as calling MESSAGE_AddInfo with
INFO_TYPE_DEFAULT as the type.

• MESSAGE_RemoveInfo: This function removes the info field with the specified type from the message.
The memory allocated for the info field is also freed. If an info field with the specified type does not
exist, no action is taken.

• MESSAGE_ReturnInfo: This is an overloaded function with the following variants:

- When info field type is passed as a parameter, the function returns a pointer to the info field with the
specified type. This pointer can be used to access the space allocated for the info field.

- When the info field type is not specified as a parameter, the function returns a pointer to the info field
with type INFO_TYPE_DEFAULT.

• MESSAGE_CopyInfo: This function copies all info fields from one message to another.

• MESSAGE_ReturnInfoSize: This is an overloaded function with the following variants:

- When the info field type is passed as a parameter, the function returns the size of the info field with
the specified type.

- When the info field type is not passed as a parameter, the function returns the size of the info field
with type INFO_TYPE_DEFAULT.

4.1.2.3 Using Info Fields

This section describes how to use the info fields in writing protocols.

4.1.2.3.1 Declaring User-defined Info Field Type

The info field type can be one of the items of the enumeration MessageInfoType, which is declared in
message.h. Users can define their own info field type by including it in the enumeration
MessageInfoType, as shown in Figure 4-3.

User-defined info field types are particularly useful if the user wants to ensure that other models do not
inadvertently modify or delete the data stored in the info field by the user’s own model.

Always add to the end of lists in header files. QualNet's pre-built object files use the values
which existed when the object files were created. Inserting the constant in the middle of the list
will result in the values below being offset in any new object files and may lead to the simulator
crashing.
57 QualNet 5.2 Programmer’s Guide

Chapter 4 General Programming Utility Functions
typedef enum message_info_type_str
{
 INFO_TYPE_UNDEFINED = 0, // an empty info field.
 INFO_TYPE_DEFAULT = 1, // default info type used in situations where
 // specific type is given to the info field.
 INFO_TYPE_AbstractCFPropagation, // type for abstract contention free
 // propagation info field.
 INFO_TYPE_AppName, // Pass the App name down to IP layer
 INFO_TYPE_StatCategoryName,
 INFO_TYPE_DscpName,
 ...
 INFO_TYPE_ForwardTcpHeader,
 INFO_TYPE_MYINFOTYPE // Type for Myinfo field
} MessageInfoType;

FIGURE 4-3. Declaring User-defined Info Field Type

4.1.2.3.2 Adding an Info Field

The API MESSAGE_AddInfo is used to allocate space for an info field and adding the pointer to the
allocated space to the message data structure. Following that, data can be stored in the info field by
accessing the pointer to the allocated space.

The following sample code shows how to add an info field of the user-defined type INFO_TYPE_MYINFO.
It assumes that the structure MyInfoField has been defined in the header file of the user model.

...
Message* msg;
struct MyInfoField* infoPtr;
...
msg = MESSAGE_Alloc(node, layer, protocol, eventType);

infoPtr = MESSAGE_AddInfo(node,
msg,
sizeof(MyInfoField),
INFO_TYPE_MYINFO);
...
// fill data in the info field using infoPtr now.
...
QualNet 5.2 Programmer’s Guide 58

General Programming Utility Functions Chapter 4
4.1.2.3.3 Accessing an Info Field

The API MESSAGE_ReturnInfo is used to access an info field of a specific type. It returns a pointer which
can be used to access data stored in the info field.

The following code sample shows how to access an info field of the user-defined type
INFO_TYPE_MYINFO.

...
struct MyInfoField* infoPtr;
...
infoPtr = MESSAGE_ReturnInfo(msg, INFO_TYPE_MYINFO);
...
// Access fields of MyInfoField using pointer infoPtr.
...

4.1.2.3.4 Removing an Info Field

The API MESSAGE_RemoveInfo is used to free the space allocated to an info field of a specific type. Note
that the space allocated to a specific info field can be over-written, but it is persistent unless explicitly freed
by freeing the specific info field or by freeing the entire message using the API MESSAGE_Free.

The following code sample shows how to remove an info field of the user-defined type
INFO_TYPE_MYINFO.

...
struct MyInfoField* infoPtr;
...
infoPtr = MESSAGE_ReturnInfo(msg, INFO_TYPE_MYINFO);
if (infoPtr != NULL)
{
 ...
 // Access fields of MyInfoField using pointer infoPtr.
 ...
 MESSAGE_RemoveInfo(node, msg, INFO_TYPE_MYINFO);
}

4.1.2.4 Persistence of Info Fields
Since the message data structure can have multiple info fields of different types, each model can use an
info field to store information relevant to that model. In general, a model only manipulates its own info field
and does not modify the other info fields. Therefore, a model’s info field is expected to be persistent, i.e., it
will not be modified by other models. To ensure that a user-created model’s info field is persistent, the
model should define and use its own info field, as described in Section 4.1.2.3.

To ensure that info fields used by other models are persistent, a user-created model should not
modify any info field other than the ones defined by the model itself.

The default info field is used by many models and should not be assumed to be persistent.
59 QualNet 5.2 Programmer’s Guide

Chapter 4 General Programming Utility Functions
4.1.3 Random Number Generation

QualNet uses sequences of pseudo-random numbers to model a number of real world systems. Random
numbers must be used properly to ensure both the accuracy and repeatability of results.

A single sequence of random numbers is referred to as a random stream. A scenario may use many
different random streams. In general, an independent random stream is required for each application and
some applications may require multiple independent random streams. For example, if a scenario has ten
Poisson processes that generate traffic, then it should use ten independent random streams to generate
the inter-arrival intervals for each traffic stream. If an application generates traffic where both packet size
and inter-packet interval are random, then it should use one random stream for the size and another one
for the interval.

Using the same random number stream for multiple purposes leads the generated values to be correlated,
and having correlated input streams may have subtle effects on the simulation results or even render the
results invalid.

Random streams must be repeatable as well as independent. Given the same starting point, i.e., the same
simulation parameters, they should generate exactly the same results; otherwise, it becomes impossible to
verify the behavior of the system.

This section explains how QualNet’s random number generation package is organized and gives
examples of its usage.

4.1.3.1 Basic Functions for Random Number Generation
QualNet’s random number generation system is built around three basic functions: RANDOM_erand,
RANDOM_jrand, and RANDOM_nrand. These functions are based on the 48-bit random number
generators, erand48, jrand48, and nrand48, found on most UNIX systems. File QUALNET_HOME/include/
random.h contains the prototypes of these functions and other declarations related to random number
generation.

The following declaration defines the type for the 48-bit seed used by the random number generators:

typedef unsigned short RandomSeed[3];

The random generator functions are:

• extern double RANDOM_erand(RandomSeed);

This function returns a real number between 0.0 and 1.0, both inclusive.

• extern Int32 RANDOM_jrand(RandomSeed);

This function returns an integer between -231 and 231, both inclusive.

• extern Int32 RANDOM_nrand(RandomSeed);

This function returns an integer between 0 and 231, both inclusive.

Each call to RANDOM_erand, RANDOM_jrand, or RANDOM_nrand generates a random number based
on the seed that is passed as a parameter and updates the seed. The next call to the function uses the
updated seed to generate a new random number and updates the seed again. The updates to the seed
are deterministic and the entire stream of generated random numbers is determined by the initial seed. In
order to create two independent random streams, two seed variables with independently assigned initial
values are required.
QualNet 5.2 Programmer’s Guide 60

General Programming Utility Functions Chapter 4
The following function is used to set the initial seed:

void RANDOM_SetSeed(RandomSeed seed,
 UInt32 globalSeed,
 UInt32 nodeId = 0,
 UInt32 protocolId = 0,
 UInt32 instanceId = 0);

The input parameters of this function are used to generate deterministic, but unique initial seeds:

• globalSeed: This is the SEED parameter in the configuration file. Including this parameter allows the
user to change the random stream for different experiments.

• nodeId: Including the node identifier ensures that each node will use a different random stream.

• protocolId: Including the protocol identifier ensures that different protocols at the same node use
different random streams.

• instanceId: Including the instance identifier ensures that different instances of the same protocol use
different random streams.

We illustrate the use of the basic random number generator functions by taking as an example the QualNet
implementation of the Multiple Access Collision Avoidance (MACA) MAC protocol. MACA implementation
code is contained in the files mac_maca.h and mac_maca.cpp in the folder QUALNET_HOME/libraries/
wireless/src.

The MACA protocol uses two random streams: one to generate random backoff times and the other to
generate random channel yield times. Both random streams are uniformly distributed. The MACA data
structure, MacDataMaca, includes two variables, backoffSeed and yieldSeed, of type RandomSeed,
to store the seeds for the two distributions. These seed variables are initialized in the function
MacMacaInit, as shown in Figure 4-4.

void MacMacaInit(
 Node *node, int interfaceIndex, const NodeInput *nodeInput)
{
 MacDataMaca *maca = (MacDataMaca *) MEM_malloc(sizeof(MacDataMaca));

 assert(maca != NULL);

 memset(maca, 0, sizeof(MacDataMaca));
 maca->myMacData = node->macData[interfaceIndex];
 maca->myMacData->macVar = (void *)maca;
 ...
 maca->currentNextHopAddress = ANY_DEST;

 RANDOM_SetSeed(maca->backoffSeed,
 node->globalSeed,
 node->nodeId,
 MAC_PROTOCOL_MACA,
 interfaceIndex);
 RANDOM_SetSeed(maca->yieldSeed,
 node->globalSeed,
 node->nodeId,
 MAC_PROTOCOL_MACA,
 interfaceIndex + 1);
 ...
}

FIGURE 4-4. Setting Random Number Seeds
61 QualNet 5.2 Programmer’s Guide

Chapter 4 General Programming Utility Functions
Note that backoffSeed is set by calling RANDOM_SetSeed with interfaceIndex as the last
parameter, whereas yieldSeed is set by calling RANDOM_SetSeed with interfaceIndex + 1 as the
last parameter. This ensures that different random streams will be used for backoff and yield times.

Once the two independent seeds have been set, RANDOM_erand, RANDOM_jrand, and RANDOM_nrand
can be used to get the next random number in the sequence by passing the proper seed as the parameter.
Figure 4-5 shows function MacMacaYield which calls function RANDOM_nrand with maca->yieldSeed
as the parameter to get a random yield time from a uniform distribution. Figure 4-6 shows function
MacMacaBackoff which calls function RANDOM_nrand with maca->backoffSeed as the parameter to
get a random backoff time from a uniform distribution.

static
void MacMacaYield(Node *node, MacDataMaca *maca, clocktype vacation)
{
 assert(maca->state == MACA_S_YIELD);
 MacMacaSetTimer(node, maca, MACA_T_YIELD,
 vacation + RANDOM_nrand(maca->yieldSeed) % 20);
}

FIGURE 4-5. Generating a Random Value for Yield Time

static
void MacMacaBackoff(Node *node, MacDataMaca *maca)
{
 clocktype randomTime;
 assert(maca->state == MACA_S_BACKOFF);
 randomTime = (RANDOM_nrand(maca->backoffSeed) % maca->BOmin) + 1;
 ...
 MacMacaSetTimer(node, maca, MACA_T_BACKOFF, randomTime);
}

FIGURE 4-6. Generating a Random Value for Backoff Time
QualNet 5.2 Programmer’s Guide 62

General Programming Utility Functions Chapter 4
4.1.3.2 Built-in Random Number Distributions
The functions described in Section 4.1.3.1 can be used to generate random numbers and transform them
into the type of distribution required. QualNet also provides several built-in distributions that can be used
directly. This section describes the interface to the built-in distributions.

QualNet random number distributions are implemented by means of a C++ class,
RandomDistribution, which is defined in random.h and is shown in Figure 4-7.

template <class T>
class RandomDistribution
{
public:
 ...
 void setDistributionUniform(T min, T max);
 void setDistributionUniformInteger(T min, T max);
 void setDistributionExponential(T mean);
 void setDistributionGaussian(double sigma);
 void setDistributionGaussianInt(double sigma);
 void setDistributionPareto(T val1, T val2, double alpha);
 void setDistributionPareto4(T val1, T val2, T val3, double alpha);
 void setDistributionGeneralPareto(T val1, double alpha);
 void setDistributionParetoUntruncated(T val1, double alpha);
 void setDistributionDeterministic(T val);
 void setDistributionNull();
 int setDistribution(char* inputString,
 char* printStr,
 RandomDataType dataType);
 T getRandomNumber();
 T getRandomNumber(RandomSeed seed);
 void setSeed(UInt32 globalSeed,
 UInt32 nodeId = 0,
 UInt32 protocolId = 0,
 UInt32 instanceId = 0);
 ...
};

FIGURE 4-7. Class RandomDistribution

The RandomDistribution class has four types of member functions that are of interest to programmers:

• Set Distribution Functions: These functions set the distribution type.

- setDistributionUniform: This function sets the distribution to return a value x, where x is uniformly
distributed in the range min <= x < max.

- setDistributionUniformInteger: This function sets the distribution to return a value x, where x is
uniformly distributed in the range min <= x <= max.

Note: This function should only be used for integer variables.

- setDistributionExponential: This function sets an exponential distribution with mean as the mean.

- setDistributionGaussian: This function sets a Gaussian distribution with sigma as the sigma value.

- setDistributionGaussianInteger: This function sets a Gaussian distribution with sigma as the sigma
value, but returns only integers.

- setDistributionGeneralPareto: This function sets a Generalized Pareto distribution with val1 as the
lower end of the range and alpha as the shape parameter.
63 QualNet 5.2 Programmer’s Guide

Chapter 4 General Programming Utility Functions
- setDistributionParetoUntruncated: This function sets an untruncated Pareto distribution with val1
as the lower end of the range and alpha as the shape parameter.

- setDistributionPareto4: This function sets a truncated Pareto distribution with val1 as the lower end
of the range, val2 as the lower limit of the truncation, val3 as the upper limit of the truncation, and
alpha as the shape parameter.

- setDistributionPareto: This function sets a truncated Pareto distribution with val1 as the lower end
of the range (= the lower limit of the truncation), val2 as the upper limit of the truncation, and alpha
as the shape parameter.

- setDistributionDeterministic: This function sets the distribution to always return val.

• File Parsing Function: Function setDistribution parses an input string, determines the type of
distribution and the parameters associated with it, and calls the set distribution function for that
distribution. This is explained in detail in Section 4.1.3.2.2.

• Get Random Number Function: Function getRandomNumber returns the next random number in the
sequence according to the distribution that was set by calling one of the set distribution functions.

• Set Seed Function: Function setSeed sets the initial seed for the random sequence. This function is
similar to the function RANDOM_SetSeed described in Section 4.1.3.1.

Section 4.1.3.2.1 and Section 4.1.3.2.2 give examples of using the RandomDistribution class. The
example in Section 4.1.3.2.2 also illustrates the use of the file parsing function.

4.1.3.2.1 Using the RandomDistribution Class

We illustrate the use of the built-in random number distributions by taking as an example QualNet
modeling of shadowing effects.

The data structure for storing propagation data, PropData, shown in Figure 4-8, contains a variable
shadowingDistribution of type RandomDistribution.

struct PropData {
 int numPhysListenable;
 int numPhysListening;
 ...
 RandomDistribution<double> shadowingDistribution;
 int nodeListId;
 int numSignals;
 ...
};

FIGURE 4-8. Declaring a Random Distribution Variable

Initializing a distribution comprises two steps: setting the initial seed and setting the distribution type.
QualNet implements two types of shadowing models: constant and lognormal. If the constant shadowing
model is specified, then the deterministic distribution is used. If the lognormal shadowing model is
specified, then the Gaussian distribution is used. Function PROP_Init, shown in Figure 4-9, sets the initial
seed for shadowingDistribution and sets shadowingDistribution to deterministic or Gaussian
depending on the shadowing model specified. PROP_Init is implemented in QUALNET_HOME/libraries/
wireless/src/propagation.cpp.
QualNet 5.2 Programmer’s Guide 64

General Programming Utility Functions Chapter 4
void PROP_Init(Node *node, int channelIndex, NodeInput *nodeInput) {
 PropData* propData = &(node->propData[channelIndex]);
 ...
 propData->shadowingDistribution.setSeed(
 node->globalSeed,
 node->nodeId,
 channelIndex);
 if (propProfile->shadowingModel == CONSTANT) {
 propData->shadowingDistribution.setDistributionDeterministic(
 propProfile->shadowingMean_dB);
 }
 else { // propProfile->shadowingModel == LOGNORMAL
 propData->shadowingDistribution.setDistributionGaussian(
 propProfile->shadowingMean_dB);
 }

FIGURE 4-9. Initializing a Random Distribution

Function PROP_CalculatePathloss, shown in Figure 4-10, calls
shadowingDistribution.getRandomNumber to obtain a number from the random distribution. The random
number that is returned is generated according to the distribution that was set in PROP_Init.
PROP_CalculatePathloss is implemented in propgataion.cpp.

void PROP_CalculatePathloss(
 Node* node,
 int channelIndex,
 double wavelength,
 float txAntennaHeight,
 float rxAntennaHeight,
 PropPathProfile *pathProfile,
 double* pathloss_dB)
{
 ...
 switch (propProfile->pathlossModel) {
 case FREE_SPACE:
 case TWO_RAY:
 {
 double shadowing_dB = 0.0;
 if (propProfile->shadowingMean_dB != 0.0) {
 shadowing_dB =
 propData->shadowingDistribution.getRandomNumber();
 }
 ...
 return;
 }
 ...
 }
 return;
}

FIGURE 4-10. Acquiring Numbers from a Random Distribution

4.1.3.2.2 Using the File Parsing Function

If the distribution to be used for a random variable is known a-priori, then the built-in distributions can be
used by calling the set seed and appropriate set distribution functions, as described in Section 4.1.3.2.1.
65 QualNet 5.2 Programmer’s Guide

Chapter 4 General Programming Utility Functions
However, in some cases, the distribution may be specified by the user and the model may need to read it
from a file (typically, the .app file). The RandomDistribution class implements a function,
setDistrbution, which parses an input line to determine the distribution type and its associated parameters
and initializes the appropriate distribution.

A line in the input file may have specifications for one or more random distributions. Each random
distribution is specified in the following format:

<Distribution Identifier> <Parameter List>

where

 <Distribution Identifier> : String identifying the distribution.

<Parameter List> : Parameters for the distribution.

The string identifier and parameters for random distributions that can be read from an input file are listed in
Table 4-1.

Examples:

 UNI 10 30 : Denotes a uniform distribution in the range 10 to 30

 DET 20MS : Denotes a deterministic distribution with the value 20 milliseconds.

Function setDistribution has three input parameters and returns an integer value. The input parameters
are:

• Input string: String that has to be parsed.

• Print string: String used for printing error messages (typically, the protocol name).

• Data type: Indication of the type of value the distribution is to return. It can be one of the values
(RANDOM_INT, RANDOM_DOUBLE or RANDOM_CLOCKTYPE) of the enumeration RandomDataType
defined in random.h. It is used to convert numeric parameters read from the input string into the correct
data type.

TABLE 4-1. Distribution Identifiers and Parameters

Distribution Name
Distribution

Identifier Parameters

Uniform UNI • Lower end of the range

• Upper end of the range

Exponential EXP • Mean value

Pareto TPD • Lower end of the range (= lower limit of the
truncation)

• Upper limit of the truncation

• Shape parameter

Pareto4 TPD4 • Lower end of the range

• Lower limit of the truncation

• Upper limit of the truncation

• Shape parameter

Deterministic DET • Value
QualNet 5.2 Programmer’s Guide 66

General Programming Utility Functions Chapter 4
The integer value returned by the function setDistribution is the number of tokens in the input string
required for specifying the distribution, i.e., the number of parameters associated with the distribution (see
Table 4-1) plus 1.

We illustrate the use of the file parsing utility, setDistribution, by using the implementation of the Traffic
Generator application (TRAFFFIC-GEN) as an example. TRAFFIC-GEN is implemented by files
app_traffic_gen.h and app_traffic_gen.cpp in the folder QUALNET_HOME/libraries/developer/src.

TRAFFIC-GEN uses random distribution for the packet size, packet interval, and drop probability. The drop
probability is modeled by a uniform distribution in the range (0.0, 1.0). The packet size and packet interval
distributions can be configured by the user and specified in the .app file.

The distributions are implemented by three variables of RandomDistribution type which are part of the
data structure for the TRAFFIC-GEN client, TrafficGenClient, shown in Figure 4-11 and declared in
file app_traffic_gen.h.

typedef struct struct_traffic_gen_client
{
 // Two end nodes
 NodeAddress localAddr;
 NodeAddress remoteAddr;
 ...
 // Random dist. traffic properties
 RandomDistribution<UInt32> dataSizeDistribution;
 // Data length traffic gen dist.
 RandomDistribution<clocktype> intervalDistribution;
 // Data interval traffic gen dist.
 RandomDistribution<double> probabilityDistribution;
 // general probability distribution.
 double genProb; // Data generation probability
 ...
} TrafficGenClient;

FIGURE 4-11. Declaring Distribution Variables

The distributions are initialized in the functions TrafficGenClientNewClient and TrafficGenClientInit, which
are both implemented in the file app_traffic_gen.cpp. Since the packet size and interval distribution types
are read from the input file, the dataSizeDistribution and intervalDistribution distributions
are initialized to null in function TrafficGenClientNewClient, as shown in Figure 4-12.

static
TrafficGenClient* TrafficGenClientNewClient(Node* node)
{
 TrafficGenClient* clientPtr = (TrafficGenClient*)
 MEM_malloc(sizeof(TrafficGenClient));
 // Initialize the client
 ...
 clientPtr->dataSizeDistribution.setDistributionNull();
 clientPtr->intervalDistribution.setDistributionNull();
 ...
 }

FIGURE 4-12. Initializing Distribution Variables: Part 1
67 QualNet 5.2 Programmer’s Guide

Chapter 4 General Programming Utility Functions
In function TrafficGenClientInit (see Figure 4-13), independent, unique seeds for the three distributions
(packet size, packet interval, and drop probability) are set by calling the RandomDistribution function
setSeed.

probabilityDistribution is set to be a uniform distribution by calling function
probabilityDistribution.setDistributionUniform.

Function dataSizeDistribution.setDistribution scans the input string (tokenStr). The first token
encountered is the distribution identifier, which determines how many parameters follow the distribution
identifier. Function dataSizeDistribution.setDistribution reads the appropriate number of tokens from the
input string, converts the numeric data to the proper type (int, in this case) and calls the set distribution
function corresponding to the distribution identifier. The number of tokens read (3, in this case) is returned
and assigned to nToken.

Function TrafficGenClientSkipToken skips nToken number of tokens in the input string (tokenStr).

Function intervalDistribution.setDistribution behaves in the same way as function
dataSizeDistribution.setDistribution, except that in this case, the numeric data are converted to type
clocktype.
QualNet 5.2 Programmer’s Guide 68

General Programming Utility Functions Chapter 4
void TrafficGenClientInit(
 Node* node,
 char* inputString,
 NodeAddress localAddr,
 NodeAddress remoteAddr,
 DestinationType destType)
{
 char buf[MAX_STRING_LENGTH];
 TrafficGenClient* clientPtr = NULL;
 char* tokenStr = NULL;
 int nToken;
 ...
 // Initialize each distribution with a different seed for independence.
 ...
 clientPtr->dataSizeDistribution.setSeed(node->globalSeed,
 node->nodeId,
 APP_TRAFFIC_GEN_CLIENT,
 2);
 clientPtr->intervalDistribution.setSeed(node->globalSeed,
 node->nodeId,
 APP_TRAFFIC_GEN_CLIENT,
 3);
 clientPtr->probabilityDistribution.setSeed(node->globalSeed,
 node->nodeId,
 APP_TRAFFIC_GEN_CLIENT,
 4);
 clientPtr->probabilityDistribution.setDistributionUniform(0.0, 1.0);
 ...
 if (strcmp(buf, "RND") == 0)
 {
 // Random distribution traffic
 clientPtr->trfType = TRAFFIC_GEN_TRF_TYPE_RND;
 nToken = clientPtr->dataSizeDistribution.setDistribution(tokenStr,
 "TrafficGen",
 RANDOM_INT);
 tokenStr = TrafficGenClientSkipToken(tokenStr, TOKENSEP, nToken);
 nToken = clientPtr->intervalDistribution.setDistribution(tokenStr,
 "TrafficGen",
 RANDOM_CLOCKTYPE);
 tokenStr = TrafficGenClientSkipToken(tokenStr, TOKENSEP, nToken);
 ...
 }
 else if (strcmp(buf, "TRC") == 0)
 {
 ...
 }
 else
 {
 ...
 }
 ...
}

FIGURE 4-13. Initializing Distribution Variables: Part 2
69 QualNet 5.2 Programmer’s Guide

Chapter 4 General Programming Utility Functions
Example:

Consider the following input string:

TRAFFIC-GEN 1 11 DET 180 DET 900 RND UNI 200 250 UNI 20US 20MS 1 NOLB

The first eight tokens (TRAFFIC-GEN, 1, 11, DET, 180, DET, 900, and RND) are processed by code
not shown in Figure 4-13.

Call to function dataSizeDistribution.setDistribution reads the distribution identifier “UNI”. Since
that indicates a uniform distribution, the next two tokens are read as the parameters of the uniform
distribution. These parameters are converted to int type since the last parameter to function
dataSizeDistribution.setDistribution is RANDOM_INT. Function dataSizeDistribution.setDistribution
also sets the distribution dataSizeDistribution to be a uniform distribution with the range 200
to 250.

Next, function TrafficGenClientSkipToken skips three tokens in tokenStr.

Function intervalDistribution.getDistribution is similar to function
dataSizeDistribution.setDistribution. It reads the next three tokens and sets
intervalDistribution to be a uniform distribution that returns a clocktype value in the
range 20 microseconds to 20 milliseconds.

After initialization, the random distributions can be used by calling the appropriate getRandomNumber
function. Figure 4-14 shows how this is done in function TrafficGenClientInit.

void TrafficGenClientInit(
 Node* node,
 char* inputString,
 NodeAddress localAddr,
 NodeAddress remoteAddr,
 DestinationType destType)
{
 char buf[MAX_STRING_LENGTH];
 TrafficGenClient* clientPtr = NULL;
 char* tokenStr = NULL;
 int nToken;
 ...
 if (strcmp(buf, "CONSTRAINT") == 0)
 {
 ...
 unsigned int dataLen = (unsigned int)
 clientPtr->dataSizeDistribution.getRandomNumber();
 ...
 clocktype dataIntv;
 unsigned int sessionBwRequirement;
 dataIntv = clientPtr->intervalDistribution.getRandomNumber();
 ...
 }
 ...
}

FIGURE 4-14. Acquiring Numbers from Random Distributions
QualNet 5.2 Programmer’s Guide 70

Application Layer Chapter 4
.
4.2 Application Layer

The Application Layer is the topmost layer in the protocol stack, as shown in Figure 4-1. User applications
and some routing protocols reside at this layer.

This section gives a detailed description of how to add an Application Layer protocol to QualNet.

4.2.1 Application Layer Protocols in QualNet

QualNet provides a large number of Application Layer protocols. Multiple applications, and multiple
instances of the same application, can run at a node simultaneously, much like a real network.

Application Layer protocols in QualNet can be grouped into the following two categories:

• Traffic-generating Protocols

• Routing Protocols

4.2.1.1 Traffic-generating Protocols
Traffic-generating protocols simulate the traffic generated by a real network application. QualNet provides
a large number of traffic-generating protocols. Table 4-2 lists some of the traffic-generating Application
Layer protocols in QualNet.

While some protocols are used directly as applications, such as FTP and Telnet, others are used to
simulate real network applications. Applications such as CBR (Constant Bit Rate) can be configured to
simulate a large number of real network applications by mimicking their traffic pattern. For example, audio
traffic and old video codecs infuse traffic at a constant rate into the network and can be accurately
simulated by appropriately configuring the CBR application in QualNet.

Table 4-2 lists the different traffic generators modeled in QualNet. See the corresponding model library for
a detailed description of each protocol and its parameters.

TABLE 4-2. Traffic Generators in QualNet

Traffic Generator Description Model Library

CBR Constant Bit Rate (CBR) traffic generator.

This UDP-based client-server application sends data
from a client to a server at a constant bit rate.

Developer

CELLULAR-ABSTRACT-APP Abstract cellular application.

This is an application to generate traffic for networks
running abstract cellular models.

Cellular

FTP File Transfer Protocol (FTP).

This tcplib application generates TCP traffic based on
historical trace data.

Developer

FTP/GENERIC Generic FTP.

This model is similar to the FTP model but allows the
user to have more control over the traffic properties. It
uses FTP to transfer a user-specified amount of data.

Developer

GSM Global System for Mobile communications (GSM).

This is an application for generating traffic for GSM
networks.

Cellular
71 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
HTTP HyperText Transfer Protocol (HTTP).

The HTTP application generates realistic web traffic
between a client and one or more servers. The traffic is
randomly generated based on historical data.

Developer

LOOKUP Look-up traffic generator.

This is an abstract model of unreliable query/response
traffic, such as DNS look-up, or pinging.

Developer

MCBR Multicast Constant Bit rate (MCBR).

This model is similar to CBR and generates multicast
constant bit rate traffic.

Developer

SUPER-APPLICATION Super application.

This model can simulate both TCP and UDP flows as
well as two-way (request-response type) UDP sessions.

Developer

TELNET Telnet application.

This model generates realistic Tenet-style TCP traffic
between a client and a server based on historical data.
It is part of the tcplib suit of applications.

Developer

TRAFFIC-GEN Random distribution-based traffic generator.

This is a flexible UDP traffic generator that supports a
variety of data size and interval distributions and QoS
parameters.

Developer

TRAFFIC-TRACE Trace file-based traffic generator.

This model generates traffic according to a user-
specified file, and like Traffic-Gen, it supports QoS
parameters.

Developer

VBR Variable Bit Rate (VBR) traffic generator.

This model generates fixed-size data packets
transmitted using UDP at exponentially distributed time
intervals.

Developer

VOIP Voice over IP traffic generator.

This model simulates IP telephony sessions.

Multimedia and
Enterprise

TABLE 4-2. Traffic Generators in QualNet (Continued)

Traffic Generator Description Model Library
QualNet 5.2 Programmer’s Guide 72

Application Layer Chapter 4
4.2.1.2 Routing Protocols
In addition to traffic generators, certain service-providing protocols may also reside at the Application
Layer. Routing protocols is a common category of service-providing Application Layer protocols. These
routing protocols use UDP or TCP services.

Table 4-3 lists the Application Layer routing protocols in QualNet. See the corresponding model library for
a detailed description of each protocol and its parameters.

Some routing protocols are implemented at the Network Layer and are not included here.

Other routing protocols may send messages directly from the Network Layer. These protocols do not use
UDP or TCP services. Examples of such Network Layer routing protocols include the Ad-hoc Distance
Vector (AODV) and Dynamic Source Routing (DSR) protocols. Table 4-4 lists some differences between
Application Layer and Network Layer routing protocols

TABLE 4-3. Application Layer Routing Protocols in QualNet

Routing Protocol Description Model Library

BELLMANFORD Bellman-Ford routing protocol. Developer

EIGRP Enhanced Interior Gateway Routing Protocol (EIGRP).

This is a distance vector routing protocol designed for
fast convergence.

Multimedia and
Enterprise

FISHEYE Fisheye Routing Protocol.

This is a link state-based routing protocol.

Wireless

IGRP Interior Gateway Routing Protocol (IGRP).

This is a distance vector Interior Gateway protocol
(IGP).

Multimedia and
Enterprise

OLSR-INRIA Optimized Link State Routing (OLSR) protocol.

This is a link state-based routing protocol.

Wireless

OLSRv2-NIIGATA Optimized Link State Routing, version 2 (OLSRv2)
protocol.

This is a successor of the OLSR protocol.

Wireless

RIP Routing Information Protocol (RIP) routing protocol. Developer

RIPng Routing Information Protocol, next generation (RIPng)
routing protocol.

This protocol can be used for IPv6 networks.

Developer

TABLE 4-4. Application Layer versus Network Layer Routing Protocols

Application Layer Routing Protocols Network Layer Routing Protocols

Use UDP or TCP to transmit their route discovery and
control packets.

Use IP directly to transmit their route discovery and
control packets.

Use an IP kernel function to update the IP forwarding
table.

Use IP kernel functions to register itself as the packet
routing function.

Do not receive data packets to forward, IP handles
those itself.

Receive data packets and decide outgoing interface to
forward packets.
73 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.2 Application Layer Organization: Files and Folders

In this section, we briefly examine the files and folders that are relevant to Application Layer protocols.
These files contain detailed comments on functions and other code components.

The Application Layer API is composed of several macros, functions, and structures. These are defined in
the following header files:

• QUALNET_HOME/include/api.h

This file defines the events and data structures needed to communicate between different layers of the
protocol stack.

• QUALNET_HOME/include/application.h

This file contains definitions common to Application Layer protocols and Application Layer data
structure in the node structure.

• QUALNET_HOME/include /app_util.h

This file contains prototypes of the functions defined in the file QUALNET_HOME/main/app_util.cpp.

Additionally, the following header files are also relevant to the Application Layer:

• QUALNET_HOME/include/fileio.h

This file contains prototypes of functions to read input files and create output files.

• QUALNET_HOME/include/mapping.h

This file contains prototypes of functions to map between node ids and IP addresses.

The following are the folders and source files associated with the Application Layer:

• QUALNET_HOME/libraries/developer/src

This folder contains the source and header files for most of the applications implemented in QualNet.
The file names are based on the name of the application that they implement, e.g., to see the
implementation for CBR (Constant Bit Rate), look at files app_cbr.cpp and app_cbr.h in this folder.
Other libraries may contain code for application models as well.

• QUALNET_HOME/main/application.cpp

This file contains Application Layer functions, including the initialization, message processing, and
finalization functions.

• QUALNET_HOME/main/app_util.cpp

This file contains utilities used by Application Layer protocols. This includes functions to set timers,
register an application, send packets, and manage connections to Transport Layer protocols (UDP and
TCP).
QualNet 5.2 Programmer’s Guide 74

Application Layer Chapter 4
4.2.3 Application Layer Data Structures

The Application Layer data structures are defined in QUALNET_HOME/include/application.h. This section
describes the main data structures. (Note that only a partial description of the data structures is provided
here. Refer to file application.h for a complete description.)

1. AppType: This is an enumeration type that lists all the Application Layer protocols. Note that for each

traffic-generating protocols, there are two entries in the list: one for the client and one for the server.

There is a single entry in the list for each Application Layer routing protocol.

typedef enum
{
 APP_FTP_SERVER_DATA = 20,
 APP_FTP_SERVER = 21,
 APP_FTP_CLIENT,
 APP_TELNET_SERVER = 23,
 APP_TELNET_CLIENT,
 ...
 /* Application-layer routing protocols */
 ...
 APP_ROUTING_FISHEYE = 160, // IP protocol number
 APP_ROUTING_STATIC,
 ...
 APP_PLACEHOLDER
} AppType;

2. AppInfo: This data structure contains information about an instance of an application. The information

stored is the application type and a pointer to the structure that stores the application state and

statistics. Each node maintains this information for each instance of each application running at that

node.

typedef struct app_info
{
 AppType appType; /* type of application */
 void *appDetail; /* statistics of the application */
 struct app_info *appNext; /* link to the next app of
 the node */
} AppInfo;

3. AppData: This is the main data structure used by the Application Layer and stores information about all

applications running at a node. Some important fields of this structure are explained below.

(The structure struct_app_str, described below, is defined in application.h. The structure AppData
is defined to be equivalent to struct_app_str in QUALNET_HOME/include/main.h by means of a
typedef statement.)
75 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
struct struct_app_str
{
 AppInfo *appPtr; /* pointer to the list of app info */
 PortInfo *portTable; /* pointer to the port table */
 short nextPortNum; /* next available port number */
 BOOL appStats; /* flag indicating whether application
 statistics collection is enabled */
 AppType exteriorGatewayProtocol;
 BOOL routingStats;
 void *routingVar;
 void *bellmanford;
 void *olsr;
 ...
};

• appPtr: This is a pointer to the list of traffic-generating protocols running at the node. Each
instance of an application has its own entry in this list.

• appStats: This flag indicates whether or not statistics collection is enabled for the Application
Layer.

• portTable, nextPortNum: These fields are used to manage port numbers and are explained in
Section 4.2.7.1.

• routingVar, bellmanford, olsr: These are pointers to the Application Layer routing protocols
running at the node.

4. AppTimer: This data structure is used to implement Application Layer timers. It stores the timer type

and information to identify the application for which the timer is set.

typedef struct app_timer
{
 int type; /* timer type */
 int connectionId; /* the connection this timer is meant for */
 unsigned short sourcePort; /* the port of the session this */
 /* timer is meant for */
 NodeAddress address; /* address and port combination identify */
 /* session */
} AppTimer;

4.2.4 Application Layer APIs and Inter-layer Communication

This section describes the APIs that are available for the Application Layer to communicate with the
Transport Layer (see Section 4.2.4.1), message types that are used by the Transport Layer to
communicate with the Application Layer (see Section 4.2.4.2), and some of the Application Layer utility
APIs (see Section 4.2.4.3).

The complete list of APIs, with their parameters and description, can be found in API Reference Guide.

4.2.4.1 Application Layer to Transport Layer Communication

A number of APIs are available at the Application Layer to communicate with the Transport Layer. The
prototypes for the API functions are contained in the file app_util.h. The file app_util.cpp contains the
implementation of these functions.
QualNet 5.2 Programmer’s Guide 76

Application Layer Chapter 4
Some of the APIs used for communication from the Application Layer to the Transport Layer are listed
below.

• APP_UdpSendNewDataWithPriority: This function allocates and sends data to the UDP protocol at the
Transport Layer with the specified priority.

• APP_TcpOpenConnection: This function opens a TCP connection.

• APP_TcpServerListen: This function enables the Application Layer to listen on the specified server port.

• APP_TcpSendData: This function sends data to the TCP protocol at the Transport Layer.

• APP_TcpCloseConnection: This function closes a TCP connection.

4.2.4.2 Transport Layer to Application Layer Communication

Transport Layer protocols communicate with the Application Layer by means of messages. The message
types used for this communication are enumerated in the file QUALNET_HOME/include/api.h. Some of the
message types used by Transport Layer protocols to communicate with the Application Layer are listed
below.

• MSG_APP_FromTransport: This message type is used by UDP to pass an incoming packet to the
Application Layer.

• MSG_APP_FromTransOpenResult: This message type is used by TCP to notify an application client
that a TCP connection request was accepted or rejected.

• MSG_APP_FromTransDataSent: This message type is used by TCP to indicate to the Application
Layer that an outgoing packet has been transmitted.

• MSG_APP_FromTransDataReceived: This message type is used by TCP to pass an incoming
packet to the Application Layer.

• MSG_APP_FromTransListenResult: This message type is used by TCP to notify an application
server that a request to open a TCP connection has been received.

• MSG_APP_FromTransCloseResult: This message type is used by TCP to notify an application client
or server that a TCP connection has been closed.

4.2.4.3 Application Layer Utility APIs
Several APIs are available at the Application Layer that perform tasks internal to the Application Layer. The
prototypes for the API functions are contained in the file app_util.h. The file app_util.cpp contains the
implementation of these functions.

Some of the Application Layer utility APIs are listed below.

• APP_IsFreePort: This functions checks whether the specified port number is free or in use.

• APP_GetProtocolType: This function returns the protocol type for which the specified message is
destined.

• APP_RegisterNewApp: This function inserts a new application instance in the list of application
instances running at a node’s Application Layer.

• APP_SetTimer: This function sets an Application Layer timer.

4.2.5 Adding a Traffic-generating Application Protocol

Although the working of each Application Layer protocol is different, there are certain functions that are
performed by most Application Layer protocols. This section provides an overview of the flow of a traffic-
generating Application Layer protocol and provides an outline for developing and adding a traffic-
generating Application Layer protocol to QualNet. It describes how to develop code components common
to most application protocols such as initializing, sending and receiving packets, and collecting statistics.
77 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
We illustrate the process of adding a traffic-generating protocol by using as an example the
implementation code for the CBR (Constant Bit Rate) application, which is one of the most frequently used
protocols. The header file for the CBR implementation is app_cbr.h and the source file is app_cbr.cpp in
the folder QUALNET_HOME/libraries/developer/src. We use code snippets from these two files throughout
this section to illustrate different steps in writing a traffic-generating protocol. After understanding the
discussed snippets, look at the complete code for CBR to understand how a traffic-generating protocol is
implemented in QualNet.

CBR, which is used as an example in this section, is a UDP-based application. TCP-based applications,
such as FTP, require some additional tasks that are not covered in this section. Use FTP as an example to
develop a TCP-based application. The header file for the FTP implementation is app_ftp.h and the source
file is app_ftp.cpp in the folder QUALNET_HOME/libraries/developer/src.

The following list summarizes the actions that need to be performed for adding a traffic-generating
Application Layer protocol to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.2.5.2).

2. Modify the file application.cpp to include the protocol’s header file (see Section 4.2.5.2).

3. Include the protocol in the list of Application Layer protocols and trace protocols (see Section 4.2.5.3).

4. Define data structures for the protocol (see Section 4.2.5.4).

5. Decide on the format for the protocol-specific configuration parameters (see Section 4.2.5.5.1).

6. Read the protocol’s configuration parameters and call the protocol’s initialization function from the

Application Layer initialization function, APP_InitializeApplications (see Section 4.2.5.5.2).

7. Write the initialization function for the protocol. The initialization function should include the following

tasks:

a. Declare and initialize the state variables (see Section 4.2.5.5.3.1).

b. Register the application instance (see Section 4.2.5.5.3.2).

c. Initialize timers (see Section 4.2.5.5.3.3).

8. Call the client and server event dispatchers from the Application Layer event dispatcher,

APP_ProcessEvent (see Section 4.2.5.6.1).

9. Declare any new event types used by the protocol in the header file api.h (see Section 4.2.5.6.2).

10.Write the client event dispatcher (see Section 4.2.5.6.2).

11.Write the server event dispatcher (see Section 4.2.5.6.3).

12.Include code in various functions to collect statistics.

a. Declare statistics variables (see Section 4.2.5.7.1).

b. Initialize the statistics variables in the protocol’s initialization function (see Section 4.2.5.7.2).

c. Update the statistics as appropriate (see Section 4.2.5.7.3).

d. Write a function to print the statistics (see Section 4.2.5.7.4).

e. Add dynamic statistics to the protocol, if desired (see Section 4.2.5.7.5) .

13.Call the client and server finalization function from the Application Layer finalization function,

APP_Finalize (see Section 4.2.5.8.1).

14.Write the client finalization function (see Section 4.2.5.8.2). Call the function to print statistics from the

client finalization function.

15.Write the server finalization function (see Section 4.2.5.8.3). Call the function to print statistics from the

server finalization function.
QualNet 5.2 Programmer’s Guide 78

Application Layer Chapter 4
16.Include the protocol header and source files in the QualNet tree and compile (see Section 4.2.5.9).

17.To make the protocol available in the QualNet GUI, modify the GUI settings files (see Section 4.2.5.10).

4.2.5.1 Naming Guidelines
In QualNet, each component (file, data structure, function, etc.) is given a name that indicates the name of
the protocol, the layer in which the protocol resides, and the functionality of the component, as appropriate.
We recommend that when adding a new protocol, the programmer name the different components of the
new protocol in a similar manner. It will be helpful to examine the implementation of CBR in QualNet for
hints for naming and coding different components of the new protocol.

In this section, we describe the steps for developing a traffic-generating Application Layer protocol called
“MYPROTOCOL”. We will use the string “Myprotocol” in the names of the different components of this
protocol, just as the string “Cbr” appears in the names of the components of the CBR implementation.

4.2.5.2 Creating Files

The first step towards adding an application model is creating files. Most models comprise two files: the
header file and the source file. These files can be placed in any library, e.g., in the folder
QUALNET_HOME/libraries/developer/src. However, it is recommended that all user-developed models be
made part of a separate library. In our example, we will place the application model in a library called
user_models. See Section 4.10 for instructions for creating and activating a library.

If it doesn’t already exist, create a directory in QUALNET_HOME/libraries called user_models and a
subdirectory in QUALNET_HOME/libraries/user_models called src. Create the files for the application
model and place them in the folder QUALNET_HOME/libraries/user_models/src. Name these files in a
way that clearly indicates the model that they implement. Prefix the file names with app_ to designate the
files as application model files.

Examples:

• app_ftp.h, app_ftp.cpp: Implement FTP (File Transfer Protocol)

• app_cbr.h, app_cbr.cpp: Implement CBR (Constant Bit Rate)

In keeping with the naming guidelines of Section 4.2.5.1, the header file for the example protocol is called
app_myprotocol.h, and the source file is called app_myprotocol.cpp.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file, app_myprotocol.h, should contain the following:

• Prototypes for interface functions in the source file, app_myprotocol.cpp

• Constant definitions

• Data structure definitions and data types: struct and enum declarations

The source file, app_myprotocol.cpp, should contain the following:

• Statement to include the protocol’s header file:

#include “app_myprotocol.h”
79 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
• Statements to include standard library functions and other header files needed by the protocol source
file. A typical protocol source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "api.h" // QUALNET_HOME/include/api.h
#include "app_util.h" // QUALNET_HOME/include/app_util.h
#include "partition.h" // QUALNET_HOME/include/partition.h

• Initialization functions for the client and server, AppMyprotocolClientInit and AppMyprotocolServerInit,
respectively

• Event dispatcher function for the client and server, AppLayerMyprotocolClient and
AppLayerMyprotocolServer, respectively

• Finalization function for the client and server, AppMyprotocolClientFinalize and
AppMyprotocolServerFinalize, respectively

• Additional protocol implementation functions

The file QUALNET_HOME/main/application.cpp contains the layer level initialization, event dispatcher,
and finalization functions. These layer level functions in turn call the protocol’s initialization, event
dispatcher, and finalization functions. Therefore, to make these protocol functions available to the layer
level functions, insert the following include statement in the file application.cpp:

#include “app_myprotocol.h”

4.2.5.3 Including MYPROTOCOL in List of Application Layer Protocols

Each node in QualNet hosts an operating protocol stack. For each layer in the stack, a list of protocols
running at that layer is maintained. When a new Application Layer protocol is added to QualNet, it needs to
be included in the list of Application Layer protocols. To do this, add the protocol name to the enumeration
AppType defined in QUALNET_HOME/include/application.h (see Section 4.2.3).

Traffic-generating applications have two parts: a client which generates the traffic and a server that
receives the traffic. Both the client and server of an application protocol should be added to AppType.

For our example protocol, add the two entries APP_MYPROTOCOL_CLIENT (for the application client) and
APP_MYPROTOCOL_SEVER (for the application server) to AppType, as shown in Figure 4-15.
QualNet 5.2 Programmer’s Guide 80

Application Layer Chapter 4
typedef enum
{
 APP_FTP_SERVER_DATA = 20,
 APP_FTP_SERVER = 21,
 APP_FTP_CLIENT,
 APP_TELNET_SERVER = 23,
 APP_TELNET_CLIENT,
 ...
 /* Application-layer routing protocols */
 ...
 APP_ROUTING_FISHEYE = 160, // IP protocol number
 APP_ROUTING_STATIC,
 ...
 APP_MYPROTOCOL_CLIENT,
 APP_MYPROTOCOL_SERVER,
 APP_PLACEHOLDER
} AppType;

FIGURE 4-15. Adding MYPROTOCOL to List of Application Layer Protocols

Always add to the end of lists in header files (just before the entry APP_PLACEHOLDER).

QualNet provides for detailed traces of packets as they traverse the protocol stack at nodes in the network.
A packet trace lists, among other information, the protocol that is handling the packet at the time of the
trace. To facilitate tracing, QualNet lists all protocols in an enumeration, TraceProtocolType, in the file
QUALNET_HOME/include/trace.h. For our example protocol, add an entry TRACE_MYPROTOCOL in
TraceProtocolType, as shown in Figure 4-16.

typedef enum
{
 TRACE_UNDEFINED = 0,
 TRACE_TCP, // 1
 TRACE_UDP, // 2
 TRACE_IP, // 3
 TRACE_CBR, // 4
 TRACE_FTP, // 5
 ...
 TRACE_MYPROTCOL,
 // Must be last one!!!
 TRACE_ANY_PROTOCOL
}TraceProtocolType;

FIGURE 4-16. Adding MYPROTOCOL to List of Trace Protocols

Always add to the end of lists in header files (just before the entry TRACE_ANY_PROTOCOL).
81 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.5.4 Defining Data Structures
Each application has its own data structures, which are defined in the protocol’s header file. The data
structures store information such as:

1. Application parameters (see Section 4.2.5.5.2)

2. Application instance identification, such as port number (see Section 4.2.7.1)

3. Application state (see Section 4.2.5.5.3)

4. Statistics variables (see Section 4.2.5.7.1)

Define appropriate data structures for your application’s client and server in the protocol header file,
app_myprotocol.h. As an example, the following data structures (defined in app_cbr.h) are used by the
CBR protocol:

1. CbrData: This is the main data structure used by the CBR protocol.

typedef struct struct_app_cbr_data
{
 short sourcePort;
 char type;
 Int32 seqNo;
 clocktype txTime;
 ...
} CbrData;

2. AppDataCbrClient: This data structure contains the CBR client information.

typedef struct struct_app_cbr_client_str
{
 Address localAddr;
 Address remoteAddr;
 D_Clocktype interval;
 clocktype sessionStart;
 clocktype sessionFinish;
 clocktype sessionLastSent;
 clocktype endTime;
 BOOL sessionIsClosed;
 D_Int64 numBytesSent;
 UInt32 numPktsSent;
 UInt32 itemsToSend;
 UInt32 itemSize;
 short sourcePort;
 Int32 seqNo;
 D_UInt32 tos;
}AppDataCbrClient;
QualNet 5.2 Programmer’s Guide 82

Application Layer Chapter 4
3. AppDataCbrServer: This data structure contains the CBR server information.

typedef struct struct_app_cbr_server_str
{
 Address localAddr;
 Address remoteAddr;
 short sourcePort;
 clocktype sessionStart;
 clocktype sessionFinish;
 clocktype sessionLastReceived;
 BOOL sessionIsClosed;
 D_Int64 numBytesRecvd;
 UInt32 numPktsRecvd;
 clocktype totalEndToEndDelay;
 clocktype maxEndToEndDelay;
 clocktype minEndToEndDelay;
 Int32 seqNo;
 clocktype totalJitter;
 ...
} AppDataCbrServer;

4.2.5.5 Initialization

In this section, we describe the tasks that need to be performed as part of the initialization process of a
traffic-generating Application Layer protocol.

4.2.5.5.1 Determining the Protocol Configuration Format

Each application has an input format for specifying user-specified configuration parameters. The
application configuration is specified in the QualNet application configuration file using this input format.
The format for specifying an application’s configuration parameters is:

<Protocol-name> <param1> <param2> ... <paramN>

where:

<Protocol-name> : Unique identifier for the protocol.

<param1>, ..., <paramN> : User-specified configuration parameter values. An application
protocol may have any number of required and/or optional
parameters.
83 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
For example, to specify CBR traffic parameters in the configuration file QUALNET_HOME/scenarios/
default/default.app, use the following format:

CBR <src> <dest> <items_to_send> <item_size> <interval> <start time>
<end time>

where:

<src> : Client node's node identifier or IP address.

<dest> : Server node's node identifier or IP address.

<items_to_send> : Number of items to send.

<item_size> : Size of each item.

<interval> : Pause time between transmission of successive items.

<start_time> : Transmission start time.

<end_time> : Transmission end time.

The following example specifies that the node 1 will send 500 2-kilobyte items to node 2, sending one per
minute, starting at 50 simulation seconds, and ending at 100 simulation seconds:

CBR 1 2 500 2048 1M 50S 100S

Decide on the format for specifying the new application’s configuration parameters. For our example
protocol, specify the configuration parameters in the QualNet configuration file using the following format:

MYPROTOCOL <param1> <param2> ... <paramN>

 Section 4.2.5.5.2 explains how to read user input specified in this format to initialize the application.

4.2.5.5.2 Reading Configuration Parameters and Calling the Protocol Initialization Function

QualNet can configure a protocol to the parameters specified by the user in the QualNet configuration file
that sets up the experiment. This section explains how to read these user-specified configuration
parameters for the application protocol and provide them to the protocol's initialization function.

The protocol stack of each node is initialized in a bottom up manner. The initialization of the Application
Layer thus occurs after the other layers have been initialized. This process is performed in the node
initialization function PARTITION_InitializeNodes, implemented in QUALNET_HOME/main/partition.cpp
(see Section 3.4.1).

The node initialization function, PARTITION_InitializeNodes, calls the Application Layer initialization
functions APP_InitializeApplications and APP_Initialize, which are implemented in the file application.cpp.
APP_Initialize initializes Application Layer routing protocols while APP_InitializeApplications is used for
initializing traffic-generating protocols.

Function APP_InitializeApplications reads the user's configuration parameters and passes them to the
initialization functions of application protocols. To initialize a traffic-generating application protocol in
QualNet, add code to the function APP_InitializeApplications for reading the protocol's configuration
parameters and for calling its initialization function.

Figure 4-17 shows how APP_InitializeApplications reads the configuration parameters for CBR and calls
the initialization function for the CBR client and server. APP_InitializeApplications has access to the
configuration input for the Application Layer specified by the user in the experiment configuration file. This
input is stored in a variable called appInput. The first word of the currently examined input line is stored
in a variable called appStr. The appStr variable is compared with the keyword used to uniquely identify
an application, such as CBR, FTP, etc. If a match occurs, then the parameters of the application are read
QualNet 5.2 Programmer’s Guide 84

Application Layer Chapter 4
from the input string. The C library function sscanf is used to split the input string into multiple words that
constitute the parameters of the protocol.

The source and destination node identifiers are parameters commonly specified by users for most traffic-
generating applications. The strings containing the source and destination information (obtained by
splitting the input string) are passed to the QualNet library function IO_AppParseSourceAndDestStrings,
defined in ð/include/fileio.h. This function performs the following tasks:

1. Gets the source and destination node identifier and node address from the input strings

2. Displays an error message if the source or destination does not exist

After obtaining the node identifier, the QualNet library function MAPPING_GetNodePtrFromHash, defined
in QUALNET_HOME/include/mapping.h, is called to get a handle to the node pointer which stores the
state of the source node.

The parameters containing time related information are converted from string to QualNet's clocktype
variables by calling QualNet library function TIME_ConvertToClock defined in QUALNET_HOME/include/
clock.h.

This is followed by a call to the CBR client initialization function AppCbrClientInit, which is passed the
source node pointer and user configuration values that were read from input string appInput. Then,
APP_InitializeApplications calls function APP_SuccessfullyHandledLoopback to check if the application is
specified as a loopback application. If it is not a loopback application, function
MAPPING_GetNodePtrFromHash is called to get the destination node pointer. Lastly, the CBR server
initialization function, AppCbrServerInit, is called with destination node pointer as the parameter. The
initialization functions AppCbrClientInit and AppCbrServerInit are implemented in the file app_cbr.cpp.
Function APP_SuccessfullyHandledLoopback is implemented in application.cpp.
85 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
void APP_InitializeApplications(Node *firstNode, const NodeInput *nodeInput)
{
 NodeInput appInput;
 char appStr[MAX_STRING_LENGTH];
 ...
 for (i = 0; i < appInput.numLines; i++)
 {
 sscanf(appInput.inputStrings[i], "%s", appStr);
 ...
 else
 if (strcmp(appStr, "CBR") == 0)
 {
 char sourceString[MAX_STRING_LENGTH];
 ...
 NodeAddress sourceNodeId;
 Address sourceAddr;
 ...
 numValues = sscanf(appInput.inputStrings[i],
 "%*s %s %s %d %d %s %s %s %s %s %s",
 sourceString, destString, &itemsToSend,
 &itemSize, intervalStr, startTimeStr,
 endTimeStr, optionToken1, optionToken2,
 optionToken3);
 ...
 IO_AppParseSourceAndDestStrings(
 firstNode, appInput.inputStrings[i], sourceString,
 &sourceNodeId, &sourceAddr, destString, &destNodeId, &destAddr);
 node = MAPPING_GetNodePtrFromHash(nodeHash, sourceNodeId);
 if (node != NULL)
 {
 clocktype startTime = TIME_ConvertToClock(startTimeStr);
 clocktype endTime = TIME_ConvertToClock(endTimeStr);
 ...
 AppCbrClientInit(node, sourceAddr, destAddr, itemsToSend
 itemSize, interval, startTime, endTime,
 tos, isRsvpTeEnabled);
 }
 ...
 // Handle Loopback Address
 if (node == NULL ||
 !APP_SuccessfullyHandledLoopback(
 node, appInput.inputStrings[i], destAddr,
 destNodeId, sourceAddr, sourceNodeId))
 {
 node = MAPPING_GetNodePtrFromHash(nodeHash, destNodeId);
 }
 if (node != NULL)
 {
 AppCbrServerInit(node);
 }
 }
 ...
}

FIGURE 4-17. Calling CBR Initialization Functions
QualNet 5.2 Programmer’s Guide 86

Application Layer Chapter 4
Add code to the function APP_InitializeApplications to read the configuration parameters for the application
MYPROTOCOL from the input file, and to call the initialization functions for the client and server,
AppMyprotocolClientInit and AppMyprotocolServerInit, respectively. Figure 4-18 shows an outline of the
code that should be added.

void APP_InitializeApplications(Node *firstnode, const NodeInput *nodeInput)
{
 NodeInput appInput;
 char appStr[MAX_STRING_LENGTH];
 ...
 for (i = 0; i < appInput.numLines; i++)
 {
 sscanf(appInput.inputStrings[i], "%s", appStr);
 ...
 else
 if (strcmp(appStr, "CBR") == 0)
 {
 ...
 }

 else
if (strmcp(appStr, “MYPROTOCOL”) == 0)
{

/* Initialize variables for reading user input */
...
/*Read user input into appropriate variables */
retVal == sccanf(appInput.inputStrings[i], ...);
...
/* Get source and destination nodeId and address */
IO_AppParseSourceAndDestStrings(...)
...
/* Get the pointer to the source node */
node = MAPPING_GetNodePtrFromHash (...);
if (node != NULL)
{

...
/* Call MYPROTOCOL client initialization function */
AppMyprotocolClientInit (node, ...);

}
/* Get the pointer to the destination node */
node = MAPPING_GetNodePtrFromHash (...);
if (node != NULL)
{

...
/* Call MYPROTOCOL server initialization function */
AppMyprotocolServerInit (node, ...);

}
}

 ...
 }
}

FIGURE 4-18. Calling MYPROTOCOL Initialization Functions
87 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.5.5.3 Implementing the Client Initialization Function

The initialization of an application takes place in the initialization function of the protocol that is called by
the Application Layer initialization function APP_InitializeApplications. The initialization function of an
application commonly performs the following tasks:

• Initialize the state and store the user specified configuration parameters

• Initialize data structures and variables as required, e.g., allocate memory to tables, set default values,
etc.

• Create an instance of the application

• Schedule a timer to itself for starting the application, if the application uses UDP at the Transport Layer

• Open a TCP connection, if the application uses TCP at the Transport Layer

This section describes how to initialize the client for a UDP-based application. For an example of initializing
the client for a TCP-based application, refer to the FTP function AppFtpClientInit in QUALNET_HOME/
libraries/developer/src/app_ftp.cpp.

Like all other functions belonging to the application, the prototype for the initialization functions should be
included in the application's header file, app_myprotocol.h.

4.2.5.5.3.1 Creating an Instance and Initializing the State

The initialization function initializes the protocol state. Each protocol has a structure that it uses to store
state information. This may include information such as timer state (next periodic update, etc.), flags,
connection information, sequence number, pointers to tables used by the protocol, etc. Each instance of
the application maintains its own state variable.

To store the state, declare the structure to hold the protocol state in the header file, app_myprotocol.h (see
Section 4.2.5.4).

Create an instance of the application by allocating memory to the state structure. CBR performs this task
by calling the function AppCbrClientNewCbrClient in its initialization function AppCbrClientInit, as shown in
Figure 4-19. AppDataCbrClient is the data structure for the CBR client (see Section 4.2.5.4).

void AppCbrClientInit(Node *node, Address clientAddr, Address serverAddr,
 Int32 itemsToSend, Int32 itemSize, clocktype interval,
 clocktype startTime, clocktype endTime, unsigned tos,
 BOOL isRsvpTeEnabled)

{
...
AppDataCbrClient *clientPtr; //pointer to the state structure
...
clientPtr = AppCbrClientNewCbrClient(

node,
clientAddr, serverAddr,
itemsToSend, itemSize,
interval, startTime,
endTime, (TosType) tos);

...
}

FIGURE 4-19. Creating an Application Instance in Initialization Function
QualNet 5.2 Programmer’s Guide 88

Application Layer Chapter 4
Function AppCbrClientNewCbrClient calls the function MEM_malloc to allocate memory to the state
structure. It then stores the user specified configuration parameters that were passed to the initialization
function AppCbrClientInit as shown in Figure 4-20.

AppDataCbrClient *AppCbrClientNewCbrClient(
 Node *node, Address localAddr, Address remoteAddr,
 Int32 itemsToSend, Int32 itemSize, clocktype interval,
 clocktype startTime, clocktype endTime, TosType tos)

{
AppDataCbrClient *cbrClient;

cbrClient = (AppDataCbrClient*)
 MEM_malloc(sizeof(AppDataCbrClient));

 memset(cbrClient, 0, sizeof(AppDataCbrClient));
/*

 * fill in cbr info.
 */

...
cbrClient->interval = interval;
cbrClient->sessionStart = getSimTime(node) + startTime;
...
cbrClient->sourcePort = node->appData.nextPortNum++;
...
APP_RegisterNewApp(node, APP_CBR_CLIENT, cbrClient);
return cbrClient;

}

FIGURE 4-20. Function to Create and Initialize an Application Instance

Multiple instances of the same application may run at a node. Therefore, the protocol state structure must
have an identifying field. For the CBR client application, this is the field sourcePort of the
AppDataCbrClient data structure. When a new instance of the CBR client is created, this field is
assigned the next available port number, as shown in Figure 4-20. This ensures that a unique port number
is associated with each instance.

4.2.5.5.3.2 Registering the Application

The next step after creating the application instance is to register the instance as one of the protocols
running at the node. This is done by making a call to APP_RegisterNewApp, as shown in Figure 4-20.
Function APP_RegisterNewApp is a QualNet library function (defined in app_util.cpp) to add an
application to the list of applications running at the node. When the application needs to access its state
variable, it retrieves the state variable from this list. Each element of this list is of the type AppInfo (see
Section 4.2.3).

APP_RegisterNewApp accepts the following parameters:

• the node pointer

• the application type

• the pointer to the state structure

4.2.5.5.3.3 Initializing Timers

Besides initializing data structures, the initialization function also initializes timers for the application.
Timers serve a variety of purposes at the Application Layer, e.g., to notify when the application is supposed
to begin sending data, to simulate traffic sending rate, etc.
89 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
This section discusses in detail how to use timers. Since each node can have multiple applications of the
same type, Application Layer timers frequently use the message info field to identify which application
instance the timer is for.

QualNet provides a general structure used to hold information on application timers called AppTimer (see
Section 4.2.3). AppTimer can be used to store the following information:

• Timer Type: Category or purpose of timer

• Connection Id: Connection this timer is meant for

• SourcePort: The session that this timer belongs to.

The timer type can be one of the following three pre-defined types:

• Name: APP_TIMER_SEND_PKT

Purpose: Timer to send a packet. Used to simulate data sending rate.

• Name: APP_TIMER_UPDATE_TABLE

Purpose: Timer to update a local table, e.g., update entries, remove timed-out entries from a table, etc.

• Name: APP_TIMER_CLOSE_SESS

Purpose: Timer to close a session.

Figure 4-21 shows the code from the initialization function, AppCbrClientInit, that sets a timer to inform the
CBR client of when to start sending data. It demonstrates how a timer can store the source port of the
application instance in the message info field. This source port is used to identify the instance of the CBR
application, in case there are multiple CBR applications running at the node. The timer type used is
APP_TIMER_SEND_PKT because the purpose of the timer is to tell the CBR client to send a packet.

void AppCbrClientInit(Node *node, Address clientAddr, Address serverAddr,
 Int32 itemsToSend, Int32 itemSize, clocktype interval,

 clocktype startTime, clocktype endTime, unsigned tos,
 BOOL isRsvpTeEnabled)
{

 ...
 AppTimer *timer;
 ...
 Message *timerMsg;
 ...

 timerMsg = MESSAGE_Alloc(node,
 APP_LAYER,
 APP_CBR_CLIENT,
 MSG_APP_TimerExpired);
 MESSAGE_InfoAlloc(node, timerMsg, sizeof(AppTimer));
 timer = (AppTimer *)MESSAGE_ReturnInfo(timerMsg);
 timer->sourcePort = clientPtr->sourcePort;
 timer->type = APP_TIMER_SEND_PKT;
 MESSAGE_Send(node, timerMsg, startTime);
}

FIGURE 4-21. Initializing Timers

The message type used here is MSG_APP_TimerExpired. Commonly needed message types for the
Application Layer are defined in api.h.
QualNet 5.2 Programmer’s Guide 90

Application Layer Chapter 4
The API function APP_SetTimer can also be used instead of the code in Figure 4-21 to set a new
Application Layer timer and send to self after a specified delay. APP_SetTimer is implemented in
app_util.cpp.

4.2.5.5.4 Implementing the Server Initialization Function

For a UDP-based application, such as CBR, the server is initialized when it receives the first packet from
the client. This is discussed in Section 4.2.5.6.3.

For an example of initializing the server for a TCP-based application, refer to the FTP function
AppFtpServerInit in app_ftp.cpp.

4.2.5.6 Implementing the Event Dispatcher

In this section, we describe the steps for implementing the event dispatcher function for a traffic-generating
protocol.

As explained in Section 3.4.2, when an event occurs, it is first handled by the node level dispatcher
function NODE_ProcessEvent, defined in QUALNET_HOME/main/node.cpp. If the event is for the
Application Layer, NODE_ProcessEvent calls the Application Layer event dispatcher APP_ProcessEvent,
defined in application.cpp.

Section 4.2.5.6.1 describes how to modify the Application Layer event dispatcher function to call the traffic-
generating protocol’s event dispatchers. Section 4.2.5.6.2 and Section 4.2.5.6.3 describe how to
implement the event dispatcher for the protocol client and the protocol server, respectively.

4.2.5.6.1 Modifying the Application Layer Event Dispatcher

Function APP_ProcessEvent implements the Application Layer event dispatcher that informs the
appropriate application protocol of received events. Messages contain the name of the protocol they are
destined for. (This is the application protocol name specified in the enumerated data type AppType,
described in Section 4.2.3.) The API function APP_GetProtocolType returns the protocol for which the
message is destined. APP_ProcessEvent implements a switch statement on the protocol name read from
the message and calls the appropriate protocol-specific event dispatcher.

To enable the protocol MYPROTOCOL to receive events, add code to APP_ProcessEvent to call the
protocol's event dispatcher function when messages for the protocol are received. For a traffic-generating
application protocol, do this separately for both the server and the client. Figure 4-22 shows a code
fragment from APP_ProcessEvent with sample code for calling the client event dispatcher function,
AppLayerMyprotocolClient, and the server event dispatcher function, AppLayerMyprotocolServer.
91 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
void APP_ProcessEvent(Node *node, Message *msg)
{
 short protocolType;
 protocolType = APP_GetProtocolType(node,msg);
 switch(protocolType)
 {
 case APP_ROUTING_BELLMANFORD:
 {
 RoutingBellmanfordLayer(node, msg);
 break;
 }
 ...
 case APP_CBR_CLIENT:
 {
 AppLayerCbrClient(node, msg);
 break;
 }
 case APP_CBR_SERVER:
 {
 AppLayerCbrServer(node, msg);
 break;
 }
 case APP_MYPROTOCOL_CLIENT:
 {
 AppLayerMyprotocolClient(node, msg);
 break;
 }
 case APP_MYPROTOCOL_SERVER:
 {
 AppLayerMyprotocolServer(node, msg);
 break;
 }
 ...
 }//switch//
}

FIGURE 4-22. Calling MYPROTOCOL Event Dispatcher Functions
QualNet 5.2 Programmer’s Guide 92

Application Layer Chapter 4
4.2.5.6.2 Implementing the Client Event Dispatcher

A protocol's event dispatcher should include a switch on all message types that the protocol may receive.
It can then process each message type either inside the switch or by calling a function to handle the
message type received.

All event types used by QualNet protocols are enumerated in the file api.h. If the protocol being added
needs additional event types, these should be included in the enumeration in file api.h, as shown in
Figure 4-23.

// /**
// ENUM :: MESSAGE/EVENT
// DESCRIPTION :: Event/message types exchanged in the simulation
// **/
enum
{
 /* Special message types used for internal design. */
 MSG_SPECIAL_Timer = 0,
 ...
 /* Message Types for Channel layer */
 MSG_PROP_SignalArrival = 100,
 MSG_PROP_SignalEnd = 101,
 ...
 /*
 * Any other message types which have to be added should be added before
 * MSG_DEFAULT. Otherwise the program will not work correctly.
 */
 MSG_APP_MYPROTOCOL_NewEvent1,
 MSG_APP_MYPROTOCOL_NewEvent2,
 MSG_DEFAULT = 10000
};

FIGURE 4-23. Declaring New Event Types

Always add to the end of lists in header files (just before the entry MSG_DEFAULT).

To understand how a protocol event dispatcher works, we examine the code for the function
AppLayerCbrClient, which is the event dispatcher for the CBR client. Function AppLayerCbrClient and the
other functions used by the CBR application are implemented in the file app_cbr.cpp.

When an event occurs, the first thing to do is to determine which instance of the application protocol this
event is for. This can be done by looking up additional information stored in the message info field, such
as source or destination port. For example, the CBR function AppCbrClientGetCbrClient searches the list
of application instances running at the node, based on the source port number, and returns the data
structure for the appropriate application instance, as shown in Figure 4-24.
93 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
AppDataCbrClient *
AppCbrClientGetCbrClient(Node *node, short sourcePort)
{
 AppInfo *appList = node->appData.appPtr;
 AppDataCbrClient *cbrClient;

 for (; appList != NULL; appList = appList->appNext)
 {
 if (appList->appType == APP_CBR_CLIENT)
 {
 cbrClient = (AppDataCbrClient *) appList->appDetail;
 if (cbrClient->sourcePort == sourcePort)
 {
 return cbrClient;
 }
 }
 }

 return NULL;
}

FIGURE 4-24. Searching the List of Application Instances

CBR operates by setting a periodic timer to itself. Each time the timer goes off, the client sends a data
packet to the destination. It then sets a new timer to occur after the periodic interval. In this way the desired
data rate is achieved. The timer is initialized in the initialization function for the CBR Client,
AppCbrClientInit, where a timer of type APP_TIMER_SEND_PKT is set for the start time of the CBR
application (see Section 4.2.5.5.3.3). Figure 4-25 shows the code to handle this timer event in the CBR
client event dispatcher function AppLayerCbrClient.

The API function APP_UdpSendNewHeaderVirtualDataWithPriority sends a packet to UDP at the
Transport Layer. (See the API Reference Guide for the complete list of Application Layer APIs and the file
app_util.cpp for their implementation.) UDP delivers the packet to the application protocol (CBR server, in
this case) at the destination node.

Instead of the layer-specific APIs, such as APP_UdpSendNewHeaderVirtualDataWithPriority, message
APIs can be used to communicate between layers, as discussed in Section 3.3.1.2.

After sending a packet, the CBR client determines if any more packets need to be sent. If this is the case,
it calls the function AppCbrClientScheduleNextPkt. Function AppCbrClientScheduleNextPkt sets a timer of
type APP_TIMER_SEND_PKT to occur after the inter-packet interval of the CBR application.

After the message is handled by the event dispatcher, it frees the memory associated with the message by
calling the function MESSAGE_Free.

It is important to free the memory after the message has been processed; otherwise, the
simulator will leak memory.

The event dispatcher also includes a default case in the switch statement to handle messages which
contain an undefined event type.
QualNet 5.2 Programmer’s Guide 94

Application Layer Chapter 4
void AppLayerCbrClient(Node *node, Message *msg)
{
 ...
 AppDataCbrClient *clientPtr;
 ...
 switch(msg->eventType)
 {
 case MSG_APP_TimerExpired:
 {
 AppTimer *timer;
 timer = (AppTimer *) MESSAGE_ReturnInfo(msg);
 ...
 clientPtr = AppCbrClientGetCbrClient(node, timer->sourcePort);
 ...
 switch (timer->type)
 {
 case APP_TIMER_SEND_PKT:
 {
 CbrData data;
 ...
 data.sourcePort = clientPtr->sourcePort;
 data.txTime = getSimTime(node);
 data.seqNo = clientPtr->seqNo++;
 ...
 APP_UdpSendNewHeaderVirtualDataWithPriority(
 node,
 APP_CBR_SERVER,
 clientPtr->localAddr,
 (short) clientPtr->sourcePort,
 clientPtr->remoteAddr,
 (char *) &data,
 sizeof(data),
 clientPtr->itemSize - sizeof(data),
 clientPtr->tos,
 0,
 TRACE_CBR);
 ...
 }
 default:
 assert(FALSE);
 }
 break;
 }
 default:
 // Print error message
 ...
 ERROR_ReportError(error);
 }
 MESSAGE_Free(node, msg);
}

FIGURE 4-25. Event Dispatcher for CBR Client
95 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
Use of virtualPayLoadSize Field

For some applications, the contents of part or all of the user data are not important in the simulation of the
application and need not be explicitly stored in the packet field of a message. However, the size of the
user data is important because it affects the calculation of transmission time and required buffer space at
lower layers. The virtualPayLoadSize field of the message data structure is used to store the size of
the part of user data whose contents are not important. Therefore, using the virtualPayLoadSize field
saves memory.

In CBR simulation, the contents of the user data are not important. However, an application header is used
in the simulation to store the source port number, the sequence number of data item being transmitted, and
the time when the data item is transmitted. This header information does not correspond to actual CBR
data and is meant for simulator use only. The header is stored in the packet field of a message. The
difference between the CBR item size being simulated and the size of the application header is stored in
the virtualPayLoadSize field of the message. This is done in function
APP_UdpSendNewHeaderVirtualDataWithPriority by calling the function MESSAGE_AddVirtualPayload.

4.2.5.6.3 Implementing the Server Event Dispatcher

We use the CBR application as an example to understand the server event dispatcher, as we did for the
client dispatcher. Function AppLayerCbrServer is the event dispatcher for the CBR server. This function is
implemented in the file app_cbr.cpp, and snippets from it are shown in Figure 4-26.

The CBR server receives packets from the client and processes them. When a packet arrives at the
destination node, it travels up the protocol stack one layer at a time. The UDP protocol at the Transport
Layer sends the packet to the CBR server at the Application Layer by scheduling an event of the type
MSG_APP_FromTransport at the Application Layer.

The CBR server event dispatcher performs actions corresponding to the event type of the received
message. Event MSG_APP_FromTransport indicates the arrival of a packet from the Transport Layer.
The CBR server handles this event by processing the received packet.

When a packet arrives at the CBR server, function AppLayerCbrServer first determines the protocol
instance for which the packet is destined. AppLayerCbrServer calls function AppCbrServerGetCbrServer
to search the list of application instances running at the node, based on the source address and source
port number. If AppCbrServerGetCbrServer finds a match, it returns a pointer to the data structure for the
appropriate instance; otherwise, it returns NULL. If AppCbrServerGetCbrServer returns NULL, it indicates
that the received packet is for a new connection and AppLayerCbrServer initiates a new instance for the
CBR server by calling function AppCbrServerNewCbrServer. Functions AppCbrServerGetCbrServer and
AppCbrServerNewCbrServer are similar to the corresponding functions for the CBR client,
AppCbrClientGetCbrClient (see Section 4.2.5.6.2) and AppCbrClientNewCbrClient (see
Section 4.2.5.5.3.1) and are implemented in app_cbr.cpp.

Function MESSAGE_ReturnPacket returns the packet field of a message and function
MESSAGE_ReturnPacketSize returns the size of the packet field.

As in the case of the client event dispatcher, after the message is handled by the server event dispatcher,
the server dispatcher frees the memory associated with the message by calling the function
MESSAGE_Free.
QualNet 5.2 Programmer’s Guide 96

Application Layer Chapter 4
The event dispatcher also includes a default case in the switch statement to handle messages which
contain an undefined event type.

void AppLayerCbrServer(Node *node, Message *msg
{
 char error[MAX_STRING_LENGTH];
 AppDataCbrServer *serverPtr;

 switch(msg->eventType)
 {
 case MSG_APP_FromTransport:
 {
 UdpToAppRecv *info;
 CbrData data;

 info = (UdpToAppRecv *) MESSAGE_ReturnInfo(msg);
 memcpy(&data, MESSAGE_ReturnPacket(msg), sizeof(data));
 ...
 serverPtr = AppCbrServerGetCbrServer(node,
 info->sourceAddr,
 data.sourcePort);

 /* New connection, so create new CBR server to handle client. */
 if (serverPtr == NULL)
 {
 serverPtr = AppCbrServerNewCbrServer(node,
 info->destAddr,
 info->sourceAddr,
 data.sourcePort);
 }
 ...
 if (data.seqNo >= serverPtr->seqNo)
 {
 serverPtr->numBytesRecvd += MESSAGE_ReturnPacketSize(msg);
 serverPtr->sessionLastReceived = getSimTime(node);
 ...
 serverPtr->seqNo = data.seqNo + 1;
 ...
 }
 ...
 break;
 }
 default:
 {
 ...
 ERROR_ReportError(error);
 }
 }

 MESSAGE_Free(node, msg);
}

FIGURE 4-26. Event Dispatcher for CBR Server

All event types used by QualNet protocols are enumerated in the file api.h. If the protocol being added
needs additional event types, these should be included in the enumeration in file api.h, as described in
Section 4.2.5.6.2.
97 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.5.7 Collecting and Reporting Statistics
In this section, we describe how to collect and report statistics for a traffic-generating Application Layer
protocol.

4.2.5.7.1 Declaring Statistics Variables

An application protocol can be configured to record statistics specified by the programmer, such as:

• Number of bytes sent

• Number of bytes received

• Number of packets sent

To enable statistics collection for the protocol, include the statistic collection variables in the structure used
to hold the protocol state (see Section 4.2.5.4). For example, the data structure for the CBR server,
AppDataCbrServer, defined in app_cbr.h, includes statistics variables such as:

• numBytesRecvd: Variable to record number of received bytes

• numPktsRecvd: Variable to record number of received packets

• totalEndToEndDelay: Variable used to calculate throughput

The statistics related variables can also be defined in a structure and then that structure is included in the
state variable.

4.2.5.7.2 Initializing Statistics

Initialize statistics variables in the function that initializes an instance of the protocol. For example, function
AppCbrServerNewCbrServer in file app_cbr.cpp is the function that creates and initializes an instance of
the CBR server. It also initializes the statistics variables that are declared as part of the CBR server data
structure, AppDataCbrServer. A code snippet from function AppCbrServerNewCbrServer is in Figure 4-
27.

AppDataCbrServer *
AppCbrServerNewCbrServer(Node *node, Address localAddr,
 Address remoteAddr, short sourcePort)
{
 AppDataCbrServer *cbrServer;
 cbrServer = (AppDataCbrServer *)
 Mem_alloc(sizeof(AppDataCbrServer));
 ...
 cbrServer->numBytesRecvd = 0;
 cbrServer->numPktsRecvd = 0;
 cbrServer->totalEndToEndDelay = 0;
 ...
}

FIGURE 4-27. Initializing Statistics Variables
QualNet 5.2 Programmer’s Guide 98

Application Layer Chapter 4
4.2.5.7.3 Updating Statistics

After declaring and initializing the statistics variables, update their value during the protocol life cycle, as
required. For example, increment the value of numBytetsRecvd every time the receiver gets a packet.
The CBR server function AppLayerCbrServer (see Figure 4-26) performs this task by executing the
following code when the server receives a packet:

serverPtr->numBytesRecvd += MESSAGE_ReturnPacketSize(msg);
serverPtr->sessionLastReceived = getSimTime(node);

The API function MESSAGE_ReturnPacketSize returns the size of the packet associated with a message.

4.2.5.7.4 Printing Statistics

As a final step towards statistics collection, create a function to print the client statistics and a function to
print the server statistics. These print functions are called in the finalization functions of the protocol, which
are discussed in Section 4.2.5.7.5.

Function AppCbrServerPrintStats, shown in Figure 4-28, calls the C function sprintf to create a single string
containing the statistic name and statistic value, and then calls function IO_PrintStat to print that string to a
file. Function IO_PrintStat function, defined in QUALNET_HOME/include/fileio.h, requires the following
parameters:

• Node pointer: Pointer to the node reporting the statistics.

• Layer: String indicating the layer. Set this to "Application" for the Application Layer.

• Protocol: String indicating the protocol name.

• Interface address: Interface address. Set this to ANY_DEST for Application Layer protocols.

• Instance identifier: Instance identifier or port number.

• Buffer: String containing the statistics.
99 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
void AppCbrServerPrintStats(Node *node, AppDataCbrServer *serverPtr)
{
 clocktype throughput;
 ...
 char buf[MAX_STRING_LENGTH];
 ...
 sprintf(buf, "Total Packets Received = %u", serverPtr->numPktsRecvd);
 IO_PrintStat(
 node,
 "Application",
 "CBR Server",
 ANY_DEST,
 serverPtr->sourcePort,
 buf);

 sprintf(buf, "Throughput (bits/s) = %s", throughputStr);
 IO_PrintStat(
 node,
 "Application",
 "CBR Server",
 ANY_DEST,
 serverPtr->sourcePort,
 buf);
 ...
}

FIGURE 4-28. Function to Print Statistics

4.2.5.7.5 Adding Dynamic Statistics

Dynamic statistics are statistic variables whose values can be observed in the QualNet GUI during the
simulation. See Section 5.2.3 for adding dynamic statistics to a protocol. Refer to QualNet User’s Guide for
details of viewing dynamic statistics during the simulation.

4.2.5.8 Finalization
The finalization function of the protocol is called by the simulator at the end of simulation. It is the last code
that executes during the simulation. This function is responsible for printing statistics to the statistics file.

At the end of simulation, the finalization function for each protocol is called to print the protocol statistics.
As discussed in Section 3.4.3, the finalization function is called hierarchically. The node finalization
function, PARTITION_Finalize, which is defined in QUALNET_HOME/main/partition.cpp, calls the
finalization function for Application Layer, APP_Finalize, defined in application.cpp. APP_Finalize calls the
finalization function(s) of each application protocol running at the node.

4.2.5.8.1 Modifying the Application Layer Finalization Function

Call the finalization function(s) of the application protocol from the Application Layer finalization function,
APP_Finalize, defined in application.cpp. To add the protocol's finalization function, add a case statement
on the protocol name and make a call to the finalization function within the case, as done for other
protocols in the function. In APP_Finalize, the finalization functions of Application Layer routing models are
specified in the first switch statement and the second switch statement is used to specify finalization
functions of Application Layer traffic generators. Figure 4-29 shows the outline of code that needs to be
added to APP_Finalize. Function AppMyprotocolClientFinalize is the finalization function for
MYPROTOCOL client (see Section 4.2.5.8.2) and function AppMyprotocolServerFinalize is the finalization
function for MYPROTOCOL server (see Section 4.2.5.8.3).
QualNet 5.2 Programmer’s Guide 100

Application Layer Chapter 4
void APP_Finalize (Node *node)
{
 ...
 AppInfo *applist = NULL;
 AppInfo *nextApp = NULL;
 ...
 for (appList = node->appData.appPtr; appList != NULL;
 appList = nextApp)
 {
 switch (appList->appType)
 {
 ...
 case APP_CBR_CLIENT:
 {
 AppCbrClientFinalize(node, appList);
 break;
 }
 case APP_CBR_SERVER:
 {
 AppCbrServerFinalize(node, appList);
 break;
 }
 case APP_MYPROTOCOL_CLIENT
 {
 AppMyprotocolClientFinalize(node, appList);
 break;
 }
 case APP_MYPROTOCOL_SERVER:
 {
 AppMyprotocolServerFinalize(node, appList);
 break;
 }
 ...
 nextApp = appList->appNext;
 }
 ...
}

FIGURE 4-29. Calling MYPROTOCOL Finalization Functions
101 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.5.8.2 Implementing the Client Finalization Function

Write the finalization function for protocol client, AppMyprotocolClientFinalize. If statistics collection is
enabled for the Application Layer, call the function to print the client’s statistics (see Section 4.2.5.7.4) from
the finalization function, or add code directly to AppMyprotocolClientFinalize to print statistics.

Use the CBR client finalization function, AppCbrClientFinalize, shown in Figure 4-30, as a template. This
function is implemented in app_cbr.cpp.

void AppCbrClientFinalize(Node *node, AppInfo* appInfo)
{
 AppDataCbrClient *clientPtr =
 (AppDataCbrClient*)appInfo->appDetail;

 if (node->appData.appStats == TRUE)
 {
 AppCbrClientPrintStats(node, clientPtr);
 }
}

FIGURE 4-30. Finalization Function for CBR Client

As for all other functions, specify the prototype of the finalization function in the protocol's header file,
app_myprotocol.h.

4.2.5.8.3 Implementing the Server Finalization Function

Write the finalization function for protocol client, AppMyprotocolServerFinalize. If statistics collection is
enabled for the Application Layer, call the function to print the client’s statistics (see Section 4.2.5.7.4) from
the finalization function, or add code directly to AppMyprotocolServerFinalize to print statistics.

Use the CBR client finalization function, AppCbrServerFinalize, shown in Figure 4-31, as a template. This
function is implemented in app_cbr.cpp.

void AppCbrServerFinalize(Node *node, AppInfo* appInfo)
{
 AppDataCbrServer *serverPtr = (AppDataCbrServer*)appInfo->appDetail;
 if (node->appData.appStats == TRUE)
 {
 AppCbrServerPrintStats(node, serverPtr);
 }
}

FIGURE 4-31. Finalization Function for CBR Server

As for all other functions, specify the prototype of the finalization function in the protocol's header file,
app_myprotocol.h.
QualNet 5.2 Programmer’s Guide 102

Application Layer Chapter 4
4.2.5.9 Including and Compiling Files
The final step in integrating your application model into QualNet is to add the source file to the QualNet
source tree and compile.

If you have created the files for the application model in an existing library or addon, then add the source
file to the Makefile-common for that library or addon. For example, if you have created your model files in
the Developer library, then modify QUALNET_HOME/libraries/developer/Makefile-common as shown in
Figure 4-32. Recompile QualNet after making the changes.

...
common sources
#
DEVELOPER_SRCS = \
$(DEVELOPER_SRCDIR)/adaptation_aal5.cpp \
$(DEVELOPER_SRCDIR)/adaptation.cpp \
...
$(DEVELOPER_SRCDIR)/app_mcbr.cpp \
$(DEVELOPER_SRCDIR)/app_messenger.cpp \
$(DEVELOPER_SRCDIR)/app_myprotocol.cpp \
$(DEVELOPER_SRCDIR)/app_superapplication.cpp \
$(DEVELOPER_SRCDIR)/app_telnet.cpp \
$(DEVELOPER_SRCDIR)/app_traffic_gen.cpp \
...

FIGURE 4-32. Adding Model to Makefile-common

If you have created a new library called user_models, then follow the instructions given in Section 4.10.5 to
integrate the user_models library into QualNet.

4.2.5.10 Integrating the Protocol into the GUI
To make the new protocol available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.

4.2.6 Adding an Application Layer Routing Protocol

Application Layer routing protocols function mostly as other Application Layer protocols. They operate at
the Application Layer and send/receive packets using Application Layer APIs. However, there are certain
differences in their implementation. This section requires knowledge of the contents of Section 4.2.5 and
provides additional implementation details needed for implementing a routing protocol at the Application
Layer.

To understand how an Application Layer routing protocol is implemented in QualNet, look at the
implementation code for the routing protocol Bellman-Ford. The header file for the Bellman-Ford
implementation is routing_bellmanford.h and the source file is routing_bellmanford.cpp in the folder
QUALNET_HOME/libraries/developer/src.

The following list summarizes the actions that need to be performed for adding an Application Layer
routing protocol, MYPROTCOL, to QualNet. For those steps that are similar to the steps for writing a
traffic-generating protocol, we refer the reader to the appropriate subsection of Section 4.2.5. The steps
that are different for routing protocols are described in detail in subsequent sections. (Note that unlike a
traffic-generating Application Layer protocol, which has a client and a server, a routing protocol has a
single module.)
103 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
1. Create header and source files (see Section 4.2.5.2).

2. Modify the file application.cpp to include the protocol’s header file (see Section 4.2.5.2).

3. Include the protocol in the list of Application Layer protocols and trace protocols (see Section 4.2.6.1).

4. Modify Application Layer data structure to include routing protocol state (see Section 4.2.6.2)

5. Include the protocol in Network Layer declarations (see Section 4.2.6.3).

6. Define data structures for the protocol (see Section 4.2.5.4).

7. Decide on the format for the protocol-specific configuration parameters (see Section 4.2.6.4.1).

8. Call the protocol’s initialization function from the Application Layer initialization function, APP_Initialize

(see Section 4.2.6.4.2).

9. Write the initialization function for the protocol. The initialization function should include the following

tasks:

a. Read and store the configuration parameters (see Section 4.2.6.4.3.1).

b. Initialize the state variables (see Section 4.2.6.4.3.1).

c. Initialize timers (see Section 4.2.6.4.3.2).

d. Initialize routing tables (see Section 4.2.6.4.3.3).

10.Integrate the protocol with the Network Layer (see Section 4.2.6.5).

a. Modify the IP function NetworkRoutingGetAdmindistance to return the protocol’s administrative
distance.

b. Modify the routing protocol parsing function NetworkIpParseAndSetRoutingProtocolType to include
the protocol in the list of routing protocols that are initialized at the Application Layer.

11.Call the protocol event dispatcher from the Application Layer event dispatcher, APP_ProcessEvent

(see Section 4.2.6.6.1).

12.Declare any new event types used by the protocol in the header file QUALNET_HOME/include/api.h

(see Section 4.2.5.6.2).

13.Write the protocol event dispatcher (see Section 4.2.6.6.2).

14.Include code in various functions to collect statistics.

a. Declare statistics variables (see Section 4.2.5.7.1).

b. Initialize the statistics variables in the protocol’s initialization function (see Section 4.2.5.7.2.)

c. Update the statistics as appropriate (see Section 4.2.5.7.3.)

d. Write a function to print the statistics (see Section 4.2.5.7.4.)

e. Add dynamic statistics to the protocol, if desired (see Section 4.2.5.7.5) .

15.Call the protocol finalization function from the Application Layer finalization function, APP_Finalize (see

Section 4.2.6.8.1).

16.Write the protocol finalization function (see Section 4.2.6.8.2). Call the function to print statistics from

the protocol finalization function.

17.Include the protocol header and source files in the QualNet tree and compile (see Section 4.2.5.9).

18.To make the protocol available in the QualNet GUI, modify the GUI settings files (see Section 4.2.5.10).
QualNet 5.2 Programmer’s Guide 104

Application Layer Chapter 4
4.2.6.1 Including MYPROTOCOL in List of Application Layer Protocols
This step is similar to the corresponding step for adding a traffic-generating protocol (see Section 4.2.5.3),
except that only one entry needs to be made to the list of protocols.

For our example protocol MYPROTOCOL, add APP_MYPROTOCOL to AppType, as shown in Figure 4-33.
Enumeration AppType is defined in application.h.

typedef enum
{
 APP_FTP_SERVER_DATA = 20,
 APP_FTP_SERVER = 21,
 APP_FTP_CLIENT,
 APP_TELNET_SERVER = 23,
 ...
 APP_MYPROTOCOL,
 APP_PLACEHOLDER
} AppType;

FIGURE 4-33. Adding MYPROTOCOL to List of Application Layer Routing Protocols

Always add to the end of lists in header files (just before the entry APP_PLACEHOLDER).

As in the case of a traffic-generating protocol, add an entry TRACE_MYPROTOCOL in the enumeration
TraceProtocolType in QUALNET_HOME/include/trace.h, as shown in Figure 4-16.

4.2.6.2 Modify AppData to include MYPROTOCOL State Information
The routing protocol state is stored in the Application Layer data structure AppData. To add a custom
Application Layer routing protocol to QualNet, modify AppData (Section 4.2.3) to include the protocol’s
state, as shown in Figure 4-34.

struct struct_app_str
{
 AppInfo *appPtr; /* pointer to the list of app info */
 PortInfo *portTable; /* pointer to the port table */
 short nextPortNum; /* next available port number */
 BOOL appStats; /* whether application statistics
 collection is enabled */
 AppType exteriorGatewayProtocol;
 BOOL routingStats;
 void *routingVar;
 void *bellmanford;
 void *olsr;
 void *olsr2;
 void *myprotocol;
 ...
 };

FIGURE 4-34. Modifying AppData to include Routing Protocol State
105 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.6.3 Including MYPROTOCOL in Network Layer Declarations
Each node in QualNet maintains a list of routing protocols running at the node. When a new Application
Layer routing protocol is added to QualNet, it needs to be included in the list of routing protocols. To do
this, add the protocol name to the enumeration NetworkRoutingProtocolType defined in
QUALNET_HOME/include/network.h (see Section 4.4.3).

For our example protocol, add the entry ROUTING_PROTOCOL_MYPROTOCOL to
NetworkRoutingProtocolType as shown in Figure 4-35.

typedef enum
{

NETWORK_PROTOCOL_IP = 0,
NETWORK_PROTOCOL_IPV6,
NETWORK_PROTOCOL_MOBILE_IP,
...

 ROUTING_PROTOCOL_AODV6,
 ROUTING_PROTOCOL_DYMO,
 ROUTING_PROTOCOL_DYMO6,

ROUTING_PROTOCOL_MYPROTOCOL
} NetworkRoutingProtocolType;

FIGURE 4-35. Adding MYPROTOCOL to List of Network Layer Protocols

Always add to the end of lists in header files.

A routing administrative distance is assigned to each routing protocol, which determines its priority relative
to other routing protocols. A protocol with a lower administrative distance has a higher priority. The
administrative distances of all routing protocols are defined in the enumeration
NetworkRoutingAdminDistanceType defined in network.h (see Section 4.4.3).

For our example protocol, add the entry ROUTING_ADMIN_DISTANCE_MYPROTOCOL to
NetworkRoutingAdminDistanceType as shown in Figure 4-36. Add this entry in the proper place in
the list to reflect the desired priority of MYPROTOCOL relative to the other routing protocols.

typedef enum
{
 ROUTING_ADMIN_DISTANCE_STATIC = 1,
 ROUTING_ADMIN_DISTANCE_EBGPv4 = 20,
 ...
 ROUTING_ADMIN_DISTANCE_OLSR,
 ROUTING_ADMIN_DISTANCE_EIGRP,
 ROUTING_ADMIN_DISTANCE_MYPROTOCOL,
 //StartRIP
 ROUTING_ADMIN_DISTANCE_RIP,
 //EndRIP
 ...
 // Should always have the highest adminstrative distance
 // (ie, least important).
 ROUTING_ADMIN_DISTANCE_DEFAULT = 255
} NetworkRoutingAdminDistanceType;

FIGURE 4-36. Declaring Administrative Distance for MYPROTOCOL
QualNet 5.2 Programmer’s Guide 106

Application Layer Chapter 4
4.2.6.4 Initialization
In this section, we describe the tasks that need to be performed as part of the initialization process of an
Application Layer routing protocol.

4.2.6.4.1 Determining the Protocol Configuration Format

A routing protocol may use protocol-specific configuration parameters. The configuration parameters are
specified in the QualNet configuration file. The format for specifying a routing protocol’s configuration
parameters is:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.

<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.

As an example, the following are some of the configuration parameters for the Fisheye protocol. Refer to
file QUALNET_HOME/scenarios/default/default.config for an explanation of these parameters.

FISHEYE-INTRA-UPDATE-INTERVAL 5S
FISHEYE-INTER-UPDATE-INTERVAL 15S
FISHEYE-NEIGHBOR-TIMEOUT-INTERVAL 15S

A configuration variable is not always mandatory. If an optional configuration variable is not assigned a
value, the default value is used. For example, if a user does not specify a value for FISHEYE-INTRA-
UPDATE-INTERVAL, the default value of 5 seconds is used by the protocol.

4.2.6.4.2 Calling the Protocol Initialization Function

The initialization function of an Application Layer routing protocol is called from the Application Layer
initialization function APP_Initialize, unlike the initialization function of a traffic-generating protocol which is
called from function APP_InitializeApplications.

IP initialization function NetworkIpInit calls function NetworkIpParseAndSetRoutingProtocolType to read
the name of the routing protocol for each interface from the configuration file and update the routing
protocol type for that interface. Function APP_Initialize reads the name of the routing protocol from the
configuration file, checks the routing protocol type for each interface, and updates the routing protocol
information for that interface. The code snippet from NetworkIpParseAndSetRoutingProtocolType and
APP_Initialize corresponding to the Bellman-Ford routing protocol are shown in Figure 4-37 and Figure 4-
38, respectively. The functions used in these code snippets are explained below.

• Function IO_ReadString reads the name of the routing protocol from the configuration file. The
prototype for IO_ReadString is defined in QUALNET_HOME/include/fileio.h.

• Function NetworkIpGetInterfaceAddress, defined in QUALNET_HOME/libraries/developer/src/
network_ip.cpp, returns the IP address associated with an interface.
107 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
• Function NetworkIpAddUnicastRoutingProtocolType, defined in network_ip.cpp, initializes the routing
protocol information for an interface. In the example of Figure 4-37,
NetworkIpAddUnicastRoutingProtocolType updates the interface information to indicate that Bellman-
Ford is the routing protocol running at that interface.

• Function RoutingBellmanfordInit, defined in routing_bellmanford.cpp, is the initialization function for
Bellman-Ford. RoutingBellmanfordInit is called if the bellmanford field of appdata is NULL (see
Section 4.2.3). RoutingBellmanfordInit creates an instance of the Bellman-Ford data structure and
updates bellmanford to point to that data structure. Thus, RoutingBellmanfordInit is called at most
once for each node, even if Bellman-Ford is running on multiple interfaces.

Figure 4-37 shows the modifications to be made to NetworkIpParseAndSetRoutingProtocolType and
Figure 4-38 shows the modifications to be made to APP_Initialize to incorporate MYPROTOCOL in
QualNet. RoutingMyprotocolInit is the initialization function for MYPROTOCOL (see Section 4.2.6.4.3).

void
NetworkIpParseAndSetRoutingProtocolType (Node *node,
 const NodeInput *nodeInput)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 BOOL retVal;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 ...
 IO_ReadString(
 node->nodeId,
 NetworkIpGetInterfaceAddress(node, i),
 nodeInput,
 "ROUTING-PROTOCOL",
 &retVal,
 protocolString);

 if (retVal)
 {
 ...
 else if (strcmp(protocolString, "BELLMANFORD ") == 0)
 {
 routingProtocolType = ROUTING_PROTOCOL_BELLMANFORD;
 }
 else if (strcmp(protocolString, "MYPROTOCOL ") == 0)
 {
 routingProtocolType = ROUTING_PROTOCOL_MYPROTOCOL
 }
 ...
 }

 NetworkIpAddUnicastRoutingProtocolType(
 node,
 routingProtocolType,
 i,
 NETWORK_IPV4);
 }
 ...
}

FIGURE 4-37. Initializing Routing Protocol Information for an Interface
QualNet 5.2 Programmer’s Guide 108

Application Layer Chapter 4
void
APP_Initialize(Node *node, const NodeInput *nodeInput)
{
 BOOL retVal;
 char buf[MAX_STRING_LENGTH];
 int i;
 ...
 node->appData.nextPortNum = 1024;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {

NetworkType InterfaceType = NetworkIpGetInterfaceType(node,i);

 if (InterfaceType == NETWORK_IPV4 ||
InterfaceType == NETWORK_DUAL)

 {
 switch (ip->interfaceInfo[i]->routingProtocolType)

{
case ROUTING_PROTOCOL_BELLMANFORD:
{

if (node->appData.bellmanford == NULL)
{

RoutingBellmanfordInit(node);
RoutingBellmanfordInitTrace(node, nodeInput);

}
break;

}
 case ROUTING_PROTOCOL_MYPROTOCOL:
 {
 if (node->appData.myprotocol == NULL)
 {
 RoutingMyProtocolInit(node);
 RoutingMyProtocolInitTrace(node, nodeInput);
 }
 break;
 }

...
}
...

}
...

}
...

}

FIGURE 4-38. Calling Routing Protocol Initialization Function from APP_Initialize
109 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.6.4.3 Implementing the Protocol Initialization Function

The initialization of an Application Layer routing protocol takes place in the initialization function of the
protocol that is called by the Application Layer initialization function APP_Initialize (see Figure 4-38). The
initialization function of a routing protocol commonly performs the following tasks:

• Create an instance of the protocol data structure

• Read and store the user-specified configuration parameters

• Initialize the state variables and routing table

• Schedule a timer to itself for starting the protocol

Like all other functions belonging to the protocol, the prototype for the initialization function,
RoutingMyprotocolInit, should be included in the protocol's header file, routing_myprotocol.h.

4.2.6.4.3.1 Creating an Instance and Reading Configuration Parameters

The initialization function initializes the protocol state. Each protocol has a structure that it uses to store
state information. This may include information such as flags, connection information, routing table used
by the protocol, etc.

To store the state, declare the structure to hold the protocol state in the header file, routing_myprotocol.h.

Create an instance of the protocol state by allocating memory to the state structure. Bellman-Ford
performs this task in its initialization function RoutingBellmanfordInit by calling the function MEM_malloc to
allocate memory for the Bellman-Ford data structure bellmanford, as shown in Figure 4-39. Refer to
files routing_bellmanford.h and routing_bellmanford.cpp in QUALNET_HOME/libraries/developer/src for
details.

void RoutingBellmanfordInit(Node *node)
{
 Bellmanford *bellmanford;
 ...

 bellmanford = (Bellmanford *)
 MEM_malloc(sizeof(Bellmanford));
 node->appData.bellmanford = (void *) bellmanford;
 ...
}

FIGURE 4-39. Creating Routing Protocol Instance in Initialization Function

The next step is to read the user-defined configuration parameters from the input file and store them in the
protocol data structure. Since the QualNet implementation of Bellman-Ford does not have any
configurable parameters, we use Fisheye as an example. The Fisheye initialization function
RoutingFisheyeInit, shown in Figure 4-40, uses the IO functions such as IO_ReadString to read parameter
values from the input file and store them in the appropriate fields of the Fisheye protocol data structure
FisheyeData. If a value is not specified for a parameter in the input file, RoutingFisheyeInit stores the
default value for that parameter. Function Time_ConvertToClock, defined in QUALNET_HOME/include/
clock.h, converts a string to a QualNet clocktype value. Refer to files routing_fisheye.h and
routing_fisheye.cpp in QUALNET_HOME/libraries/wireless/src for details. IO_ReadTime and
IO_ReadString and other IO functions are defined in QUALNET_HOME/include/fileio.h.
QualNet 5.2 Programmer’s Guide 110

Application Layer Chapter 4
void
RoutingFisheyeInit(Node* node, const NodeInput* nodeInput)
{
 FisheyeData* fisheye;
 clocktype randomDelay;
 char buf[MAX_STRING_LENGTH];
 BOOL wasFound;
 int scope;

 ...
 IO_ReadString(node->nodeId,
 NetworkIpGetInterfaceAddress(node, 0)
 nodeInput,
 "FISHEYE-INTRA-UPDATE-INTERVAL",
 &wasFound,
 buf);

 if (!wasFound) {
 fisheye->parameter.intraUpdateInterval =
 FISHEYE_INTRA_UPDATE_INTERVAL;
 }
 else {
 fisheye->parameter.intraUpdateInterval =
 TIME_ConvertToClock(buf);
 }

 IO_ReadString(node->nodeId,
 NetworkIpGetInterfaceAddress(node, 0)
 nodeInput,
 "FISHEYE-INTER-UPDATE-INTERVAL",
 &wasFound,
 buf);

 if (!wasFound) {
 fisheye->parameter.interUpdateInterval =
 FISHEYE_INTER_UPDATE_INTERVAL;
 }
 else {
 fisheye->parameter.interUpdateInterval =
 TIME_ConvertToClock(buf);
 }
 ...
}

FIGURE 4-40. Reading Configurable Parameters

4.2.6.4.3.2 Initializing Timers

This is done in the same manner as for a traffic-generating protocol (see Section 4.2.5.5.3.3).

4.2.6.4.3.3 Initializing Tables

Most routing protocols initialize their routing tables in the initialization function. This may include allocating
memory to the data structure and setting initial values as required. There is not one standard way of
implementing a routing table and protocol designers are free to use any data structure well suited to their
protocol.
111 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
Another commonly performed task in the initialization function is to add directly connected networks as
permanent routes to the routing table. This can be performed by looping through all the interfaces of the
node and writing its network address, interface address, and subnet mask to the routing table.

The code snippet from function RoutingBellmanfordInit, shown in Figure 4-41, demonstrates how to add
directly connected networks to the routing table.

void RoutingBellmanfordInit(Node *node)
{
 Bellmanford *bellmanford;
 int i;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 NodeAddress destAddress;
 NodeAddress subnetMask;
 Route *rowPtr;
 if (NetworkIpGetInterfaceType(node, i) != NETWORK_IPV4
 && NetworkIpGetInterfaceType(node, i) != NETWORK_DUAL)
 {
 continue;
 }
 if (NetworkIpIsWiredNetwork(node, i))
 {
 // This is a wiredlink interface.
 destAddress =
 NetworkIpGetInterfaceNetworkAddress(node, i);
 subnetMask =
 NetworkIpGetInterfaceSubnetMask(node, i);
 }
 else
 {
 // This is a wireless interface.
 destAddress =
 NetworkIpGetInterfaceAddress(node, i);
 subnetMask = ANY_DEST;
 }
 if (!FindRoute(bellmanford, destAddress))
 {
 rowPtr = AddRoute(bellmanford,
 destAddress,
 subnetMask,
 NetworkIpGetInterfaceAddress(node, i),
 i,
 0);
 rowPtr->localRoute = TRUE;
 }
 ...
 }
 ...
}

FIGURE 4-41. Adding Directly Connected Networks to the Routing Table
QualNet 5.2 Programmer’s Guide 112

Application Layer Chapter 4
4.2.6.5 Integrating with the Network Layer
All routing protocols, including those running at the Application Layer, interact with the IP protocol at the
Network Layer. When a routing protocol is added at the Application Layer, the IP function
NetworkRoutingGetAdminDistance needs to be modified.

The IP function NetworkRoutingGetAdminDistance, implemented in network_ip.cpp, returns the
administrative distance of a routing protocol (see Section 4.2.6.3). Figure 4-42 shows the modifications
that need to be made to NetworkRoutingGetAdminDistance to add MYPROTOCOL.

NetworkRoutingAdminDistanceType NetworkRoutingGetAdminDistance(
 Node *node,
 NetworkRoutingProtocolType type)
{
 switch (type)
 {
 case ROUTING_PROTOCOL_STATIC:
 {
 return ROUTING_ADMIN_DISTANCE_STATIC;
 }
 ...
 case ROUTING_PROTOCOL_BELLMANFORD:
 {
 return ROUTING_ADMIN_DISTANCE_BELLMANFORD;
 }
 case ROUTING_PROTOCOL_MYPROTOCOL:
 {
 return ROUTING_ADMIN_DISTANCE_MYPROTOCOL;
 }
 ...
 }
}

FIGURE 4-42. Modifications to Function NetworkRoutingGetAdminDistance

4.2.6.6 Implementing the Event Dispatcher
In this section, we describe the steps for implementing the event dispatcher function for an Application
layer routing protocol.

As explained in Section 3.4.2, when an event occurs, it is first handled by the node level dispatcher
function NODE_ProcessEvent, defined in QUALNET_HOME/main/node.cpp. If the event is for the
Application Layer, NODE_ProcessEvent calls the Application Layer event dispatcher APP_ProcessEvent,
defined in application.cpp.

Section 4.2.6.6.1 describes how to modify the Application Layer dispatcher function to call the routing
protocol’s event dispatcher. Section 4.2.6.6.2 describes how to implement the event dispatcher for the
routing protocol.
113 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.6.6.1 Modifying the Application Layer Event Dispatcher

Function APP_ProcessEvent implements the Application Layer event dispatcher that informs the
appropriate Application Layer protocol of received events. Modify APP_ProcessEvent to call the routing
protocol’s event dispatcher when messages for the protocol are received. This modification is the similar to
the modification made for a traffic-generating protocol (see Section 4.2.5.6.1), except that there is only one
module for a routing protocol. Figure 4-43 shows the modifications that need to be made to
APP_ProcessEvent to call MYPROTOCOL’s event dispatcher function, RoutingMyprotocolLayer

void APP_ProcessEvent(Node *node, Message *msg)
{
 short protocolType;
 protocolType = APP_GetProtocolType(node,msg);
 switch(protocolType)
 {
 case APP_ROUTING_BELLMANFORD:
 {
 RoutingBellmanfordLayer(node, msg);
 break;
 }
 ...
 case APP_ROUTING_MYPROTOCOL:
 {
 RoutingMyprotocolLayer(node, msg);
 break;
 }
 ...
 }//switch//
}

FIGURE 4-43. Application Layer Event Dispatcher Function

4.2.6.6.2 Implementing the Routing Protocol Event Dispatcher

A protocol's event dispatcher should include a switch on all message types that the protocol may receive.
It can then process each message type either inside the switch or by calling a function to handle the
message type received. A routing protocol typically handles two types of events: timers and packet events
indicating reception of a routing packet from the Transport Layer. (Routing packets are control packets that
carry information for the routing protocol. These routing packets are different from data packets, which
carry user data.)

All event types used by QualNet protocols are enumerated in the file api.h. If the protocol being added
needs additional event types, these should be included in the enumeration in file api.h, as described in
Section 4.2.5.6.2.

Figure 4-44 shows the event dispatcher function for Bellman-Ford, RoutingBellmanfordLayer, which is
implemented in routing_bellmanford.cpp. MSG_APP_PeriodicUpdateAlarm,
MSG_APP_CheckRouteTimeoutAlarm, and MSG_APP_TriggeredUpdateAlarm are timer events, and
event MSG_APP_FromTransport indicates arrival of a routing packet from the Transport Layer. Actions
taken in response to these events include: updating the IP forwarding table, broadcasting routing
information, resetting timers, etc. Look at the implementation for Bellman-Ford or other Application Layer
routing protocols to understand how such a protocol works.

After the message is handled by the event dispatcher, it frees the memory associated with the message by
calling the function MESSAGE_Free.
QualNet 5.2 Programmer’s Guide 114

Application Layer Chapter 4
It is important to free the memory after the message has been processed; otherwise, the
simulator will leak memory.

The event dispatcher also includes a default case in the switch statement to handle messages which
contain an undefined event type.

void
RoutingBellmanfordLayer(Node *node, Message *msg)
{
 ...
 switch(msg->eventType)
 {
 // Messages sent within Bellman-Ford.

 case MSG_APP_PeriodicUpdateAlarm:
 {
 HandlePeriodicUpdateAlarm(node);
 break;
 }
 case MSG_APP_CheckRouteTimeoutAlarm:
 {
 HandleCheckRouteTimeoutAlarm(node);
 break;
 }
 case MSG_APP_TriggeredUpdateAlarm:
 {
 HandleTriggeredUpdateAlarm(node);
 break;
 }

 // Messages sent by UDP to Bellman-Ford.

 case MSG_APP_FromTransport:
 {
 HandleFromTransport(node, msg);
 break;
 }
 default:
 ERROR_ReportError("Invalid switch value");
 }

 // Done with the message, so free it.

 MESSAGE_Free(node, msg);
}

FIGURE 4-44. Event Dispatcher for Bellman-Ford
115 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
An Application Layer routing protocol cooperates with IP to perform the routing function. The routing
protocol computes the routing information using its routing algorithm, and passes this routing information
to IP. This routing information is stored in the IP forwarding table and is used by IP to route packets. Details
of computing routing information are protocol-specific, but all Application Layer routing protocols use the
following two functions, which are implemented in network_ip.cpp, to maintain the IP forwarding table:

1. NetworkEmptyFowardingTable: This function removes all entries in the forwarding table corresponding

to a given routing protocol.

2. NetworkUpdateForwardingTable: This function updates an existing entry or adds a new entry to the

forwarding table.

4.2.6.7 Collecting and Reporting Statistics

This step is similar to the one for adding a traffic-generating Application Layer protocol (see
Section 4.2.5.7).

4.2.6.8 Finalization

The finalization function of the protocol is called by the simulator at the end of simulation. It is the last code
that executes during the simulation. This function is responsible for printing statistics to the statistics file.

4.2.6.8.1 Modifying the Application Layer Finalization Function

This step is similar to the one in Section 4.2.5.8.1, except that in the Application Layer finalization function,
APP_Finalize, the finalization functions of Application Layer routing protocols are called in the first switch
statement and the second switch statement is used to call finalization functions of Application Layer traffic
generators.

Figure 4-45 shows the modifications that need to be made to APP_finalize to call MYPROTOCOL’s
finalization function, RoutingMyprotocolFinalize.
QualNet 5.2 Programmer’s Guide 116

Application Layer Chapter 4
void APP_Finalize(Node *node)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 ...
 int i;
 NetworkRoutingProtocolType routingProtocolType;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 if (ip->interfaceInfo[i]->interfaceType == NETWORK_IPV4
 || ip->interfaceInfo[i]->interfaceType == NETWORK_DUAL)
 {
 routingProtocolType = ip->interfaceInfo[i]->routingProtocolType;
 }
 ...
 // Select application-layer routing protocol model and finalize.
 switch (routingProtocolType)
 {
 case ROUTING_PROTOCOL_BELLMANFORD:
 {
 RoutingBellmanfordFinalize(node, i);
 break;
 }
 case ROUTING_PROTOCOL_MYPROTOCOL:
 {
 RoutingMyprotocolFinalize(node, i);
 break;
 }
 ...
 }
 ...
 }
 ...
}

FIGURE 4-45. Calling Finalization Function of a Routing Protocol
117 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
4.2.6.8.2 Implementing the Routing Protocol Finalization Function

The finalization function of a routing protocol is similar to that of a traffic-generating protocol (see
Section 4.2.5.8.2). In the finalization function for the routing protocol, RoutingMyprotocolFinalize, call the
function to print statistics if routing statistics collection is enabled (appData.routingStats is true).
Figure 4-46 shows the finalization function for Bellman-Ford, where function PrintStats is called to print
statistics for Bellman-Ford.

void
RoutingBellmanfordFinalize(Node *node, int interfaceIndex)
{
 Bellmanford *bellmanford = (Bellmanford *)node->appData.bellmanford;

 ...
 if (node->appData.routingStats == TRUE
 && bellmanford->statsPrinted == FALSE)
 {
 PrintStats(node);
 bellmanford->statsPrinted = TRUE;
 }
}

FIGURE 4-46. Finalization Function of a Routing Protocol

4.2.6.9 Including and Compiling Files

This step is similar to the one for adding a traffic-generating Application Layer protocol (see
Section 4.2.5.9).

4.2.7 Special Issues for Application Layer Protocols

4.2.7.1 Port Numbers In QualNet

Just as every IP packet has a source and destination IP address, we must also specify a source and
destination port number in every packet. Port numbers have to be in the range of 0-65535. However,
known ports are almost always in the range 0-1023.

There are two types of port numbers to consider: client port numbers and server port numbers.

The client port number can be any port number at or above 1024. A client application may use a different
port number each time it connects to a server. The field nextPortNum of the data structure AppData
stores the next port number available at the node. This field is initialized to 1024 in the initialization function
APP_Initialize (see Figure 4-38).

Most applications in QualNet choose nextPortNum as the client port number. Each time a client instance
is created, it is assigned nextPortNum as its port number and nextPortNum is incremented. Figure 4-20
shows how this is done for the CBR application. Assigning client port numbers in this manner ensures that
each client instance gets a unique port number.

The client needs to know the server’s port number in order to connect to the server. To enable the client to
know it's port number the server uses a known port number which may have been agreed upon as a
standard. All QualNet application servers use as their known port number the value that is assigned to their
application name in the enumerated data type AppType (see Section 4.2.3). For example, FTP_SERVER
uses port number 21 as the destination port at the server.
QualNet 5.2 Programmer’s Guide 118

Application Layer Chapter 4
The API functions for sending data using UDP at the Transport Layer accept the AppType of the server as
an input parameter and set the destination port to this value. Figure 4-47 shows how this is done in the
function APP_UdpSendNewdataWithPriority. (This function is implemented in QUALNET_HOME/main/
app_util.cpp.)

APP_UdpSendNewDataWithPriority(
 Node *node,
 AppType appType,
 NodeAddress sourceAddr,
 short sourcePort,
 NodeAddress destAddr,
 int outgoingInterface,
 char *payload,
 int payloadSize,
 TosType priority,
 clocktype delay,
 TraceProtocolType traceProtocol)
{
 Message *msg;
 AppToUdpSend *info;
 ActionData acnData;

 msg = MESSAGE_Alloc(
 node,
 TRANSPORT_LAYER,
 TransportProtocol_UDP,
 MSG_TRANSPORT_FromAppSend);
 MESSAGE_PacketAlloc(node, msg, payloadSize, traceProtocol);
 memcpy(MESSAGE_ReturnPacket(msg), payload, payloadSize);
 MESSAGE_InfoAlloc(node, msg, sizeof(AppToUdpSend));
 info = (AppToUdpSend *) MESSAGE_ReturnInfo(msg);
 SetIPv4AddressInfo(&info->sourceAddr, sourceAddr);
 info->sourcePort = sourcePort;
 SetIPv4AddressInfo(&info->destAddr, destAddr);
 info->destPort = (short) appType;
 info->priority = priority;
 info->outgoingInterface = outgoingInterface;

 //Trace Information
 acnData.actionType = SEND;
 acnData.actionComment = NO_COMMENT;
 TRACE_PrintTrace(node, msg, TRACE_APPLICATION_LAYER,
 PACKET_OUT, &acnData);
 MESSAGE_Send(node, msg, delay);
}

FIGURE 4-47. Setting Port Numbers in API Calls

4.2.7.1.1 Overriding AppType as Destination Port

While it is recommended to use AppType as the destination port, it is possible to override this assignment
and make a connection to a different port number. Though port numbers do not alter the statistics of an
experiment, an application may need to use a specific port to facilitate tracing or for some special post
processing scripts.
119 QualNet 5.2 Programmer’s Guide

Chapter 4 Application Layer
QualNet provides several API function to enable overriding AppType as a destination port. Some of these
are listed in Table 4-5. These APIs accept the desired destination port number as a parameter. Note that
the first two functions listed in the table are overloaded functions. These functions are implemented in
app_util.cpp.

TABLE 4-5. Examples of API Functions to Override Default Port Numbers

Function Description

AppInfo *
APP_RegisterNewApp(

 Node *node,
 AppType appType,
 void *dataPtr,
 short myPort)

Registers the application. Additionally inserts the
port number (myPort) in the PortTable.

void
APP_UdpSendNewHeaderVirtualDataWithPriority(

 Node *node,
 NodeAddress sourceAddr,
 short sourcePort,
 NodeAddress destAddr,
 short destinationPort,
 char *header
 int headerSize,
 int payloadSize,
 TosType priority,
 clocktype delay,
 TraceProtocolType traceProtocol)

Allocates header and virtual data with specified
priority and sends to UDP. Delivers data to a
particular destination port at the destination node.
The destination port need not be the same as the
AppType value.

void
APP_TcpOpenConnectionWithPriority(

 Node *node,
 AppType appType,
 NodeAddress localAddr,
 short localPort,
 NodeAddress remoteAddr,
 short remotePort,
 int uniqueId,
 clocktype waitTime,
 TosType priority)

Opens a TCP connection with a specified priority
and to a specified server port, which need not be
the same as the AppType value.

void
APP_TcpServerListen(

 Node *node,
 AppType appType,
 NodeAddress serverAddr,
 short serverPort)

Listens on a specified server port which need not
be the same as the AppType value.
QualNet 5.2 Programmer’s Guide 120

Application Layer Chapter 4
QualNet provides several functions to manage port number assignment. These functions are listed in
Table 4-6 and are implemented in app_util.cpp.

4.2.7.2 Setting Address for Broadcast Messages
For broadcasting packets, the destination address can be set to ANY_DEST, or the library function
NetworkIpGetInterfaceBroadcastAddress can be used to get the interface broadcast address. ANY_DEST
is a constant defined in QUALNET_HOME/include/main.h and stands for any destination. Function
NetworkIpGetInterfaceBroadcastAddress is defined in network_ip.h, and returns the broadcast address of
the specified interface.

Figure 4-48 shows a code snippet from the Bellman-Ford function SendRouteAdvertisement (implemented
in file routing_bellmanford.cpp) that sets the destination address to the interface broadcast address for the
wired interface and to ANY_DEST for the wireless interface.

static void SendRouteAdvertisement(Node *node, RouteAdvertisementType type)
{
 ...
 int i;
 for (i = 0; i < node->numberInterfaces; i++)
 {
 NodeAddress destAddress;
 ...
 if (NetworkIpIsWiredNetwork (node, i))
 {
 destAddress = NetworkIpGetInterfaceBroadcastAddress(node, i);

 }
 else
 {
 destAddress = ANY_DEST;
 }
 ...
 }
 ...
}

FIGURE 4-48. Setting Broadcast Address

TABLE 4-6. Functions to Support Overriding of Default Port Numbers

Function Description

short APP_GetFreePort(Node *node) Returns a free port.

BOOL APP_IsFreePort(

 Node* node,
 unsigned short portNumber)

Checks if the port number is free or in use. Also
checks if there is an application running at the node
that uses an AppType that has been assigned the
same value as this port number. This is done since
applications may use AppType as destination port.

void APP_InserInPortTable(

 Node* node,
 AppType appType,
 unsigned short myPort)

Inserts information about the port number and the
application using it in the port table. This function is
called when registering an application at a new port
by using APP_RegisterNewApp.
121 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
.
4.3 Transport Layer

The Transport Layer resides between the Application and Network Layers in the QualNet protocol stack,
as shown in Figure 4-1. The Transport Layer provides the service of transporting Application Layer data
between the client and the server of an application. The Transport Layer uses Network Layer services to
provide a data delivery service to the Application Layer. The Transport Layer provides services for both
connection-mode transmissions and for connectionless-mode transmissions.

When the Application Layer sends a data packet to the Transport Layer, the Transport Layer header is
appended to the packet, and the packet is passed down to the next layer, the Network Layer. Similarly,
when the Transport Layer receives a packet from the Network Layer, it removes the Transport Layer
header from the data packet and sends the packet up to the Application Layer.

This section gives a detailed description of how to add a Transport Layer protocol to QualNet.

4.3.1 Transport Layer Protocols in QualNet

The Transport Layer of the TCP/IP protocol suite consists of two protocols, UDP and TCP. UDP provides
an unreliable connectionless delivery service to send and receive messages. TCP provides a reliable
delivery service on top of the IP datagram delivery service. QualNet also provides an extension of RSVP
(RSVP-TE) that is used to Label Switch Path (LSP) determination for MPLS (Multiprotocol Label
Switching).

See Developer Model Library for a description of QualNet’s UDP and TCP models and the MPLS section
of Multimedia and Enterprise Model Libraryfor a description of QualNet’s RSVP-TE model.

4.3.1.1 User Datagram Protocol (UDP)
The User Datagram Protocol (UDP) offers only a minimal transport service, i.e., an unreliable datagram
delivery. UDP is a connectionless protocol, and, hence, does not incur the delay associated with
connection establishment. UDP also has a smaller header than TCP. Lastly, UDP does not implement any
congestion control mechanism, which means that although some packets may be lost, the packets that are
delivered incur minimum transmission delay. These features make UDP suitable for certain applications.

In QualNet, the CBR (constant bit rate) is an example of an application that uses UDP at the Transport
Layer.

4.3.1.2 Transmission Control Protocol (TCP)
TCP, Transmission Control Protocol, is a Transport Layer connection-oriented byte stream protocol. This
protocol is typically used by applications that require guaranteed delivery. To provide a reliable transport
service, TCP implements a connection management mechanism, maintains the connection state in the
end systems, and implements a congestion control mechanism.

TCP Variants in QualNet

QualNet TCP implementation supports the following five TCP variants:

• TAHOE: This TCP variant implements three TCP congestion control algorithms, namely Slow Start,
Congestion Avoidance, and Fast Retransmit.

• RENO: This TCP variant extends TAHOE to include a fourth congestion control algorithm called Fast
Recovery.

• LITE: This TCP variant extends RENO by including two additional options, namely Big Window and
Protection Against Wrapped Sequence Numbers.
QualNet 5.2 Programmer’s Guide 122

Transport Layer Chapter 4
• NEWRENO: This TCP variant is the same as RENO except for a modification to Fast Recovery (i.e., an
ACK for highest sequence number sent must be received to exit Fast Recovery).

• SACK: This TCP variant is an extension of RENO that includes Selective Acknowledgements and
Selective Retransmissions.

• Abstract: This TCP variant is based on RENO. It simplifies and omits some features to improve the
performance.

Examples of TCP-based applications implemented in QualNet are FTP, FTP/GEN and HTTP.

4.3.1.3 Reservation Protocol with Traffic Engineering (RSVP-TE)

Reservation Protocol (RSVP) is a control protocol in the Transport Layer. This protocol is not used to
transmit data from one node to another. This is only used as a control protocol in the Transport Layer and
determines the resources in a path from a source to a destination for the quality of service requested. At
present, QualNet does not support the basic RSVP service but implements an extension of RSVP called
Reservation Protocol with Traffic Engineering (RSVP-TE). RSVP-TE is an extension of RSVP for
establishing Label Switched Paths (LSPs) in Multiprotocol Switching Paths (MPLS) networks, with or
without resource reservations. When a LSP is established between two MPLS nodes, packets can be
delivered through this LSP tunnel without considering IP Layer routing techniques.

4.3.2 Transport Layer Organization: Files and Folders

In this section, we briefly examine the files and folders that are relevant to Transport Layer protocols.
These files contain detailed comments on functions and other code components.

The Transport Layer API is composed of several macros, functions, and structures. These are defined in
the following header files:

• QUALNET_HOME/include/api.h

This file defines the events and data structures needed to communicate between different layers of the
protocol stack.

• QUALNET_HOME/include/transport.h

This file contains definitions common to Transport Layer protocols and transport data structure in the
node structure.

Additionally, the following header file is also relevant to the Transport Layer:

• QUALNET_HOME/include/fileio.h

This file contains prototypes of functions to read input files and create output files.

 The following are the folders and source files associated with the Transport Layer:

• QUALNET_HOME/main/transport.cpp

This file contains Transport Layer functions, including the initialization, message processing, and
finalization functions.

• QUALNET_HOME/libraries/developer/src

This folder contains the source and header files for the UDP protocol and the various TCP versions.

• QUALNET_HOME/libraries/multimedia_enterprise/src

This folder contains the source and header files the RSVP-TE implementation in QualNet.
123 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
4.3.3 Transport Layer Data Structures

The Transport Layer data structures are defined in QUALNET_HOME/include/transport.h. This section
describes the main data structures. (Note that only a partial description of the data structures is provided
here. Refer to file transport.h for a complete description.)

1. TransportProtocol: This is an enumeration type that lists all the Transport Layer protocols.

typedef enum {
TransportProtocol_UDP,
TransportProtocol_TCP,
TransportProtocol_RSVP

} TransportProtocol;

2. TransportData: This is the main data structure used by the Transport Layer and stores information

about all protocols running at the Transport Layer. It also stores a Boolean variable for each non-

mandatory protocol to indicate whether the protocol is enabled or disabled in the configuration.

(The structure struct_transport_str, described below, is defined in transport.h. The structure
TransportData is defined to be equivalent to struct_transport_str in QUALNET_HOME/
include/main.h by means of a typedef statement.)

struct struct_transport_str
{

TransportDataUdp* udp;
int tcpType;
void* tcp;
BOOL rsvpProtocol;
void *rsvpVariable;

}

• udp: Pointer the data structure for the UDP protocol.

• tcpType: Variable that indicates the TCP protocol type (TCP regular or TCP Abstract)

• tcp: Pointer to the data structure for the TCP protocol.

• rsvpProtocol: Flag that indicates whether the RSVP-TE protocol is enabled.

• rsvpVariable: Pointer to the data structure for the RSVP-TE protocol.

4.3.4 Transport Layer APIs and Inter-layer Communication

This section describes the APIs used by the Application Layer to communicate with the Transport Layer
(see Section 4.3.4.1), message types that are used by the Transport Layer to communicate with the
Application Layer (see Section 4.3.4.2), the API used by Transport Layer protocols to communicate with
the Network Layer (see Section 4.3.4.3), and the message type used by the Network Layer to
communicate with the Transport Layer (see Section 4.3.4.4).

The complete list of APIs, with their parameters and description, can be found in API Reference Guide.

4.3.4.1 Application Layer to Transport Layer Communication

Application Layer protocols use several APIs to communicate with the Transport Layer (see
Section 4.2.4.1). The file QUALNET_HOME/main/app_util.cpp contains the implementation of these
functions. These APIs are implemented using messages. The message types used in the implementation
of these APIs are enumerated in the file QUALNET_HOME/include/api.h. Some of the message types
used by the Application Layer to communicate with the Transport Layer are listed below.
QualNet 5.2 Programmer’s Guide 124

Transport Layer Chapter 4
• MSG_TRANSPORT_FromAppSend: This message type is used by the Application Layer to send data to
the Transport Layer.

• MSG_TRANSPORT_FromAppListen: This message type is used by the Application Layer to direct TCP
to listen on a port.

• MSG_TRANSPORT_FromAppOpen: This message type is used by the Application Layer to request TCP
to open a TCP connection.

• MSG_TRANSPORT_FromAppClose: This message type is used by the Application Layer to request
TCP to close a TCP connection.

4.3.4.2 Transport Layer to Application Layer Communication

Transport Layer protocols communicate with the Application Layer by means of messages. The message
types used for this communication are enumerated in the file api.h. Some of the message types used by
Transport Layer protocols to communicate with the Application Layer are listed below.

• MSG_APP_FromTransport: This message type is used by UDP to pass an incoming packet to the
Application Layer.

• MSG_APP_FromTransOpenResult: This message type is used by TCP to notify an application client
that a TCP connection request was accepted or rejected.

• MSG_APP_FromTransDataSent: This message type is used by TCP to indicate to the Application
Layer that an outgoing packet has been transmitted.

• MSG_APP_FromTransDataReceived: This message type is used by TCP to pass an incoming
packet to the Application Layer.

• MSG_APP_FromTransListenResult: This message type is used by TCP to notify an application
server that a request to open a TCP connection has been received.

• MSG_APP_FromTransCloseResult: This message type is used by TCP to notify an application client
or server that a TCP connection has been closed.

4.3.4.3 Transport Layer to Network Layer Communication
The Transport Layer communicates with the Network Layer by using the API
NetworkIpReceivePacketFromTransportLayer. This function sends a packet from a Transport Layer
protocol (UDP, TCP or RSVP-TE) to the IP protocol at the Network Layer. The prototype for this function is
contained in the file QUALNET_HOME/libraries/developer/src/network_ip.h. The file QUALNET_HOME/
libraries/developer/src/network_ip.cpp contains the implementation of
NetworkIpReceivePacketFromTransportLayer.

4.3.4.4 Network Layer to Transport Layer Communication
The IP protocol at the Network Layer uses several APIs to communicate with the Transport Layer
protocols: SendToUdp, SendToTcp, SendToRsvp, and SendToTransport (see Section 4.4.4.2). The
prototype for this function is contained in the file network_ip.h. The file network_ip.cpp contains the
implementation of these functions. These APIs are implemented using messages. These messages use
the message type MSG_TRANSPORT_FromNetwork, which is used to pass incoming packets to Transport
Layer protocols.

4.3.5 Adding a Transport Layer Protocol

This section provides an overview of the flow of a Transport Layer protocol and provides an outline for
developing and adding a new Transport Layer protocol to QualNet. It describes how to develop code
components common to most transport protocols, such as initializing, sending and receiving packets, and
collecting statistics.
125 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
We illustrate the process of adding a Transport Layer protocol by using as an example the implementation
code for UDP. The header file for the UDP implementation is transport_udp.h and the source file is
transport_udp.cpp in the folder QUALNET_HOME/libraries/developer/src. We use code segments from
these two files throughout this section to illustrate different steps in writing a transport protocol. After
understanding the discussed snippets, look at the complete code for UDP to understand how a transport
protocol is implemented in QualNet.

The following list summarizes the actions that need to be performed for adding a Transport Layer protocol
to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.3.5.2).

2. Modify the file transport.cpp to include the protocol’s header file (see Section 4.3.5.2).

3. Include the protocol in the list of Transport Layer protocols and trace protocols (see Section 4.3.5.3).

4. Define data structures for the protocol (see Section 4.3.5.4).

5. Decide on the format for the protocol-specific configuration parameters (see Section 4.3.5.5.1).

6. Read the protocol’s configuration parameters and call the protocol’s initialization function from the

Transport Layer initialization function, TRANSPORT_Initialize (see Section 4.3.5.5.2).

7. Write the initialization function for the protocol. The initialization function should include the following

tasks:

a. Declare and initialize the state variables (see Section 4.3.5.5.3.1).

b. Initialize timers (see Section 4.3.5.5.3.2).

8. Call the protocol event dispatcher from the Transport Layer event dispatcher,

TRANSPORT_ProcessEvent (see Section 4.3.5.6.1).

9. Declare any new event types used by the protocol in the header file api.h (see Section 4.3.5.6.2).

10.Write the protocol event dispatcher (see Section 4.3.5.6.2).

11. Integrate the protocol with the Network Layer (see Section 4.3.5.8).

a. Define an IP Protocol Number for the protocol.

b. Write a function to deliver packets from IP to the protocol.

c. Call the function to deliver packets from IP to the protocol from the IP function DeliverPacket.

12.Include code in various functions to collect statistics.

a. Declare statistics variables (see Section 4.3.5.9.1).

b. Initialize the statistics variables in the protocol’s initialization function (see Section 4.3.5.9.2).

c. Update the statistics as appropriate (see Section 4.3.5.9.3).

d. Write a function to print the statistics (see Section 4.3.5.9.4).

e. Add dynamic statistics to the protocol, if desired (see Section 4.3.5.9.5) .

13.Call the protocol finalization function from the Transport Layer finalization function,

TRANSPORT_Finalize (see Section 4.3.5.10.1).

14.Write the protocol finalization function (see Section 4.3.5.10.2). Call the function to print statistics from

the protocol finalization function.

15.Include the protocol header and source files in the QualNet tree and compile (see Section 4.3.5.11).

16.To make the protocol available in the QualNet GUI, modify the GUI settings files (see Section 4.3.5.12).
QualNet 5.2 Programmer’s Guide 126

Transport Layer Chapter 4
4.3.5.1 Naming Guidelines
In QualNet, each component (file, data structure, function, etc.) is given a name that indicates the name of
the protocol, the layer in which the protocol resides, and the functionality of the component, as appropriate.
We recommend that when adding a new protocol, the programmer name the different components of the
new protocol in a similar manner. It will be helpful to examine the implementation of UDP in QualNet for
hints for naming and coding different components of the new protocol.

In this section, we describe the steps for developing a Transport Layer protocol called “MYPROTOCOL”.
We will use the string “Myprotocol” in the names of the different components of this protocol, just as the
string “Udp” appears in the names of the components of the UDP implementation.

4.3.5.2 Creating Files
The first step towards adding a transport protocol is creating files. Most models comprise two files: the
header file and the source file. These files can be placed in any library, e.g., in the folder
QUALNET_HOME/libraries/developer/src. However, it is recommended that all user-developed models be
made part of a separate library. In our example, we will place the transport model in a library called
user_models. See Section 4.10 for instructions for creating and activating a library.

If it doesn’t already exist, create a directory in QUALNET_HOME/libraries called user_models and a
subdirectory in QUALNET_HOME/libraries/user_models called src. Create the files for the transport model
and place them in the folder QUALNET_HOME/libraries/user_models/src. Name these files in a way that
clearly indicates the model that they implement. Prefix the file names with transport_ to designate the files
as transport model files.

Examples:

• transport_udp.cpp, transport_udp.h: Implement UDP (User Datagram Protocol)

• transport_rsvp.cpp, transport_rsvp.h: Implement RSVP-TE (Reservation Protocol with Traffic
Engineering)

In keeping with the naming guidelines of Section 16, the header file for the example protocol is called
transport_myprotocol.h, and the source file is called transport_myprotocol.cpp.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems, even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file, transport_myprotocol.h, should contain the following:

• Prototypes for interface functions in source file, transport_myprotocol.cpp

• Constant definitions

• Data structure definitions and data types: struct and enum declarations

The source file, transport_myprotocol.cpp, should contain the following:

• Statement to include the protocol’s header file:

#include “transport_myprotocol.h”
127 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
• Statements to include standard library functions and other header files needed by the protocol source
file. A typical protocol source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "api.h"
#include "partition.h"
#include "network_ip.h"

• Protocol initialization function, TransportMyprotocolInit

• Protocol event dispatcher function, TransportMyprotocolLayer

• Protocol finalization function, MyprotocolFinalize

• Additional protocol implementation functions

The file QUALNET_HOME/main/transport.cpp contains the layer level initialization, event dispatcher, and
finalization functions. These layer level functions in turn call the protocol functions TransportMyprotocolInit,
TransportMyprotocolLayer, and MyprotocolFinalize. Therefore, to make these protocol functions available
to the layer level functions, insert the following include statement in the file transport.cpp:

#include “transport_myprotocol.h”

4.3.5.3 Including MYPROTOCOL in List of Transport Protocols

Each node in QualNet hosts an operating protocol stack. For each layer in the stack, a list of protocols
running at that layer is maintained. When a new Transport Layer protocol is added to QualNet, it needs to
be included in the list of Transport Layer protocols. To do this, add the protocol name to the enumeration
TransportProtocol defined in transport.h (see Section 4.3.3).

For our example protocol, add the entry MYPROTOCOL to TransportProtocol as shown in Figure 4-49.

typedef enum {
TransportProtocol_UDP,
TransportProtocol_TCP,
TransportProtocol_RSVP,
TransportProtocol_MYPROTOCOL

} TransportProtocol;

FIGURE 4-49. Adding MYPROTOCOL to List of Transport Layer Protocols

Always add to the end of lists in header files.
QualNet 5.2 Programmer’s Guide 128

Transport Layer Chapter 4
QualNet provides for detailed traces of packets as they traverse the protocol stack at nodes in the network.
A packet trace lists, among other information, the protocol that is handling the packet at the time of the
trace. To facilitate tracing, QualNet lists all protocols in an enumeration, TraceProtocolType, in the file
QUALNET_HOME/include/trace.h. For our example protocol, add an entry TRACE_MYPROTOCOL in
TraceProtocolType, as shown in Figure 4-50.

typedef enum
{
 TRACE_UNDEFINED = 0,
 TRACE_TCP, // 1
 TRACE_UDP, // 2
 TRACE_IP, // 3
 TRACE_CBR, // 4
 ...

 TRACE_MYPROTCOL,
 // Must be last one!!!
 TRACE_ANY_PROTOCOL
}TraceProtocolType;

FIGURE 4-50. Adding MYPROTOCOL to List of Trace Protocols

Always add to the end of lists in header files (just before the entry TRACE_ANY_PROTOCOL).

The state information for each transport protocol is stored in TransportData. Modify TransportData
to include a pointer to the new protocol’s state. Also, if the new protocol is not mandatory, then include a
Boolean flag to indicate whether the protocol is enabled. An example of adding a non-mandatory protocol
is shown in Figure 4-51.

struct struct_transport_str
{

TransportDataUdp* udp;
int tcpType;
void* tcp;
BOOL rsvpProtocol;
void *rsvpVariable;
BOOL myprotocolEnabled; // Flag to indicate if protocol is enabled
void *myprotocolVariable // Pointer to protocol’s state

}

FIGURE 4-51. Adding MYPROTOCOL to TransportData

4.3.5.4 Defining Data Structures
Each Transport Layer protocol has its own data structures, which are defined in the protocol’s header file.
The data structures store information such as:

1. Protocol parameters (see Section 4.3.5.5.2)

2. Protocol state (see Section 4.3.5.5.3)

3. Statistics variables (see Section 4.3.5.9.1)
129 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
Define appropriate data structures for your protocol in the protocol header file, transport_myprotocol.h. As
an example, the following data structure (defined in transport_udp.h) is used by the UDP protocol:

struct TransportDataUdpStruct {
 BOOL udpStatsEnabled; /* whether to collect stats */
 TransportUdpStat *statistics; /* statistics variable*/
 BOOL traceEnabled;
};

In the above declaration, TransportUdpStat is the data structure for UDP statistics (see
Section 4.3.5.9.1).

4.3.5.5 Initialization

In this section, we describe the tasks that need to be performed as part of the initialization process of a
Transport Layer protocol.

4.3.5.5.1 Determining the Protocol Configuration Format

A protocol may use protocol-specific configuration parameters. The configuration parameters are specified
in the QualNet configuration file. The format for specifying a protocol’s configuration parameters is:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.

<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.

As an example, the following configuration specifies the TCP variant to be used:

TCP RENO

A configuration variable is not always mandatory. If an optional configuration variable is not assigned a
value in the configuration file, the default value is used. For example, if a user does not specify the TCP
variant in the configuration file, the default variant LITE will be used for TCP.

The new Transport Layer protocol may not be a mandatory service in the Transport Layer. In that case,
use a configuration parameter to enable or disable the protocol. The syntax of this parameter is as follows:

TRANSPORT-PROTOCOL-<Protocol_name> <status>

where:

<Parameter-name> : Name of the protocol.

<status> : YES, if the protocol is enabled; NO, if the protocol is disabled.
QualNet 5.2 Programmer’s Guide 130

Transport Layer Chapter 4
For our example protocol MYPROTOCOL, the following statement indicates that the protocol is enabled:

TRANSPORT-PROTOCOL-MYPROTOCOL YES

Define a configuration parameter for the new Transport Layer protocol which determines whether statistics
are to be collected for the protocol. If this parameter is set to YES in the configuration file, statistics
collection is enabled for the protocol; if the parameter is set to NO, statistics collection is disabled for the
protocol. For our example protocol MYPROTOCOL, the following statement indicates that statistics
collection is enabled:

MYPROTOCOL-STATISTICS YES

Decide on the format for specifying the new protocol’s configuration parameters. Section 4.3.5.5.2 explains
how to read user input specified in this format to initialize the protocol.

4.3.5.5.2 Reading Configuration Parameters and Calling the Protocol Initialization Function

QualNet can configure a protocol to the parameters specified by the user in the QualNet configuration file
that sets up the experiment. This section explains how to read these user-specified configuration
parameters for the protocol and provide them to the protocol's initialization function.

The protocol stack of each node is initialized in a bottom up manner. The initialization of the Transport
Layer thus occurs after the layers below it have been initialized. This process is performed in the node
initialization function PARTITION_InitializeNodes, implemented in QUALNET_HOME/main/partition.cpp
(see Section 3.4.1).

The node initialization function, PARTITION_InitializeNodes, calls the Transport Layer initialization function
TRANSPORT_Initialize, which is implemented in the file transport.cpp. Function TRANSPORT_Initialize
reads the configuration parameters and stores them in the appropriate data structure, and calls the
initialization routine for the protocol as follows:

• If the protocol is mandatory, such as UDP and TCP, TRANSPORT_Initialize calls its initialization
function, as shown in Figure 4-52. TransportUdpInit, defined in transport_udp.cpp, is the initialization
function for UDP.

• If the transport protocol is non-mandatory, such as RSVP-TE, then TRANSPORT_Initialize first finds
whether the protocol is enabled by searching the keyword TRANSPORT-PROTOCOL-
<protocol_name>. The Boolean flag corresponding to the protocol is set accordingly, and if the protocol
is enabled, then its initialization function is called. Function IO_ReadString, defined in
QUALNET_HOME/include/fileio.h, is a utility function that retrieves from an input file the value
associated with a string parameter.
131 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
For our example non-mandatory protocol, MYPROTOCOL, Figure 4-52 gives an example of code to be
added to TRANSPORT_Initialize to call the initialization function for MYPROTOCOL. The Boolean variable
myprotocolEnabled (see Section 4.3.5.3) is set to TRUE or FALSE depending upon the value read from
the configuration file (see Section 4.3.5.5.1). Function TransportMyprotocolInit is the initialization function
of MYPROTOCOL.

void TRANSPORT_Initialize(Node * node, const NodeInput * nodeInput)
{
 BOOL wasFound = FALSE;
 char buf[MAX_STRING_LENGTH];

 node->transportData.tcp = NULL;
 node->transportData.udp = NULL;

 TransportTcpInit(node, nodeInput);
 TransportUdpInit(node, nodeInput);

...

 /* Initialize MYPROTCOL. */

 node->transportData.myprotocolVariable = NULL;
 IO_ReadString(node->nodeId, ANY_ADDRESS, nodeInput,
 "TRANSPORT-PROTOCOL-MYPROTOCOL", &wasFound, buf);

 if (wasFound)
 {

if (strcmp(buf, "YES") == 0)
 {
 node->transportData.myprotocolEnabled = TRUE;
 TransportMyprotocolInit(node, nodeInput);
 }
 else
 if (strcmp(buf, "NO") == 0)
 {
 node->transportData.myprotocolEnabled = FALSE;
 }
 else
 {
 ERROR_ReportError("Expecting YES or NO for”
 "TRANSPORT-PROTOCOL-MYPROTOCOL parameter\n");
 }

}
else /* Not found */
{

node->transportData.myprotocolEnabled = FALSE;
}

}

FIGURE 4-52. Calling the Protocol Initialization Function
QualNet 5.2 Programmer’s Guide 132

Transport Layer Chapter 4
4.3.5.5.3 Implementing the Protocol Initialization Function

The initialization of a Transport Layer protocol takes place in the initialization function of the protocol that is
called by the Transport Layer initialization function TRANSPORT_Initialize. The initialization function of a
protocol commonly performs the following tasks:

• Initialize the state and store the user specified configuration parameters

• Create an instance of the protocol

• Initialize data structures and variables as required, e.g., allocate memory to tables, set default values,
etc.

• Schedule a timer to itself for starting the protocol

Like all other functions belonging to the protocol, the prototype for the initialization function should be
included in the protocol's header file, transport_myprotocol.h.

4.3.5.5.3.1 Creating an Instance and Initializing the State

The initialization function initializes the protocol state. Each protocol has a structure that it uses to store
state information. This may include information such as flags, connection information, sequence number,
pointers to tables used by the protocol, etc.

To store the state, declare the structure to hold the protocol state in the header file, transport_myprotocol.h
(see Section 4.3.5.4).

Create an instance of the protocol state by allocating memory to the state structure. UDP performs this
task in its initialization function TransportUdpInit by calling the function MEM_alloc to allocate memory for
the UDP data structure TransportDataUdp, as shown in Figure 4-53.

Update the Transport Layer data structure, TransportData, so that the field for the protocol points to the
newly created instance of the protocol data structure, e.g., TransportInitUdp updates the udp field of
TransportData to point to the newly created instance of the UDP data structure.
133 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
void
TransportUdpInit(Node *node, const NodeInput *nodeInput)
{
 char buf[MAX_STRING_LENGTH];
 BOOL retVal;

 TransportDataUdp* udp =
 (TransportDataUdp*)MEM_malloc(sizeof(TransportDataUdp));
 node->transportData.udp = udp;

 TransportUdpInitTrace(node, nodeInput);

 IO_ReadString(
 node->nodeId,
 ANY_ADDRESS,
 nodeInput,
 "UDP-STATISTICS",
 &retVal,
 buf);
 if (retVal == FALSE || strcmp(buf, "NO") == 0)
 {
 udp->udpStatsEnabled = FALSE;
 }
 else if (strcmp(buf, "YES") == 0)
 {
 udp->udpStatsEnabled = TRUE;
 }
 else
 {
 printf("TransportUdp unknown setting (%s) for UDP-STATISTICS.\n", buf);
 udp->udpStatsEnabled = FALSE;
 }

 if (udp->udpStatsEnabled == TRUE)
 {
 udp->statistics = (TransportUdpStat *)
 MEM_malloc(sizeof(TransportUdpStat));
 if (udp->statistics == NULL)
 {
 printf("TRANSPORT UDP: cannot allocate memory\n");
 abort();
 }
 memset(udp->statistics, 0, sizeof(TransportUdpStat));

 std::string path;
 D_Hierarchy *h = &node->partitionData->dynamicHierarchy;
 ...
 }
}

FIGURE 4-53. UDP Initialization Function

4.3.5.5.3.2 Initializing Timers

In addition to initializing data structures, the initialization function may also initialize timers for the transport
protocol. Section 3.3.2.2 discusses in detail how to use timers.
QualNet 5.2 Programmer’s Guide 134

Transport Layer Chapter 4
4.3.5.6 Implementing the Event Dispatcher
In this section, we describe the steps for implementing the event dispatcher function for a transport
protocol.

As explained in Section 3.4.2, when an event occurs, it is first handled by the node level dispatcher
function NODE_ProcessEvent, defined in QUALNET_HOME/main/node.cpp. If the event is for the
Transport Layer, NODE_ProcessEvent calls the Transport Layer event dispatcher
TRANSPORT_ProcessEvent, defined in transport.cpp.

Section 4.3.5.6.1 describes how to modify the Transport Layer event dispatcher function to call the
transport protocol’s event dispatcher. Section 4.3.5.6.2 describes how to implement the protocol’s event
dispatcher.

4.3.5.6.1 Modifying the Transport Layer Event Dispatcher

Function TRANSPORT_ProcessEvent implements the Transport Layer event dispatcher that informs the
appropriate transport protocol of received events. Messages contain the name of the protocol they are
destined for. (This is the transport protocol name specified in the enumerated data type
TransportProtocol, described in Section 4.3.3.) The API function MESSAGE_GetProtocol returns the
protocol for which the message is destined. TRANSPORT_ProcessEvent implements a switch statement
on the protocol name read from the message and calls the appropriate protocol-specific event dispatcher.

To enable the protocol MYPROTOCOL to receive events, add code to TRANSPORT_ProcessEvent to call
the protocol's event dispatcher function when messages for the protocol are received. If MYPROTOCOL is
a non-mandatory protocol, check if it is enabled before calling its event dispatcher function. Figure 4-54
shows a code fragment from TRANSPORT_ProcessEvent with sample code for calling MYPROTOCOL’s
event dispatcher function TransportMyprotocolLayer.

void
TRANSPORT_ProcessEvent(Node * node, Message * msg)
{
 switch (MESSAGE_GetProtocol(msg))
 {
 case TransportProtocol_UDP:
 {
 TransportUdpLayer(node, msg);
 break;
 }
 case TransportProtocol_TCP:
 {
 TransportTcpLayer(node, msg);
 break;
 }
 case TransportProtocol_RSVP:
 {
 ...
 }
 case TransportLayer_MYPROTOCOL:
 {
 if (node->transportData.myprotocolEnabled == FALSE)
 {
 ERROR_ReportError("MYPROTOCOL is not enabled\n”);
 }
 TransportMyprotocolLayer(node, msg);
 break;
 }
135 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
 default:
 assert(FALSE); abort();
 break;
 }//switch//
}

FIGURE 4-54. Transport Layer Event Dispatcher
QualNet 5.2 Programmer’s Guide 136

Transport Layer Chapter 4
4.3.5.6.2 Implementing the Protocol Event Dispatcher

A protocol's event dispatcher should include a switch on all message types that the protocol may receive.
It can then process each message type either inside the switch or by calling a function to handle the
message type received.

All event types used by QualNet protocols are enumerated in the file api.h. If the protocol being added
needs additional event types, these should be included in the enumeration in file api.h, as shown in
Figure 4-55.

// /**
// ENUM :: MESSAGE/EVENT
// DESCRIPTION :: Event/message types exchanged in the simulation
// **/
enum
{
 /* Special message types used for internal design. */
 MSG_SPECIAL_Timer = 0,
 ...
 /* Message Types for Channel layer */
 MSG_PROP_SignalArrival = 100,
 MSG_PROP_SignalEnd = 101,
 ...
 /*
 * Any other message types which have to be added should be added before
 * MSG_DEFAULT. Otherwise the program will not work correctly.
 */
 MSG_TRANSPORT_PROTOCOL_NewEvent1,
 MSG_TRANSPORT_PROTOCOL_NewEvent2,
 MSG_DEFAULT = 10000
};

FIGURE 4-55. Declaring New Event Types

Always add to the end of lists in header files (just before the entry MSG_DEFAULT).

The event dispatcher function for a protocol that provides a transport service, such as UDP and TCP, is
different from the event dispatcher for a protocol that provides a supplemental or auxiliary service, such as
RSVP-TE. In the former case, the protocol interacts with both Application and Network Layers, while in the
latter case, the protocol interacts only with the Network Layer. Section 4.3.5.6.2.1 describes the event
dispatcher for UDP and Section 4.3.5.6.2.2 describes the event dispatcher for RSVP-TE.

Write MYPROTOCOL’s event dispatcher function, TransportMyprotocolLayer, using UDP or RSVP-TE as
an example. Include the prototype for TransportMyprotocolLayer in the protocol's header file,
transport_myprotocol.h.

4.3.5.6.2.1 UDP Event Dispatcher

UDP provides a transport service to Application Layer protocols. When UDP receives a packet from the
Application Layer, it appends a UDP header to the packet and sends the packet to the Network Layer.
When UDP receives a packet from the Network Layer, it removes the UDP header from the packet and
sends the packet to the Application Layer. Function TransportUdpLayer, shown in Figure 4-56, is the event
dispatcher for UDP. Event MSG_TRANSPORT_FromNetwork corresponds to receiving a packet from the
Network Layer and event MSG_TRANSPORT_FromAppSend corresponds to receiving a packet from the
Application Layer.
137 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
The event dispatcher also includes a default case in the switch statement to handle events of an unknown
type.

See files transport_udp.h and transport_udp.cpp in QUALNET_HOME/libraries/developer/src for
definitions of data structures and functions used for implementing UDP.

void
TransportUdpLayer(Node *node, Message *msg)
{
 switch (msg->eventType)
 {
 case MSG_TRANSPORT_FromNetwork:
 {
 TransportUdpSendToApp(node, msg);
 break;
 }
 case MSG_TRANSPORT_FromAppSend:
 {
 TransportUdpSendToNetwork(node, msg);
 break;
 }
 default:
 assert(FALSE);
 abort();
 }
}

FIGURE 4-56. Event Dispatcher for UDP

Function TransportUdpLayer calls function TransportUdpSendToApp when it receives a packet from the
Network Layer. Function TransportUdpSendToApp, shown in Figure 4-57, performs the following actions:

1. Reads the source address, destination address and incoming interface index from the info field of the

message.

2. Reads the destination port number from the UDP header (which is at the beginning of the packet field of

the message), using the API MESSAGE_ReturnPacket.

3. Allocates a new info field for the message, using the API MESSAGE_InfoAlloc.

4. Copies the source address, destination address, incoming interface index and the destination port

number into the new info field of the message.

5. Removes the header, using the API MESSAGE_RemoveHeader.

6. Schedules a packet receive event (MSG_APP_FromTransport) for the destination protocol at the

Application Layer, using the APIs MESSAGE_SetLayer, MESSAGE_SetEvent and MESSAGE_Send.
QualNet 5.2 Programmer’s Guide 138

Transport Layer Chapter 4
void
TransportUdpSendToApp(Node *node, Message *msg)
{
 TransportDataUdp *udpLayer =
 (TransportDataUdp *) node->transportData.udp;
 TransportUdpHeader* udpHdr = (TransportUdpHeader *)
 MESSAGE_ReturnPacket(msg);
 UdpToAppRecv *info;
 Address sourceAddress;
 Address destinationAddress;
 NetworkToTransportInfo *infoPtr = (NetworkToTransportInfo *)
 MESSAGE_ReturnInfo(msg);
 int incomingInterfaceIndex = infoPtr->incomingInterfaceIndex;

 memcpy(&sourceAddress, &(infoPtr->sourceAddr), sizeof(Address));
 memcpy(&destinationAddress,
 &(infoPtr->destinationAddr),
 sizeof(Address));
 if (udpLayer->udpStatsEnabled == TRUE)
 {
 udpLayer->statistics->numPktToApp++;
 }
 /* Set destination port. */
 MESSAGE_SetLayer(msg, APP_LAYER, udpHdr->destPort);
 MESSAGE_SetEvent(msg, MSG_APP_FromTransport);
 MESSAGE_SetInstanceId(msg, 0);

 /* Update info field (used by application layer). */
 TosType_priority = infoPtr->priority;
 MESSAGE_InfoAlloc(node, msg, sizeof(UdpToAppRecv));
 info = (UdpToAppRecv *) MESSAGE_ReturnInfo(msg);

 info->priority = priority;
 memcpy(&(info->sourceAddr), &sourceAddress, sizeof(Address));
 info->sourcePort = udpHdr->sourcePort;
 memcpy(&(info->destAddr), &destinationAddress, sizeof(Address));
 info->destPort = udpHdr->destPort;
 info->incomingInterfaceIndex = incomingInterfaceIndex;

 ActionData acnData;
 acnData.actionType = RECV;
 acnData.actionComment = NO_COMMENT;
 TRACE_PrintTrace(node,
 msg,
 TRACE_TRANSPORT_LAYER,
 PACKET_IN,
 &acnData);
 /* Remove UDP header. */
 MESSAGE_RemoveHeader(node, msg, sizeof(TransportUdpHeader), TRACE_UDP);

 /* Send packet to application layer. */
 MESSAGE_Send(node, msg, TRANSPORT_DELAY);
}

FIGURE 4-57. Processing a Packet Received from Network Layer at UDP
139 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
Function TransportUdpLayer calls function TransportUdpSendToNetwork when it receives a packet from
the Application Layer. Function TransportUdpSendToNetwork, shown in Figure 4-58, performs the
following actions:

1. Creates a header, using the API MESSAGE_Addheader.

2. Copies the source and destination port numbers from the message info field to the header.

3. Sets the length field of the header to the message packet size, using the API

MESSAGE_ReturnPacketSize.

4. Sends the packet to the Network Layer, using the API NetworkIpReceivePacketFromTransportLayer.

Function NetworkIpReceivePacketFromTransportLayer, defined in network_ip.cpp, is the API for
sending a packet from the Transport Layer to the Network Layer. TransportUdpSendToNetwork passes
to NetworkIpReceivePacketFromTransportLayer an integer parameter that is the IP Protocol Number
for the Transport Layer protocol. In Figure 4-58, this parameter is IPPROTO_UDP, which is defined in
QUALNET_HOME/libraries/developer/src/network_ip.h (see Section 4.3.5.8).

void
TransportUdpSendToNetwork(Node *node, Message *msg)
{
 TransportDataUdp *udp = (TransportDataUdp *) node->transportData.udp;
 TransportUdpHeader *udpHdr;
 AppToUdpSend *info;

 if (udp->udpStatsEnabled == TRUE)
 {
 udp->statistics->numPktFromApp++;
 }
 MESSAGE_AddHeader(node, msg, sizeof(TransportUdpHeader), TRACE_UDP);
 udpHdr = (TransportUdpHeader *) msg->packet;
 info = (AppToUdpSend *) MESSAGE_ReturnInfo(msg);
 udpHdr->sourcePort = info->sourcePort;
 udpHdr->destPort = info->destPort;
 udpHdr->length = (unsigned short) MESSAGE_ReturnPacketSize(msg);
 udpHdr->checksum = 0; /* checksum not calculated */

 ActionData acnData;
 acnData.actionType = SEND;
 acnData.actionComment = NO_COMMENT;
 TRACE_PrintTrace(node,
 msg,
 TRACE_TRANSPORT_LAYER,
 PACKET_OUT,
 &acnData);
 NetworkIpReceivePacketFromTransportLayer(
 node,
 msg,
 info->sourceAddr,
 info->destAddr,
 info->outgoingInterface,
 info->priority,
 IPPROTO_UDP,
 FALSE,
 info->ttl);
}

FIGURE 4-58. Processing a Packet Received from Application Layer at UDP
QualNet 5.2 Programmer’s Guide 140

Transport Layer Chapter 4
4.3.5.6.2.2 RSVP-TE Event Dispatcher

RSVP-TE is a control protocol operating at the Transport Layer. Unlike UDP and TCP, RSVP-TE is not
used for transporting Application Layer data; therefore, it does not exchange packets with the Application
Layer. Packets received from the Network Layer are processed at the Transport Layer and are not
forwarded to the Application Layer.

See files transport_rsvp.h and transport_rsvp.cpp in QUALNET_HOME/libraries/multimedia_enterprise/src
for definitions of data structures and functions used for implementing RSVP-TE.

Function RsvpLayer, shown in Figure 4-59, is the event dispatcher for RSVP-TE. Event
MSG_TRANSPORT_RSVP_InitApp is a trigger to initialize RSVP-TE, and function RsvpInitApplication is
called to handle this event. Event MSG_TRANSPORT_FromNetwork corresponds to receiving a packet
from the Network Layer and function RsvpHandlePacket is called to handle this event. All other events are
timer events and are handled by their respective event handling routines.

The event dispatcher also includes a default case in the switch statement to handle events of an unknown
type.

Note that after processing each event, RsvpLayer calls API MESSAGE_Free to free the message.

It is important to free the memory after the message has been processed; otherwise, the
simulator will leak memory.
141 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
void RsvpLayer(Node* node, Message* msg)
{
 switch (MESSAGE_GetEvent(msg))
 {
 case MSG_TRANSPORT_RSVP_InitApp:
 {
 RsvpInitApplication(node, msg);
 break;
 }

 case MSG_TRANSPORT_FromNetwork:
 {
 NetworkToTransportInfo* netToTransInfo =
 (NetworkToTransportInfo*) MESSAGE_ReturnInfo(msg);

 RsvpHandlePacket(node, msg,
 GetIPv4Address(netToTransInfo->sourceAddr));
 break;
 }

 case MSG_TRANSPORT_RSVP_PathRefresh:
 {
 ...
 }

 case MSG_TRANSPORT_RSVP_ResvRefresh:
 {
 ...
 }

 case MSG_TRANSPORT_RSVP_HelloExtension:
 {
 ...
 }

 case MSG_TRANSPORT_RSVP_InitiateExplicitRoute:
 {
 ...
 }

 default:
 {
 // invalid event type
 ERROR_Assert(FALSE, "Invalid RSVP message.");
 break;
 }
 }
 // Free the message
 MESSAGE_Free(node, msg);
}

FIGURE 4-59. Event Dispatcher for RSVP-TE
QualNet 5.2 Programmer’s Guide 142

Transport Layer Chapter 4
4.3.5.7 Integrating with the Application Layer
Application Layer protocols exchange data by using transport services provided by UDP or TCP by means
of APIs listed in Section 4.3.4.1 and Section 4.3.4.2. Since TCP is a connection-oriented protocol, it also
implements connection management APIs, such as APP_TcpOpenConnection, APP_TcpServerListen and
APP_TcpCloseConnection. These APIs are implemented in QUALNET_HOME/main/app_util.cpp. As an
example, function APP_UdpSendNewDataWithPriority, shown in Figure 3-7, sends application data to
UDP with a user-specified priority after a user-specified delay. Section 3.3.2.1.2 explains the
implementation of APP_UdpSendNewDataWithPriority.

If the new protocol, MYPROTOCOL, provides a transport service, integrate MYPROTOCOL with the
Application Layer as follows:

1. Write functions similar to the UDP and TCP APIs which enable Application Layer protocols to use the
services provided by MYPROTOCOL. Include these functions in the file transport_myprotocol.cpp.

2. Include the prototypes of these functions in the file transport_myprotocol.h.

3. Make these functions available to any specific Application Layer protocol by including the file

transport_myprotocol.h in Application Layer protocol’s source file, e.g., to enable the Application Layer

protocol CBR to use MYPROTOCOL, include the following statement in the file QUALNET_HOME/

libraries/developer/src/app_cbr.cpp:

#include “transport_myprotocol.h”
143 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
4.3.5.8 Integrating with the Network Layer
When the IP protocol at the Network Layer sends a packet to a protocol at the Transport Layer protocol, it
calls a function specific to that protocol. Therefore, when a new protocol, MYPROTOCOL, is added at the
Transport Layer, a function needs to be added at the Network Layer which enables IP to deliver packets to
MYPROTOCOL. This section describes the steps for integrating a new Transport Layer protocol with the
Network Layer.

1. Define an IP Protocol Number for MYPROTOCOL. File network_ip.h contains constant definitions for

all Transport Layer and Network Layer protocols (see Figure 4-60). For example, the IP Protocol

Number for UDP is 17. Add a constant definition to associate an IP Protocol Number with

MYPROTOCOL.

Be sure to use an IP Protocol Number that is not already used for some other protocol.

//--
// IP protocol numbers
//--

// IP protocol numbers for network-layer and transport-layer protocols

...
// /**
// CONSTANT :: IPPROTO_TCP : 6
// DESCRIPTION :: IP protocol number for TCP.
// **/
#define IPPROTO_TCP 6
// /**
// CONSTANT :: IPPROTO_UDP : 17
// DESCRIPTION :: IP protocol number for UDP.
// **/
#define IPPROTO_UDP 17
// /**
// CONSTANT :: IPPROTO_RSVP : 46
// DESCRIPTION :: IP protocol number for RSVP.
// **/
#define IPPROTO_RSVP 46
...
// /**
// CONSTANT :: IPPROTO_MYPROTOCOL : 255
// DESCRIPTION :: IP protocol number for MYPROTOCOL.
// **/
#define IPPROTO_MYPROTOCOL 255
...

FIGURE 4-60. Declaring IP Protocol Number for MYPROTOCOL

2. Modify function DeliverPacket in network_ip.cpp. Function DeliverPacket, shown in Figure 4-61,

performs a switch on the IP Protocol Number, ipProtocolNumber, contained in the IP header of the

received packet, and calls the appropriate routine to deliver the packet to the protocol identified by

ipProtocolNumber. For example, DeliverPacket calls the function SendToUdp to deliver a packet to

UDP if the IP Protocol Number read from the packet’s header is 17.
QualNet 5.2 Programmer’s Guide 144

Transport Layer Chapter 4
Add code to DeliverPacket to call function SendToMyprotocol, with appropriate parameters, if the IP
Protocol Number read from the packet’s header is IPPROTO_MYPROTOCOL (defined in step 1), as
shown in Figure 4-61.

static void
DeliverPacket(Node *node, Message *msg,
 int interfaceIndex, NodeAddress previousHopAddress)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 NodeAddress sourceAddress = 0;
 NodeAddress destinationAddress =0;
 unsigned char ipProtocolNumber;
 unsigned ttl =0;
 TosType priority;
 ...
 IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;
 ...
 ipProtocolNumber = ipHeader->ip_p;
 ...
 switch (ipProtocolNumber)
 {
 // Delivery to Transport Layer protocols.

 case IPPROTO_UDP:
 {
 SendToUdp(node, msg, priority, sourceAddress, destinationAddress,
 interfaceIndex);
 break;
 }
 case IPPROTO_TCP:
 {
 SendToTcp(node, msg, priority, sourceAddress, destinationAddress,
 aCongestionExperienced);
 break;
 }
 ...
 case IPPROTO_RSVP:
 {
 SendToRsvp(node, msg, priority, sourceAddress,
 destinationAddress, interfaceIndex, ttl);
 break;
 }
 ...
 case IPPROTO_MYPROTOCOL:
 {
 SendToMyprotocol(node, msg, priority, sourceAddress,
 destinationAddress, ...);
 break;
 }
 ...
 }
 ...
}

FIGURE 4-61. Delivering Packets from IP to Transport Layer Protocols
145 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
3. Write function SendToMyprotocol to deliver a packet from the Network Layer to MYPROTOCOL.

Include this function in the file network_ip.cpp and specify its prototype in the file network_ip.h. Follow

the example of function SendToUdp, which delivers a packet from the Network Layer to UDP. Function

SendToUdp is shown in Figure 4-62 and is implemented in network_ip.cpp.

void
SendToUdp(
 Node *node,
 Message *msg,
 TosType priority,
 NodeAddress sourceAddress,
 NodeAddress destinationAddress,
 int incomingInterfaceIndex)
{
 NetworkToTransportInfo *infoPtr;

 MESSAGE_SetEvent(msg, MSG_TRANSPORT_FromNetwork);
 MESSAGE_SetLayer(msg, TRANSPORT_LAYER, TransportProtocol_UDP);
 MESSAGE_InfoAlloc(node, msg, sizeof(NetworkToTransportInfo));

 infoPtr = (NetworkToTransportInfo *) MESSAGE_ReturnInfo(msg);

 SetIPv4AddressInfo(&infoPtr->sourceAddr, sourceAddress);
 SetIPv4AddressInfo(&infoPtr->destinationAddr, destinationAddress);

 infoPtr->priority = priority;
 infoPtr->incomingInterfaceIndex = incomingInterfaceIndex;

 MESSAGE_Send(node, msg, PROCESS_IMMEDIATELY);
}

FIGURE 4-62. Sending Packets from IP to UDP

4.3.5.9 Collecting and Reporting Statistics

In this section, we describe how to collect and report statistics for a Transport Layer protocol.

4.3.5.9.1 Declaring Statistics Variables

A Transport Layer protocol can be configured to record statistics specified by the programmer, such as:

• Number of packets sent to the Application Layer

• Number of packets received from the Application Layer

To enable statistics collection for the protocol, include the statistic collection variables in the structure used
to hold the protocol state (see Section 4.3.5.4). The statistics related variables can also be defined in a
structure and then that structure is included in the state variable. For example, the data structure for UDP,
TransportDataUdp, contains a pointer to the UDP statistics variable, TransportUdpStat, shown
below:

typedef struct {
 D_Int32 numPktFromApp;
 D_Int32 numPktToApp;
} TransportUdpStat;

TransportDataUdp and TransportUdpStat are defined in transport_udp.h.
QualNet 5.2 Programmer’s Guide 146

Transport Layer Chapter 4
Also, include a variable in the protocol state structure that indicates whether statistics collection is enabled
for the protocol. For example, field udpStatsEnabled of TransportDataUdp is a Boolean flag that
indicates whether statistics collection is enabled for UDP.

4.3.5.9.2 Initializing Statistics

Initialize statistics variables in the protocol’s initialization function. Determine whether statistics collection is
enabled for the protocol and set the statistics collection flag accordingly. For example, field
udpStatsEnabled of TransportDataUdp is set to TRUE or FALSE by the initialization function
TransportUdpInit depending upon the input configuration, as shown in Figure 4-53. Function
TransportUdpInit allocates memory for the statistics variable TransportUdpStat and initializes all fields
of TransportUdpStat to 0, if UDP statistics collection is enabled.

4.3.5.9.3 Updating Statistics

After declaring and initializing the statistics variables, update their value during the protocol life cycle, as
required. For example, UDP increments the value of numPktToApp in function TransportUdpsendToApp
(see Figure 4-57) every time UDP sends a packet to the Application Layer, as shown below:

...
 if (udpLayer->udpStatsEnabled == TRUE)
 {
 udpLayer->statistics->numPktToApp++;
 }

...

4.3.5.9.4 Printing Statistics

As a final step towards statistics collection, create a function to print statistics. Call this function from the
finalization function of the protocol, which is discussed in Section 4.3.5.9.5. Alternatively, statistics can be
printed directly in the finalization function, as shown in Figure 4-64.

4.3.5.9.5 Adding Dynamic Statistics

Dynamic statistics are statistic variables whose values can be observed in the QualNet GUI during the
simulation. See Section 5.2.3 for adding dynamic statistics to a protocol. Refer to QualNet User’s Guide for
details of viewing dynamic statistics during the simulation.
147 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
4.3.5.10 Finalization
The finalization function of the protocol is called by the simulator at the end of simulation. It is the last code
that executes during the simulation. This function is responsible for printing statistics to the statistics file.

At the end of simulation, the finalization function for each protocol is called to print the protocol statistics.
As discussed in Section 3.4.3, the finalization function is called hierarchically. The node finalization
function, PARTITION_Finalize, which is defined in QUALNET_HOME/main/partition.cpp, calls the
finalization function for Transport Layer, TRANSPORT_Finalize, defined in transport.cpp.
TRANSPORT_Finalize calls the finalization function of each Transport Layer protocol running at the node.

4.3.5.10.1 Modifying the Transport Layer Finalization Function

Call the finalization function of MYPROTOCOL, MyprotocolFinalize, from the Transport Layer finalization
function, TRANSPORT_Finalize, defined in transport.cpp. If the protocol is a mandatory protocol like UDP
and TCP, then make a call to the protocol's finalization function unconditionally. If the protocol is a non-
mandatory protocol like RSVP-TE, then check if the protocol is enabled before making a call to the
protocol's finalization function. Figure 4-63 shows the outline of code that needs to be added to
TRANSPORT_Finalize.

void
TRANSPORT_Finalize(Node * node)
{
 TransportUdpFinalize(node);
 TransportTcpFinalize(node);
 ...
 if (node->transportData.myprotocolEnabled == TRUE)
 {
 MyprotocolFinalize(node);
 }
}

FIGURE 4-63. Transport Layer Finalization Function

4.3.5.10.2 Implementing the Protocol Finalization Function

Write the finalization function for protocol, MyprotocolFinalize. If statistics collection is enabled for
MYPROTOCOL, call a function to print the protocol statistics (see Section 4.3.5.9.4), or add code directly
to MyprotocolFinalize to print statistics. UDP follows the latter approach. Function TransportUdpFinalize,
shown in Section 4-64 and implemented in transport_udp.cpp, is the finalization function for UDP. Use
TransportUdpFinalize as a template to write MyprotocolFinalize.

Function TransportUdpFinalize calls the C function sprintf to create a single string containing the statistic
name and statistic value, and then calls function IO_PrintStat to print that string to a file. Function
IO_PrintStat function, defined in QUALNET_HOME/include/fileio.h, requires the following parameters:

• Node pointer: Pointer to the node reporting the statistics.

• Layer: String indicating the layer. Set this to "Transport" for the Transport Layer.

• Protocol: String indicating the protocol name.

• Interface address: Interface address. Set this to ANY_DEST for Transport Layer protocols.

• Instance identifier: Instance identifier or port number. Set this to -1 if there is no instance identifier.

• Buffer: String containing the statistics.
QualNet 5.2 Programmer’s Guide 148

Transport Layer Chapter 4
void
TransportUdpFinalize(Node *node)
{
 char buf[MAX_STRING_LENGTH];
 TransportDataUdp* udp = node->transportData.udp;
 TransportUdpStat* st = udp->statistics;

 if (udp->udpStatsEnabled == TRUE) {

 sprintf (buf, "Packets from Application Layer = %d",
 st->numPktFromApp);
 IO_PrintStat(
 node,
 "Transport",
 "UDP",
 ANY_DEST,
 -1 /* instance Id */,
 buf);

 sprintf (buf, "Packets to Application Layer = %d",
 st->numPktToApp);
 IO_PrintStat(
 node,
 "Transport",
 "UDP",
 ANY_DEST,
 -1 /* instance Id */,
 buf);
 }
}

FIGURE 4-64. Finalization Function for UDP

Like all other functions, specify the prototype of the finalization function, MyprotocolFinalize, in the
protocol's header file, transport_myprotocol.h.
149 QualNet 5.2 Programmer’s Guide

Chapter 4 Transport Layer
4.3.5.11 Including and Compiling Files
The final step in integrating your transport model into QualNet is to add the source file to the QualNet
source tree and compile.

If you have created the files for the transport model in an existing library or addon, then add the source file
to the Makefile-common for that library or addon. For example, if you have created your model files in the
Developer library, then modify QUALNET_HOME/libraries/developer/Makefile-common as shown in
Figure 4-65. Recompile QualNet after making the changes.

...
common sources
#
DEVELOPER_SRCS = \
$(DEVELOPER_SRCDIR)/adaptation_aal5.cpp \
$(DEVELOPER_SRCDIR)/adaptation.cpp \
...
$(DEVELOPER_SRCDIR)/transport_abstract_tcp_timer.cpp \
$(DEVELOPER_SRCDIR)/transport_abstract_tcp_usrreq.cpp \
$(DEVELOPER_SRCDIR)/transport_in_pcb.cpp \
$(DEVELOPER_SRCDIR)/transport_myprotocol.cpp \
$(DEVELOPER_SRCDIR)/transport_tcp.cpp \
$(DEVELOPER_SRCDIR)/transport_tcp_input.cpp \
$(DEVELOPER_SRCDIR)/transport_tcp_output.cpp \
...

FIGURE 4-65. Adding Model to Makefile-common

If you have created a new library called user_models, then follow the instructions given in Section 4.10.5 to
integrate the user_models library into QualNet.

4.3.5.12 Integrating the Protocol into the GUI

To make the new protocol available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.
QualNet 5.2 Programmer’s Guide 150

Transport Layer Chapter 4
4.3.6 Special Issues for Transport Layer Protocols

4.3.6.1 Setting Address for Broadcast Messages

For broadcasting packets, the destination address can be set to ANY_DEST, or the library function
NetworkIpGetInterfaceBroadcastAddress can be used to get the interface broadcast address. ANY_DEST
is a constant defined in QUALNET_HOME/include/main.h and stands for any destination. Function
NetworkIpGetInterfaceBroadcastAddress is defined in network_ip.h, and returns the broadcast address of
the specified interface.

Figure 4-66 shows a code snippet from the Bellmanford function SendRouteAdvertisement (implemented
in file QUALNET_HOME/libraries/developer/src/routing_bellmanford.cpp) that sets the destination address
to the interface broadcast address for the wired interface and to ANY_DEST for the wireless interface.

static void SendRouteAdvertisement(
 Node *node, RouteAdvertisementType type)
 {
 ...
 int i;
 for (i = 0; i < node->numberInterfaces; i++)
 {
 NodeAddress destAddress;
 ...
 if (NetworkIpIsWiredNetwork (node, i))
 {
 destAddress =

NetworkIpGetInterfaceBroadcastAddress(node, i);
 }
 else
 {
 destAddress = ANY_DEST;
 }
 ...
 }
 ...
}

FIGURE 4-66. Setting Broadcast Address
151 QualNet 5.2 Programmer’s Guide

.
4.4 Network Layer

The Network Layer resides between the Transport and MAC Layers in the QualNet protocol stack, as
shown in Figure 4-1. The Network Layer provides a communication service to support the Transport Layer
between two processes in two different hosts. In particular, the Network Layer moves the Transport Layer
data from the source host to the destination host. It is the lowest layer to deal with the end-to-end issue.
The main issues related to this layer are:

• Routing: Determining the next hop and outgoing interface for a packet

• Traffic Control: Controlling congestion and transmission rate

• Addressing: Identifying nodes in the network

• Internetworking: Interconnecting heterogeneous networks

This section gives a detailed description of how to add a Network Layer protocol to QualNet.

4.4.1 Network Layer Protocols in QualNet

QualNet provides an implementation of a large number of Network Layer protocols, which can be grouped
into the categories listed below.

• Network protocols

• Unicast routing protocols

• Multicast routing protocols

• Queues

• Schedulers

4.4.1.1 Network Protocols

The following network protocols are modeled in QualNet. See Developer Model Library for details of the
models.

• Internet Protocol version 4 (IPv4)

• Internet Protocol version 6 (IPv6)

• Internet Protocol Security (IPSec)

4.4.1.2 Routing Protocols
In general, routing refers to moving information across an internetwork and involves the following two
activities:

• Determination of an optimal path from a source to a destination

• Transporting packets through an internetwork (also referred to as switching)

A routing algorithm determines an optimal path and stores the information in routing tables. Routers
communicate with one another and maintain their routing tables through the transmission of a variety of
messages. Based on the information stored in the routing table of a router, a packet is forwarded to the
next node on the path to the destination.
Chapter 4 Network Layer
QualNet 5.2 Programmer’s Guide 152

Network Layer Chapter 4
QualNet provides a variety of routing protocols, which can be grouped into the following categories:

• Unicast routing for wireless ad hoc networks

• Unicast routing for wired networks

• Unicast routing for mixed networks

• Multicast routing for wireless networks

• Multicast routing for wired networks

Unicast Routing

Routing can be done in a variety of ways. Depending upon the underlying network technology and
topology, different choices can be made. In general, routing protocols can be viewed as being either
proactive or reactive. While a proactive routing strategy is suitable for wired networks, it may not be a good
choice for mobile ad hoc networks. On the other hand, reactive routing strategies generally work well for ad
hoc networks but can cause extra overhead for wired networks.

• Wireless Ad Hoc Networks

One of the primary characteristics of an ad hoc network is that the network topology is constantly
changing. For this reason, it is recommended that routes be evaluated only on an as-needed basis.

Reactive routing protocols normally have two types of routing packets: request/discovery and reply
packets. Request packets are normally flooded while reply packets are unicast. These types of routing
protocols,e.g., AODV, DSR and LAR1, are efficient if routes are used infrequently and may be sub-
optimal.

Some proactive routing protocols are also suitable for ad hoc networks. An example of this type of
routing protocol is OLSR. Proactive routing protocols mainly use two types of broadcasts: periodic and
triggered. They are suitable if routes are used frequently and routes always need to be optimal.

• Wired Networks

Wired networks are comparatively stable and topology changes occur less frequently than in wireless
ad hoc networks.

• Mixed Networks

AODV, DYMO. OSPFv2 and OSPFv3 are some of the Network Layer routing protocols that can be
used throughout a mixed network, such as switched ethernet, point-to-point, and wireless ad hoc
networks connected together.

Table 4-7 lists the unicast routing protocols (implemented at the Network Layer) in QualNet. The table also
specifies whether a routing protocol is a proactive or on-demand protocol, and if it is supported in IPv4
networks, IPv6 networks, or both. See the corresponding model library for a detailed description of each
protocol and its parameters.

Some routing protocols are implemented at the Application Layer and are not included here.

TABLE 4-7. Unicast Routing Protocols in QualNet

Unicast Routing
Protocol Description Type

IP
Version(s)

Model
Library

ANODR ANonymous On-Demand Routing
(ANODR) protocol.

This is a secure routing protocol.

On-demand IPv4 Network
Security

AODV Ad-hoc On-demand Distance Vector
(AODV) routing protocol.

On-demand IPv4, IPv6 Wireless

DSR Dynamic Source Routing (DSR) protocol. On-demand IPv4 Wireless
153 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
Multicast Routing

QualNet implements several multicast routing protocols for wired and wireless networks.

• Wireless Networks

ODMRP is the only routing protocol supported for wireless networks. It uses a mesh-based multicast
scheme and a forwarding group concept. The on-demand routing technique used by ODMRP helps to
reduce channel overhead and to improve scalability.

• Wired Networks

Wired multicast routing protocols build a source-based multicast delivery tree. The tree is built when a
router receives the first multicast data packet for a particular group. All of these protocols have their own
forwarding function that is called when a node needs to forward a multicast data packet.

Table 4-8 lists the different multicast routing protocols in QualNet. The table also specifies whether a
routing protocol is a proactive or on-demand protocol. See the corresponding model library for a detailed
description of each protocol and its parameters.

DYMO DYnamic MANET On-demand (DYMO)
routing protocol.

On-demand IPv4, IPv6 Wireless

FSRL Landmark Ad-hoc Routing (LANMAR)
protocol.

This protocol uses Fisheye as the local
scope routing protocol.

Proactive IPv4 Wireless

IARP IntrA-zone Routing Protocol (IARP)

This is a vector-based proactive routing
protocol and is a component of ZRP.

Proactive IPv4 Wireless

IERP Inter-zone Routing Protocol (IERP)

This is an on-demand routing protocol and
is a component of ZRP.

On-demand IPv4 Wireless

LAR1 Location-Aided Routing (LAR) protocol,
version 1.

This protocol utilizes location information to
improve scalability of routing.

On-demand IPv4 Wireless

OSPFv2 Open Shortest Path First (OSPF) routing
protocol, version 2.

This is a link state-based routing protocol
for IPv4 networks.

Proactive IPv4 Multimedia
and
Enterprise

OSPFv3 Open Shortest Path First (OSPF) routing
protocol, version 3.

This is a link state-based routing protocol
for IPv6 networks.

Proactive IPv6 Multimedia
and
Enterprise

STAR Source Tree Adaptive Routing (STAR)
protocol.

Proactive IPv4 Wireless

ZRP Zone Routing Protocol. Hybrid
(Proactive
and On-
demand)

IPv4 Wireless

TABLE 4-7. Unicast Routing Protocols in QualNet (Continued)

Unicast Routing
Protocol Description Type

IP
Version(s)

Model
Library
QualNet 5.2 Programmer’s Guide 154

Network Layer Chapter 4
All multicast protocols listed in Table 4-8 are supported only for IPv4 networks.

4.4.1.3 Queues

Table 4-9 lists the different queue models in QualNet. See the corresponding model library for a detailed
description of each model and its parameters.

TABLE 4-8. Multicast Routing Protocols in QualNet

Multicast
Routing
Protocol Description Type

Model
LIbrary

DVMRP Distance Vector Multiple Routing Protocol (DVMRP)

DVMRP is a multicast routing protocol designed for wired
networks. It is a tree-based multicast scheme that uses
reverse path multicasting.

Proactive Multimedia
and Enterprise

MOSPF Multicast Open Path Shortest First (MOSPF) protocol.

This is a multicast extension of OSPFv2. MOSPF is a
pruned tree-based, multicast scheme that takes
advantage of commonality of paths from source to
destinations.

Proactive Multimedia
and Enterprise

ODMRP On-Demand Multicast Routing Protocol (ODMRP).

This is a mesh-based, wireless ad-hoc routing protocol for
single subnets. It applies a soft on-demand procedures to
build routes and uses soft state to maintain multicast
group membership.

On-demand Wireless

PIM Protocol Independent Multicast (PIM) routing protocol.

PIM relies on an underlying topology-gathering protocol to
populate a routing table with routes. The routing table
provides the next hop router along a multicast-capable
path to each destination subnet. Both sparse mode and
dense mode versions of the protocol are supported.

Proactive Multimedia
and Enterprise

TABLE 4-9. Queue Models in QualNet

Queue Description Model Library

FIFO First In First Out (FIFO) queue.

This is the basic queue type and is also called the Drop Tail queue.
Packets are enqueued as long as there is buffer space available. If
the queue is full when a packet arrives, the packet is dropped.

Developer

RED Random Early Drop (RED) queue.

This queue is similar to FIFO, except that when the queue length
exceeds a certain threshold, arriving packets are randomly dropped
with a probability that depends on the queue length.

Developer

RIO RED with In/Out bit (RIO) queue.

RIO is a multiple average multiple threshold variant of RED that
operates two-color and three-color modes. Twin and three RED
algorithms are used in two-color and three-color modes,
respectively.

Developer

WRED Weighted Random Early Drop (WRED) queue.

WRED is a variant of RED and uses three RED algorithms for three
drop precedence levels.

Developer
155 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.1.4 Schedulers
Table 4-10 lists the different scheduler models in QualNet. See the corresponding model library for a
detailed description of each model and its parameters.

4.4.2 Network Layer Organization: Files and Folders

This section briefly examines the files and folders that are relevant to Network Layer protocols. These files
contain detailed comments on functions and other code components.

The Network Layer API is composed of several macros, functions, and structures. These are defined in the
following header files:

• QUALNET_HOME/include/api.h

This file defines the events and data structures needed to communicate between different layers of the
protocol stack.

• QUALNET_HOME/include/network.h

This file contains definitions common to Network Layer protocols, the network data structure in the node
structure, and the prototypes of functions defined in QUALNET_HOME/main/network.cpp.

TABLE 4-10. Scheduler Models in QualNet

Scheduler Description Model Library

CBQ Class-based queuing algorithm.

This algorithm is usually used by DiffServ. Queues are divided into
classes. The network protocol allocates bandwidth for each queue.
Scheduling is based on the bandwidth available to each class.

Developer

DIFFSERV Differentiated services (DiffServ) quality of service protocol.

When this option is selected, DiffServ queues and schedulers are
configured. The DiffServ scheduler for IP is a combination of two
schedulers: the inner and outer schedulers. Generally, the weighted
fair or weighted round-robin scheduler is chosen as the inner
scheduler and the strict priority scheduler is chosen as the outer
scheduler.

Multimedia and
Enterprise

ROUND-ROBIN Round-robin scheduler.

Queues are scheduled in a round-robin fashion.

Developer

SELF-CLOCKED-
FAIR

Self-clocked fair scheduler.

Scheduling is based on the Self-Clocked Fair Queuing (SFFQ)
algorithm.

Developer

STRICT-PRIORITY Strict priority scheduler.

Packets are scheduled strictly based on their priority. A packet is
scheduled only when all higher priority queues are empty.

Developer

WEIGHTED-FAIR Weighted fair scheduler.

Scheduling is based on the Weighted Fair Queuing (WFQ)
algorithm.

Developer

WEIGHTED-
ROUND-ROBIN

Weighted Round-Robin (WRR) scheduler.

This is a variant of the round-robin scheduler. The round-robin
scheduler services one packet from each queue in turn. The WRR
scheduler services multiple packets from each queue in turn, where
the number of packets serviced depends on the queue’s weight.

Developer
QualNet 5.2 Programmer’s Guide 156

Network Layer Chapter 4
• QUALNET_HOME/libraries/developer/src/network_ip.h

This file contains definitions of data structure and parameters used in the IP implementation and
prototypes of the functions defined in QUALNET_HOME/libraries/developer/src/network_ip.cpp.

• QUALNET_HOME/include/mapping.h

This file contains definitions of data structures and functions used for determining the network type
network protocols running at a node.

• QUALNET_HOME/include/mac.h

This file contains definitions of API functions needed to communicate with the MAC Layer.

• QUALNET_HOME/include/if_queue.h

This file contains definition of the class that implements queues and prototypes of functions related to
queues.

• QUALNET_HOME/include/if_scheduler.h

This file contains definition of the class that implements schedulers and prototypes of functions related
to schedulers.

The following header files are also relevant to the Network Layer:

• QUALNET_HOME/include/fileio.h

This file contains prototypes of functions to read input files and create output files.

• QUALNET_HOME/include/buffer.h

This file contains data structures and prototypes of functions for buffer operations.

• QUALNET_HOME/include/list.h

This file defines a generic doubly link list structure and prototypes of functions for list operations.

The following are the folders and source files associated with the Network Layer:

• QUALNET_HOME/libraries/developer/src, QUALNET_HOME/libraries/wireless/src

This folder contains most of the Network Layer protocols implemented in QualNet. These include
network protocols, routing protocols, queuing protocols, and schedulers. The file names are indicative
of the protocol for which they provide an implementation. Other libraries may contain code for Network
Layer protocols as well.

• QUALNET_HOME/main/network.cpp

This file contains Network Layer functions, including the initialization, message processing, and
finalization functions.

• QUALNET_HOME/libraries/developer/src/network_ip.cpp

This file contains functions that implement the IP protocol.

4.4.3 Network Layer Data Structures

The Network Layer data structures are defined in network.h and network_ip.h. This section describes the
main data structures. (Note that only a partial description of the data structures is provided here. Refer to
files network.h and network_ip.h for a complete description.)

1. NetworkRoutingProtocolType: This enumeration type, defined in network.h, lists all the Network

Layer protocols and all routing protocols, including those running at the Application Layer.
157 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
typedef enum
{
 NETWORK_PROTOCOL_IP = 0,
 NETWORK_PROTOCOL_IPV6,
 NETWORK_PROTOCOL_MOBILE_IP,
 ...
 ROUTING_PROTOCOL_AODV6,
 ROUTING_PROTOCOL_DYMO,
 ROUTING_PROTOCOL_DYMO6,
 ...
 ROUTING_PROTOCOL_NONE // this must be the last one
} NetworkRoutingProtocolType;

2. NetworkRoutingAdminDistanceType: This enumeration type, defined in network.h, assigns an

administrative distance to each routing protocol that is included in the list. The administrative distance

of a routing protocol determines its priority relative to other routing protocols when a route to a

destination can be determined by more than one routing protocol. A protocol with a lower administrative

distance has a higher priority.

typedef enum
{
 ROUTING_ADMIN_DISTANCE_STATIC = 1,
 ROUTING_ADMIN_DISTANCE_EBGPv4 = 20,
 ...
 ROUTING_ADMIN_DISTANCE_OLSR,
 ROUTING_ADMIN_DISTANCE_EIGRP,
 //StartRIP
 ROUTING_ADMIN_DISTANCE_RIP,
 //EndRIP
 ...

 // Should always have the highest administrative distance
 // (i.e., least important).
 ROUTING_ADMIN_DISTANCE_DEFAULT = 255
} NetworkRoutingAdminDistanceType;

3. NetworkProtocolType: This enumeration type, defined in QUALNET_HOME/include/mapping.h,

lists all network protocols supported in QualNet.

typedef enum
{
 INVALID_NETWORK_TYPE,
 IPV4_ONLY,
 IPV6_ONLY,
 DUAL_IP,
 ATM_NODE,
 GSM_LAYER3,
 CELLULAR,
 NETWORK_VIRTUAL
}NetworkProtocolType;
QualNet 5.2 Programmer’s Guide 158

Network Layer Chapter 4
4. IpInterfaceInfoType: This data structure, defined in network_ip.h, stores information for a specific

interface, such as the routing protocol and scheduler running at the interface.

struct IpInterfaceInfoType
{
 // Constructor. All member variables MUST be initialized in the
 // constructor.
 IpInterfaceInfoType();
 Scheduler* scheduler;
 Scheduler* inputScheduler;
 ...
 D_NodeAddress ipAddress;
 ...
 NetworkRoutingProtocolType routingProtocolType;
 void* routingProtocol;
 BOOL multicastEnabled;
 ...
 NetworkRoutingProtocolType multicastProtocolType;
 void *multicastRoutingProtocol;
 ...
 MacLayerAckHandlerType macAckHandler;
 ...
 // IPv6 interface information
 NetworkType interfaceType;
 BOOL isVirtualInterface;
 ...
 struct ipv6_interface_struct* ipv6InterfaceInfo;
 ...
};

5. NetworkForwardingTableRow: This data structure, defined in network_ip.h, stores one row of the

forwarding table.

typedef struct
{
 NodeAddress destAddress; // destination address
 NodeAddress destAddressMask; // subnet destination Mask
 int interfaceIndex; // index of outgoing interface
 NodeAddress nextHopAddress; // next hop IP address
 int cost;
 // routing protocol type
 NetworkRoutingProtocolType protocolType;
 // administrative distance for the routing protocol
 NetworkRoutingAdminDistanceType adminDistance;
 BOOL interfaceIsEnabled;
} NetworkForwardingTableRow;
159 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
6. NetworkForwardingTable: This data structure, defined in network_ip.h, stores the forwarding table.

typedef struct
{
 int size; // Number of entries
 int allocatedSize;
 NetworkForwardingTableRow *row; // Pointer to first row
} NetworkForwardingTable;

7. NetworkMulticastForwardingTableRow: This data structure, defined in network_ip.h, stores one

row of the multicast forwarding table.

typedef struct
{
 NodeAddress sourceAddress;
 NodeAddress sourceAddressMask; // Not used
 NodeAddress multicastGroupAddress;
 LinkedList *outInterfaceList;
} NetworkMulticastForwardingTableRow;

8. NetworkMulticastForwardingTable: This data structure, defined in network_ip.h, stores the

multicast forwarding table.

typedef struct
{
 int size; // Number of entries
 int allocatedSize;
 NetworkMulticastForwardingTableRow *row; // Pointer to first row
} NetworkMulticastForwardingTable;

9. NetworkDataIp: This data structure, defined in network_ip.h, is the main data structure for the

Network Layer and stores information about all Network Layer protocols running at the node.

typedef struct struct_network_ip_str
{
 ...
 NetworkForwardingTable forwardTable;
 ...
 IpInterfaceInfoType* interfaceInfo[MAX_NUM_INTERFACES];
 ...
 NetworkIpStatsType stats;
 LinkedList *multicastGroupList;
 NetworkMulticastForwardingTable multicastForwardingTable;
 ...
} NetworkDataIp;

10.NetworkData: This data structure stores the network protocol type running at the node and a pointer

to the network protocol data structure.

(The structure struct_network_str, described below, is defined in QUALNET_HOME/include/
network.h. The structure NetworkData is defined to be equivalent to struct_network_str in
QUALNET_HOME/include/main.h by means of a typedef statement.)
QualNet 5.2 Programmer’s Guide 160

Network Layer Chapter 4
struct struct_network_str
{
 struct struct_network_ip_str *networkVar; // IP state
 NetworkProtocolType networkProtocol;
 ...
 BOOL networkStats; // TRUE if network statistics are collected
 //It is true if ARP is enabled
 BOOL isArpEnable;
 //It is true if RARP is enabled
 BOOL isRarpEnable;
 struct address_resolution_module *arModule;
};

4.4.4 Network Layer APIs and Inter-layer Communication

This section describes the API used by the Transport Layer to communicate with the Network Layer (see
Section 4.4.4.1), the APIs used by the Network Layer to communicate with the Transport Layer (see
Section 4.4.4.2), the APIs used by the Network Layer protocols to communicate with the MAC Layer (see
Section 4.4.4.3), and the APIs used by the MAC Layer to communicate with the Network Layer (see
Section 4.4.4.4). This section also lists some of the Network Layer utility APIs (see Section 4.4.4.5).

The complete list of APIs, with their parameters and description, can be found in API Reference Guide.

4.4.4.1 Transport Layer to Network Layer Communication

The Transport Layer communicates with the Network Layer by using the API
NetworkIpReceivePacketFromTransportLayer. This function sends a packet from a Transport Layer
protocol (UDP, TCP or RSVP-TE) to the IP protocol at the Network Layer. The prototype for this function is
contained in the file network_ip.h. The file network_ip.cpp contains the implementation of
NetworkIpReceivePacketFromTransportLayer.

4.4.4.2 Network Layer to Transport Layer Communication

Several APIs are available for the Network Layer to communicate with the Transport Layer. The prototypes
for these functions are contained in the file network_ip.h. The file network_ip.cpp contains the
implementation of these functions.

Some of the APIs used for communication from the Network Layer to the Transport Layer are listed below.

• SendToUdp: This function sends a packet to the UDP protocol at the Transport Layer.

• SendToTcp: This function sends a packet to the TCP protocol at the Transport Layer.

• SendToRsvp: This function sends a packet to the RSVP-TE protocol at the Transport Layer.

4.4.4.3 Network Layer to MAC Layer Communication
A number of APIs are available at the Network Layer to communicate with the MAC Layer. The prototypes
for the API functions are contained in the files network_ip.h and QUALNET_HOME/include/mac.h. The
files network_ip.cpp and QUALNET_HOME/main/mac.cpp contain the implementation of these functions.

Some of the APIs used for communication from the Network Layer to the MAC Layer are listed below.

• NetworkIpSendRawMessage: This function adds an IP header to a packet and calls function
RoutePacketAndSendToMac to add routing information to the packet.

• NetworkIpSendRawMessageWithDelay: This function adds an IP header to a packet and calls function
RoutePacketAndSendToMac, after a specified delay, to add routing information to the packet.
161 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
• NetworkIpSendRawMessageToMacLayer: This function adds an IP header to a packet and sends the
packet to the MAC Layer.

• NetworkIpSendRawMessageToMacLayerWithDelay: This function adds an IP header to a packet and
sends the packet to the MAC Layer after a specified delay.

• NetworkIpSendPacketToMacLayer: This function sends an IP packet to the MAC Layer.

• NetworkIpSendPacketToMacLayerWithNewStrictSourceRoute: This function appends a new source
route to an IP packet and sends the packet to the MAC Layer.

• MAC_NetworkLayerHasPacketToSend: This function is used by the Network Layer to inform the MAC
Layer that a packet is ready to be sent.

4.4.4.4 MAC Layer to Network Layer Communication

MAC Layer protocols use several APIs to communicate with the Network Layer (see Section 4.5.4.2).
These APIs, in turn, call functions implemented at the Network Layer. The prototypes for these Network
Layer functions are contained in the file network_ip.h or network.h, and the implementation of these
functions are contained in the file network_ip.cpp or QUALNET_HOME/main/network.cpp.

Some of the Network Layer functions used for communication from the MAC Layer to the Network Layer
are listed below.

• NetworkIpOutputQueueIsEmpty: This functions checks if the output queue at an interface is empty.

• NetworkIpOutputQueueDequeuePacket: This function dequeues a packet from an output queue.

• NetworkIpOutputQueueTopPacket: This function is used to view the top packet of a queue without
dequeuing it.

• NetworkIpOutputQueueDequeuePacketForAPriority: This function dequeues a specific priority packet
from an output queue.

• NETWORK_ReceivePacketFromMacLayer: This function is used by the MAC Layer to pass an
incoming packet to the Network Layer.

• NetworkIpReceiveMacAck: This function notifies the Network Layer that a packet has been
successfully delivered by the MAC protocol.

• NetworkIpNotificationOfPacketDrop: This function notifies the upper layer protocols when a packet is
dropped at the MAC Layer.

4.4.4.5 Network Layer Utility APIs
Several APIs are available at the Network Layer that perform tasks internal to the Network Layer. Some of
these functions can be used by other layers as well. The prototypes for these API functions are contained
in the file network_ip.h. The file network_ip.cpp contains the implementation of these functions.

Some of the Network Layer utility APIs are listed below.

• NetworkIpSetPromiscuousMessagePeekFunction: This function registers the function that
promiscuously peeks at packets with IP.

• NetworkIpSetMacLayerAckHandler: This function registers the function that processes MAC Layer
acknowledgements with IP.

• NetworkIpSetRouterFunction: This function registers a routing protocol’s router function with IP.

• NetworkIpGetRouterFunction: This function is used by IP to get a pointer to the router function used by
a routing protocol at a given interface.

• NetworkIpGetInterfaceAddress: This function returns the node address for the specified interface.
QualNet 5.2 Programmer’s Guide 162

Network Layer Chapter 4
4.4.5 Adding a Network Layer Unicast Routing Protocol

This section provides an overview of the flow of a Network Layer unicast routing protocol and provides an
outline for developing and adding a new Network Layer unicast routing protocol to QualNet. It describes
how to develop code components common to most routing protocols such as initializing, sending and
receiving packets, determining routes, and collecting statistics.

We illustrate the process of adding a Network Layer unicast routing protocol by using as an example the
implementation code for the AODV (Ad Hoc On-demand Distance Vector) routing protocol. The header file
for the AODV implementation is routing_aodv.h and the source file is routing_aodv.cpp in the folder
QUALNET_HOME/libraries/wireless/src. We use code snippets from these two files throughout this
section to illustrate different steps in writing a Network Layer unicast routing protocol. After understanding
the discussed snippets, look at the complete code for AODV to understand how a Network Layer unicast
routing protocol is implemented in QualNet.

The following list summarizes the actions that need to be performed for adding a Network Layer routing
protocol to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.4.5.2).

2. Modify the file network_ip.cpp to include the protocol’s header file (see Section 4.4.5.2).

3. Include the protocol in the list of Network Layer protocols and trace protocols (see Section 4.4.5.3).

4. Define data structures for the protocol (see Section 4.4.5.4).

5. Decide on the format for the protocol-specific configuration parameters (see Section 4.4.5.5.1).

6. Call the protocol’s initialization function from the routing initialization function, IpRoutingInit (see

Section 4.4.5.5.2).

7. Write the initialization function for the protocol. The initialization function should include the following

tasks:

a. Read and store the configuration parameters (see Section 4.4.5.5.3.1).

b. Initialize the state variables and routing table (see Section 4.4.5.5.3.2).

c. Register the protocol’s callback functions with IP (see Section 4.4.5.5.3.3).

d. Initialize timers (see Section 4.4.5.5.3.4).

8. Call the protocol event dispatcher from the IP event dispatcher, NetworkIpLayer (see Section 4.4.5.6.1).

9. Declare any new event types used by the protocol in the header file QUALNET_HOME/include/api.h

(see Section 4.4.5.6.2).

10.Write the protocol event dispatcher (see Section 4.4.5.6.2).

11.Modify the IP function NetworkRoutingGetAdminDistance (see Section 4.4.5.7).

12.Implement the protocol’s routing packet handler.

a. Define an IP Protocol Number for the protocol (see Section 4.4.5.8.1).

b. Write a function to handle routing packets (see Section 4.4.5.8.2).

c. Call the routing packet handler function from the IP function DeliverPacket (see Section 4.4.5.8.1).

13.Write the router function and any other call back functions used by the protocol (see Section 4.4.5.9).

14.Include code in various functions to collect statistics.

a. Declare statistics variables (see Section 4.4.5.10.1).

b. Initialize the statistics variables in the protocol’s initialization function (see Section 4.4.5.10.2).

c. Update the statistics as appropriate (see Section 4.4.5.10.3).

d. Write a function to print the statistics (see Section 4.4.5.10.4).
163 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
e. Add dynamic statistics to the protocol, if desired (see Section 4.4.5.10.5) .

15.Call the protocol finalization function from the IP finalization function, NetworkIpFinalize (see

Section 4.4.5.11.1).

16.Write the protocol finalization function (see Section 4.4.5.11.2). Call the function to print statistics from

the protocol finalization function.

17.Include the protocol header and source files in the QualNet tree and compile (see Section 4.4.5.12).

18.To make the protocol available in the QualNet GUI, modify the GUI settings files (see Section 4.4.5.13).

4.4.5.1 Naming Guidelines

In QualNet, each component (file, data structure, function, etc.) is given a name that indicates the name of
the protocol, the layer in which the protocol resides, and the functionality of the component, as appropriate.
We recommend that when adding a new protocol, the programmer name the different components of the
new protocol in a similar manner. It will be helpful to examine the implementation of AODV in QualNet for
hints for naming and coding different components of the new protocol.

In this section, we describe the steps for developing a Network Layer unicast routing protocol called
“MYPROTOCOL”. We will use the string “Myprotocol” in the names of the different components of this
protocol, just as the string “Aodv” appears in the names of the components of the AODV implementation.

4.4.5.2 Creating Files
The first step towards adding a Network Layer routing protocol is creating files. Most models comprise two
files: the header file and the source file. These files can be placed in any library, e.g., in the folder
QUALNET_HOME/libraries/developer/src. However, it is recommended that all user-developed models be
made part of a library. In our example, we will place the routing protocol in a library called user_models.
See Section 4.10 for instructions for creating and activating a library.

If it doesn’t already exist, create a directory in QUALNET_HOME/library called user_models and a
subdirectory in QUALNET_HOME/library/user_models called src. Create the files for the routing protocol
and place them in the folder QUALNET_HOME/library/user_models/src. Name these files in a way that
clearly indicates the model that they implement. For unicast routing protocols, prefix the file names with
routing_. For multicast routing protocols, prefix the file names with multicast_.

Examples:

• routing_aodv.cpp, routing_aodv.h: Implement AODV (Ad Hoc On-demand Distance Vector routing
protocol)

• routing_dsr.cpp, routing_dsr.h: Implement DSR (Dynamic Source Routing protocol)

• multicast_mospf.cpp, multicast_mospf.h: Implement the MOSPF (Multicast Open Shortest Path First)
protocol.

In keeping with the naming guidelines of Section 4.4.5.1, the header file for the example protocol is called
routing_myprotocol.h, and the source file is called routing_myprotocol.cpp.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems, even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file, routing_protocol.h, should contain the following:

• Prototypes for interface functions in source file, routing_myprotocol.cpp

• Constant definitions

• Data structure definitions and data types: struct and enum declarations
QualNet 5.2 Programmer’s Guide 164

Network Layer Chapter 4
The source file, routing_myprotocol.cpp, should contain the following:

• Statement to include the protocol’s header file:

#include “routing_myprotocol.h”

• Statements to include standard library functions and other header files needed by the protocol source
file. A typical protocol source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include "api.h" // QUALNET_HOME/include/api.h
#include "network_ip.h"
 // QUALNET_HOME/libraries/developer/src/network_ip.h.

• Protocol initialization function, MyprotocolInit

• Protocol event dispatcher function, MyprotocolHandleProtocolEvent

• Protocol packet handler function, MyprotocolHandleProtocolPacket

• Protocol finalization function, MyprotocolFinalize

• Additional protocol implementation functions

The file network_ip.cpp contains the IP initialization, routing initialization, event dispatcher, and finalization
functions. These IP functions in turn call the routing protocol functions MyprotocolInit,
MyprotocolHandleProtocolEvent and MyprotocolFinalize. Therefore, to make these protocol functions
available to the IP functions, insert the following include statement in the file network_ip.cpp:

#include “routing_myprotocol.h”

4.4.5.3 Including MYPROTOCOL in List of Routing Protocols
Each node in QualNet maintains a list of routing protocols running at the node. When a new Network Layer
unicast routing protocol is added to QualNet, it needs to be included in the list of Network Layer protocols.
To do this, add the protocol name to the enumeration NetworkRoutingProtocolType defined in
QUALNET_HOME/include/network.h (see Section 4.4.3).

For our example protocol, add the entry ROUTING_PROTOCOL_MYPROTOCOL to
NetworkRoutingProtocolType as shown in Figure 4-67.

typedef enum
{
 NETWORK_PROTOCOL_IP = 0,
 NETWORK_PROTOCOL_IPV6,
 NETWORK_PROTOCOL_MOBILE_IP,
 ...
 ROUTING_PROTOCOL_AODV6,
 ROUTING_PROTOCOL_DYMO,
 ROUTING_PROTOCOL_DYMO6,
 ...
 ROUTING_PROTOCOL_MYPROTOCOL;
 ROUTING_PROTOCOL_NONE // this must be the last one
} NetworkRoutingProtocolType;

FIGURE 4-67. Adding MYPROTOCOL to List of Network Layer Protocols

Always add to the end of lists in header files.
165 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
QualNet provides for detailed traces of packets as they traverse the protocol stack at nodes in the network.
A packet trace lists, among other information, the protocol that is handling the packet at the time of the
trace. To facilitate tracing, QualNet lists all protocols in an enumeration, TraceProtocolType, in the file
QUALNET_HOME/include/trace.h. For our example protocol, add an entry TRACE_MYPROTOCOL in
TraceProtocolType, as shown in Figure 4-68.

typedef enum
{
 TRACE_UNDEFINED = 0,
 TRACE_TCP, // 1
 TRACE_UDP, // 2
 TRACE_IP, // 3
 ...
 TRACE_MYPROTCOL,
 // Must be last one!!!
 TRACE_ANY_PROTOCOL
}TraceProtocolType;

FIGURE 4-68. Adding MYPROTOCOL to List of Trace Protocols

Always add to the end of lists in header files (just before the entry TRACE_ANY_PROTOCOL).

A routing administrative distance is assigned to each routing protocol, which determines its priority relative
to other routing protocols. A protocol with a lower administrative distance has a higher priority. The
administrative distances of all routing protocols are defined in the enumeration
NetworkRoutingAdminDistanceType defined in network.h (see Section 4.4.3).

For our example protocol, add the entry ROUTING_ADMIN_DISTANCE_MYPROTOCOL to
NetworkRoutingAdminDistanceType as shown in Figure 4-69. Add this entry in the proper place in
the list to reflect the desired priority of MYPROTOCOL relative to the other routing protocols.

typedef enum
{
 ROUTING_ADMIN_DISTANCE_STATIC = 1,
 ROUTING_ADMIN_DISTANCE_EBGPv4 = 20,
 ...
 ROUTING_ADMIN_DISTANCE_OLSR,
 ROUTING_ADMIN_DISTANCE_EIGRP,
 ROUTING_ADMIN_DISTANCE_MYPROTOCOL,
 //StartRIP
 ROUTING_ADMIN_DISTANCE_RIP,
 //EndRIP
 ...
 // Should always have the highest administrative distance
 // (i.e., least important).
 ROUTING_ADMIN_DISTANCE_DEFAULT = 255
} NetworkRoutingAdminDistanceType;

FIGURE 4-69. Declaring Administrative Distance for MYPROTOCOL
QualNet 5.2 Programmer’s Guide 166

Network Layer Chapter 4
4.4.5.4 Defining Data Structures
Each routing protocol has its own data structures, which are defined in the protocol’s header file. The data
structures store information such as:

1. Protocol parameters (see Section 4.4.5.5.3.1)

2. Protocol state (see Section 4.4.5.5.3.2)

3. Statistics variables (see Section 4.4.5.10.1)

4. Routing table (see Section 4.4.5.5.3.2)

Define an appropriate data structure for MYPROTOCOL called MyprotocolData in the protocol header
file, routing_protocol.h. As an example, the following data structure (defined in routing_aodv.h) is used by
the AODV protocol:

typedef struct struct_network_aodv_str
{
 // set of user configurable parameters
 Int32 netDiameter;
 clocktype nodeTraversalTime;
 clocktype myRouteTimeout;
 ...
 // set of aodv protocol dependent parameters
 AodvRoutingTable routeTable;
 ...
 AodvStats stats;
 BOOL statsCollected;
 BOOL statsPrinted;
 BOOL processHello;
 BOOL processAck;
 ...
 BOOL isExpireTimerSet;
 BOOL isDeleteTimerSet;
 ...
} AodvData;

In the above declaration, AodvRoutingTable is the data structure for the AODV routing table and
AodvStats is the data structure for AODV statistics (see Section 4.4.5.10.1).
167 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.5.5 Initialization
In this section, we describe the tasks that need to be performed as part of the initialization process of a
Network Layer routing protocol.

4.4.5.5.1 Determining the Protocol Configuration Format

A routing protocol may use protocol-specific configuration parameters. The configuration parameters are
specified in the QualNet configuration file. The format for specifying a routing protocol’s configuration
parameters is:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.

<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.

As an example, the following are some of the configuration parameters for the AODV protocol. Refer to file
QUALNET_HOME/scenarios/default/default.config for an explanation of these parameters.

AODV-ACTIVE-ROUTE-TIMEOUT 400MS
AODV-RREQ-RETRIES 3
AODV-LOCAL-REPAIR YES

A configuration variable is not always mandatory. If an optional configuration variable is not assigned a
value in the configuration file, the default value is used. For example, if a user does not specify a value for
AODV-ACTIVE-ROUTE-TIMEOUT, the default value of 300 milliseconds is used by the protocol.

Decide on the format for specifying the new routing protocol’s configuration parameters.
Section 4.4.5.5.3.1 explains how to read user input specified in this format to initialize the routing protocol.
QualNet 5.2 Programmer’s Guide 168

Network Layer Chapter 4
4.4.5.5.2 Calling the Protocol Initialization Function

The protocol stack of each node is initialized in a bottom up manner. The initialization of the Network Layer
thus occurs after the layers below it have been initialized. This process is performed in the node
initialization function PARTITION_InitializeNodes, implemented in QUALNET_HOME/main/partition.cpp
(see Section 3.4.1).

The node initialization function, PARTITION_InitializeNodes, calls the Network Layer initialization function
NETWORK_Initialize, which is implemented in the file QUALNET_HOME/main/network.cpp. Function
NETWORK_Initialize, in turn, calls the IP initialization function NetworkIpInit and the routing initialization
function IpRoutingInit, which are implemented in the file network_ip.cpp. Function NetworkIpInit in turn
calls function NetworkIpParseAndSetRoutingProtocolType, which reads the name of the routing protocol
for each interface from the configuration file and updates the routing protocol type for that interface.
Function IpRoutingInit calls the initialization function of the routing protocol configured on the interface.
The code snippets from NetworkIpParseAndSetRoutingProtocolType and IpRoutingInit corresponding to
AODV is shown are Figure 4-70 and Figure 4-71, respectively. The functions used in the example are
explained below.

• Function IO_ReadString reads the name of the routing protocol from the configuration file. The
prototype for IO_ReadString is defined in QUALNET_HOME/include/fileio.h.

• Function NetworkIpGetInterfaceAddress, defined in network_ip.cpp, returns the IP address associated
with an interface.

• Function NetworkIpAddUnicastRoutingProtocolType, defined in network_ip.cpp, initializes the routing
protocol information for an interface. In the example of Figure 4-70,
NetworkIpAddUnicastRoutingProtocolType updates the IpInterfaceInfoType structure associated
with the interface (see Section 4.4.3) by setting the routingProtocolType field to
ROUTING_PROTOCOL_AODV and the routingProtocol field to NULL.

• Function NetworkIpGetRoutingProtocol, defined in network_ip.cpp, returns a pointer to the data
structure associated with the specified routing protocol. If the same routing protocol is running at
multiple interfaces of a node, a single instance of the data structure for the routing protocol is shared by
all interfaces. If the routing protocol is running at one of the interfaces and that interface has been
assigned a routing protocol structure, NetworkIpGetRoutingProtocol returns a pointer to that structure;
otherwise, it returns NULL. In the example of Figure 4-71, NetworkIpGetRoutingProtocol returns a
pointer to the structure AodvData or NULL.

• Function AodvInit, defined in routing_aodv.cpp, is the initialization function for AODV. AodvInit is called
if function NetworkIpGetRoutingProtocol returns NULL, i.e., an instance of AodvData is not associated
with any interface. In addition to performing other initializing tasks (see Section 4.4.5.5.3), AodvInit
creates an instance of the AODV data structure, AodvData, and associates it with the specified
interface by updating the routingProtocol field of the IpInterfaceInfoType structure
associated with the interface to point to the newly created instance of AodvData.

• Function NetworkIpUpdateUnicastRoutingProtocolAndRouterFunction, defined in network_ip.cpp, is
called if function NetworkIpGetRoutingProtocol returns a non-NULL pointer, i.e., if AODV is running at
another interface and an instance of AodvData has been associated with that interface.
NetworkIpUpdateUnicastRoutingProtocolAndRouterFunction associates the same instance of
AodvData with the specified interface. This ensures that even if a routing protocol is running at multiple
interfaces of a node, all interfaces running the same routing protocol share one instance of the protocol
data structure.
169 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
void
NetworkIpParseAndSetRoutingProtocolType (Node *node,
 const NodeInput *nodeInput)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 BOOL retVal;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 ...
 IO_ReadString(
 node->nodeId,
 NetworkIpGetInterfaceAddress(node, i),
 nodeInput,
 "ROUTING-PROTOCOL",
 &retVal,
 protocolString);

 if (retVal)
 {
 ...
 else if (strcmp(protocolString, "AODV") == 0)
 {
 routingProtocolType = ROUTING_PROTOCOL_AODV;
 }
 ...
 }

 NetworkIpAddUnicastRoutingProtocolType(
 node,
 routingProtocolType,
 i,
 NETWORK_IPV4);
 }
 ...
}

FIGURE 4-70. Initializing Routing Protocol Information for an Interface
QualNet 5.2 Programmer’s Guide 170

Network Layer Chapter 4
void
IpRoutingInit(Node *node,
 const NodeInput *nodeInput)
{
 ...

for (i = 0; i < node->numberInterfaces; i++)
 {

if (NetworkIpGetInterfaceType(node, i) == NETWORK_IPV4
 || NetworkIpGetInterfaceType(node, i) == NETWORK_DUAL)

{
 switch (ip->interfaceInfo[i]->routingProtocolType)

 {
...
case ROUTING_PROTOCOL_AODV:
{
 if (!NetworkIpGetRoutingProtocol(node,
 ROUTING_PROTOCOL_AODV))
 {
 AodvInit(
 node,
 (AodvData**)&ip->interfaceInfo[i]->routingProtocol,
 nodeInput,
 i,
 ROUTING_PROTOCOL_AODV);
 }
 else
 {

 NetworkIpUpdateUnicastRoutingProtocolAndRouterFunction(
 node,
 ROUTING_PROTOCOL_AODV,
 i);
 }
 break;
}
...

}
}

 }
 ...
}

FIGURE 4-71. Calling AODV Initialization Function from Routing Initialization Function
171 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
Figure 4-72 shows the modifications to be made to IpRoutingInit to incorporate MYPROTOCOL in
QualNet. MyprotocolInit is the initialization function (see Section 4.4.5.5.3) and MyprotocolData is the
protocol data structure (see Section 4.4.5.4) for MYPROTOCOL.

void
IpRoutingInit(Node *node, const NodeInput *nodeInput)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 if (NetworkIpGetInterfaceType(node, i) == NETWORK_IPV4
 || NetworkIpGetInterfaceType(node, i) == NETWORK_DUAL)
 {
 switch (ip->interfaceInfo[i]->routingProtocolType)
 {
 ...
 case ROUTING_PROTOCOL_AODV:
 {
 ...
 }
 ...
 case ROUTING_PROTOCOL_MYPROTOCOL:
 {
 if (!NetworkIpGetRoutingProtocol(node,
 ROUTING_PROTOCOL_MYPROTOCOL))
 {
 MyprotocolInit(
 node,
 (MyprotocolData **)
 &ip->interfaceInfo[i]->routingProtocol,
 nodeInput,
 i,
 ROUTING_PROTOCOL_MYPROTOCOL);
 }
 else
 {
 NetworkIpUpdateUnicastRoutingProtocolAndRouterFunction(
 node,
 ROUTING_PROTOCOL_MYPROTOCOL,
 i);
 }
 break;
 }
 ...
 }
 ...
}

FIGURE 4-72. Calling MYPROTOCOL Initialization Function from IP Initialization Function
QualNet 5.2 Programmer’s Guide 172

Network Layer Chapter 4
4.4.5.5.3 Implementing the Protocol Initialization Function

The initialization of a Network Layer routing protocol takes place in the initialization function of the protocol
that is called by the routing initialization function IpRoutingInit (see Figure 4-71). The initialization function
of a routing protocol commonly performs the following tasks:

• Create an instance of the protocol data structure

• Read and store the user-specified configuration parameters

• Initialize the state variables and routing table

• Register the protocol’s router function and other callback functions with IP

• Schedule a timer to itself for starting the protocol

Like all other functions belonging to the protocol, the prototype for the initialization function, MyprotocolInit,
should be included in the protocol's header file, routing_protocol.h.

4.4.5.5.3.1 Creating an Instance and Reading Configuration Parameters

The initialization function initializes the protocol state. Each protocol has a structure that it uses to store
state information. This may include information such as flags, connection information, routing table used
by the protocol, etc.

To store the state, declare the structure to hold the protocol state in the header file, routing_protocol.h (see
Section 4.4.5.4). As an example, see the declaration of the AODV data structure AodvData in
routing_aodv.h.

Create an instance of the protocol state by allocating memory to the state structure. AODV performs this
task in its initialization function AodvInit by calling the function MEM_malloc to allocate memory for the
AODV data structure AodvData, as shown in Figure 4-73. AodvInit and the other AODV functions are
implemented in routing_aodv.cpp. Data structure and constant definitions for AODV are contained in
routing_aodv.h.

The next step is to read the user-defined configuration parameters from the input file and store them in the
protocol data structure. AodvInit does this by calling function AodvInitializeConfigurableParameters.
AodvInitializeConfigurableParameters, shown in Figure 4-74, uses IO functions such as IO_ReadTime and
IO_ReadString to read parameter values from the input file and store them in the appropriate fields of the
protocol data structure AodvData. If a value is not specified for a parameter in the input file,
AodvInitializeConfigurableParameters stores the default value for that parameter. IO_ReadTime,
IO_ReadString and other IO functions are defined in QUALNET_HOME/include/fileio.h.
173 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
void AodvInit(Node* node,AodvData** aodvPtr,const NodeInput* nodeInput,
 int interfaceIndex, NetworkRoutingProtocolType aodvProtocolType)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar
 AodvData* aodv = (AodvData *) MEM_malloc(sizeof(AodvData));
 ...
 (*aodvPtr) = aodv;
 ...
 // Read whether statistics needs to be collected for the protocol
 ...
 // Initialize statistical variables
 ...
 // Read user configurable parameters from the configuration file or
 // initialize them with the default values.
 AodvInitializeConfigurableParameters(
 node,
 nodeInput,
 aodv,
 aodv->iface[interfaceIndex].address);
 // Initialize AODV routing table
 ...
 if(aodv->iface[interfaceIndex].ip_version == NETWORK_IPV4)
 {
 // Set the mac status handler function
 NetworkIpSetMacLayerStatusEventHandlerFunction(
 node, &Aodv4MacLayerStatusHandler, interfaceIndex);
 // Set the router function
 NetworkIpSetRouterFunction(
 node,
 &Aodv4RouterFunction,
 interfaceIndex);
 destAddr.networkType = NETWORK_IPV4;
 destAddr.interfaceAddr.ipv4 = ANY_DEST;
 protocolType = ROUTING_PROTOCOL_AODV;
 // Set default Interface Info
 aodv->defaultInterface = interfaceIndex;
 SetIPv4AddressInfo(
 &aodv->defaultInterfaceAddr,
 NetworkIpGetInterfaceAddress(node, interfaceIndex));
 }
 else if(aodv->iface[interfaceIndex].ip_version == NETWORK_IPV6)
 {
 ...
 }

 if (aodv->processHello)
 {
 ...
 AodvSetTimer(node, MSG_NETWORK_SendHello, destAddr,
 AODV_HELLO_INTERVAL);
 }
}

FIGURE 4-73. AODV Initialization Function
QualNet 5.2 Programmer’s Guide 174

Network Layer Chapter 4
static
void AodvInitializeConfigurableParameters(
 Node* node,
 const NodeInput* nodeInput,
 AodvData* aodv,
 Address interfaceAddress)
{
 BOOL wasFound;
 char buf[MAX_STRING_LENGTH];
 UInt32 nodeId = node->nodeId;
 ...
 IO_ReadTime(
 nodeId,
 &interfaceAddress,
 nodeInput,
 "AODV-ACTIVE-ROUTE-TIMEOUT",
 &wasFound,
 &aodv->activeRouteTimeout);

 if (!wasFound)
 {
 aodv->activeRouteTimeout = AODV_DEFAULT_ACTIVE_ROUTE_TIMEOUT;
 }
 else
 {
 ERROR_Assert(
 aodv->activeRouteTimeout > 0,
 "Invalid AODV_DEFAULT_ACTIVE_ROUTE_TIMEOUT configuration");
 }
 ...
 IO_ReadInt(
 nodeId,
 &interfaceAddress,
 nodeInput,
 "AODV-RREQ-RETRIES",
 &wasFound,
 &aodv->rreqRetries);

 if (!wasFound)
 {
 aodv->rreqRetries = AODV_DEFAULT_RREQ_RETRIES;
 }
 else
 {
 ERROR_Assert(
 aodv->helloInterval > 0,
 "Invalid AODV_DEFAULT_HELLO_INTERVAL configuration");
 }
 ...
}

FIGURE 4-74. Reading AODV Configuration Parameters
175 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.5.5.3.2 Initializing State Variables and Routing Table

The initialization function of a routing protocol also initializes the state variables and routing table used by
the protocol. Figure 4-75 shows code segments to initialize the state variables and routing table for AODV.

A routing protocol may need to maintain a list of neighbors. In this case, the list of neighbors should be
initialized in the initialization function of the protocol.

void
AodvInit(
 Node* node,
 AodvData** aodvPtr,
 const NodeInput* nodeInput,
 int interfaceIndex,
 NetworkRoutingProtocolType aodvProtocolType)
{
 ...

 // Initialize AODV routing table
 for (i = 0; i < AODV_ROUTE_HASH_TABLE_SIZE; i++)
 {
 (&aodv->routeTable)->routeHashTable[i] = NULL;
 }

 (&aodv->routeTable)->routeExpireHead = NULL;
 ...
 // Initialize aodv structure to store RREQ information
 (&aodv->seenTable)->front = NULL;
 ...
 // Initialize Aodv sequence number
 aodv->seqNumber = 0;

 // Initialize Aodv Broadcast id
 aodv->floodingId = 0;

 // Initialize Last Broadcast sent
 aodv->lastBroadcastSent = (clocktype) 0;
 ...
}

FIGURE 4-75. Initializing AODV State Variables and Routing Table

4.4.5.5.3.3 Registering Callback Functions with IP

A Network Layer routing protocol interacts with IP to route packets and to handle protocol events. To do
this efficiently, the routing protocol registers the functions that perform these tasks with IP as part of
initialization, by passing pointers to these functions to IP. These functions are called callback functions.
When IP encounters an event that needs to be handled by the routing protocol, IP can directly call the
appropriate callback function that processes that event. A routing protocol should register with IP its router
function and other callback functions that handle events that are of interest to the protocol.
QualNet 5.2 Programmer’s Guide 176

Network Layer Chapter 4
IP callback functions implemented in QualNet and the API functions used to register them are listed below.
See network_ip.cpp for a description of parameters of these functions.

1. Callback Function: Router function used by the protocol

API to Register Function: NetworkIpSetRouterFunction

Function Type: RouterFunctionType

2. Callback Function: Function to handle MAC Layer status changes

API to Register Function: NetworkIpSetMacLayerStatusEventHandlerFunction

Function Type: MACLayerStatusEventHandlerFunctionType

3. Callback Function: Function to promiscuously peek at packets not addressed to the node

API to Register Function: NetworkIpSetPromiscuousMessagePeekFunction

Function Type: PromiscuousMessagePeekFunctionType

4. Callback Function: Function to handle MAC Layer acknowledgements

API to Register Function: NetworkIpSetMacLayerAckHandler

Function Type: MacLayerAckHandlerType

5. Callback Function: Function to handle route update events

API to Register Function: NetworkIpSetRouteUpdateEventFunction

Function Type: NetworkRouteUpdateEventType

As an example, the AODV initialization function AodvInit (see Figure 4-73) calls function
NetworkIpSetRouterFunction to register with IP the router function used by AODV when operating with
Ipv4, Aodv4RouterFunction. This enables IP to directly call Aodv4RouterFunction to determine the route
for a packet if AODV is running at that interface. Similarly, AodvInit calls function
NetworkIpSetMacLayerStatusEventhandlerFunction to register with IP the MAC Layer status handler
function used by AODV when operating with IPv4, Aodv4MacLayerStatusHandler. This enables IP to
directly call Aodv4MacLayerStatusHandler to handle a MAC Layer status change, if AODV is running at
that interface.

4.4.5.5.3.4 Initializing Timers

A routing protocol may need to set a timer at initialization. For example, if Hello messages are enabled in
AODV, function AodvInit calls function AodvSetTimer to set the initial timer (see Figure 4-73). See
Section 3.3.2.2 for details on setting timers.

4.4.5.6 Implementing the Event Dispatcher

In this section, we describe the steps for implementing the event dispatcher function for a Network Layer
routing protocol.

As explained in Section 3.4.2, when an event occurs, it is first handled by the node level dispatcher
function NODE_ProcessEvent, defined in QUALNET_HOME/main/node.cpp. If the event is for the
Network Layer, NODE_ProcessEvent calls the Network Layer event dispatcher
NETWORK_ProcessEvent, defined in QUALNET_HOME/main/network.cpp. If IP is running at the Network
Layer, NETWORK_ProcessEvent calls the IP event dispatcher NetworkIpLayer, defined in network_ip.cpp.

Section 4.4.5.6.1 describes how to modify the IP event dispatcher function to call the routing protocol’s
event dispatcher. Section 4.4.5.6.2 describes how to implement the routing protocol’s event dispatcher.
177 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.5.6.1 Modifying the IP Event Dispatcher

Function NetworkIpLayer implements the IP event dispatcher that informs the appropriate Network Layer
protocol of received events. Messages contain the name of the protocol they are destined for. (This is the
routing protocol name specified in the enumerated data type NetworkRoutingProtocolType,
described in Section 4.4.5.3.) NetworkIpLayer implements a switch statement on the protocol name read
from the message and calls the appropriate protocol-specific event dispatcher.

To enable the protocol MYPROTOCOL to receive events, add code to NetworkIpLayer to call the protocol's
event dispatcher function when messages for the protocol are received. Figure 4-76 shows a code
fragment from NetworkIpLayer with sample code for calling MYOPROTOCOL’s event dispatcher function
MyprotocolHandleProtocolEvent.

void
NetworkIpLayer(Node *node, Message *msg)
{
 switch (msg->protocolType)
 {
 case GROUP_MANAGEMENT_PROTOCOL_IGMP:
 {
 IgmpLayer(node, msg);
 break;
 }
 ...
 case ROUTING_PROTOCOL_AODV:
 {
 AodvHandleProtocolEvent(node, msg);
 break;
 }
 ...
 case ROUTING_PROTOCOL_MYPROTOCOL:
 {
 MyprotocolHandleProtocolEvent(node, msg);
 break;
 }
 ...
 }//switch//
}

FIGURE 4-76. IP Event Dispatcher
QualNet 5.2 Programmer’s Guide 178

Network Layer Chapter 4
4.4.5.6.2 Implementing the Protocol Event Dispatcher

A routing protocol's event dispatcher should include a switch on all message types that the protocol may
receive. It can then process each message type either inside the switch or by calling a function to handle
the message type received.

All event types used by QualNet protocols are enumerated in the file QUALNET_HOME/include/api.h. If
the protocol being added needs additional event types, these should be included in the enumeration in file
api.h, as shown in Figure 4-77.

// /**
// ENUM :: MESSAGE/EVENT
// DESCRIPTION :: Event/message types exchanged in the simulation
// **/
enum
{
 /* Special message types used for internal design. */
 MSG_SPECIAL_Timer = 0,
 ...
 /* Message Types for Channel layer */
 MSG_PROP_SignalArrival = 100,
 MSG_PROP_SignalEnd = 101,
 ...
 /*
 * Any other message types which have to be added should be added before
 * MSG_DEFAULT. Otherwise the program will not work correctly.
 */
 MSG_NETWORK_MYPROTOCOL_NewEvent1,
 MSG_NETWORK_MYPROTOCOL_NewEvent2,
 MSG_DEFAULT = 10000
};

FIGURE 4-77. Declaring New Event Types

Always add to the end of lists in header files (just before the entry MSG_DEFAULT).
179 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
The event dispatcher function for a routing protocol generally handles timer events. (Packet events are
handled by a separate packet handler, as discussed in Section 4.4.5.8.2.) As an example, Figure 4-78
shows the AODV event dispatcher function AodvHandleProtocolEvent. See files routing_aodv.h and
routing_aodv.cpp for definitions of data structures and functions used for implementing AODV.

Note that once a message has been processed, it is freed by calling the API MESSAGE_Free, unless it is
used to reset the timer for a future time. The event dispatcher also includes a default case in the switch
statement to handle events of an unknown type.

It is important to free the memory after the message has been processed; otherwise, the
simulator will leak memory.

As part of handling an event, a routing protocol at a node may transmit packets to its peers using MAC
Layer services. QualNet provides the API functions listed below that enable a Network Layer protocol to
send packets to the MAC Layer. These functions are implemented in the file network_ip.h. See API
Reference Guide or the file network_ip.h for an explanation of these functions and their parameters.

1. NetworkIpSendPacketOnInterfaceWithDelay

2. NetworkIpSendRawMessage

3. NetworkIpSendRawMessageWithDelay

4. NetworkIpSendRawMessageToMacLayer

5. NetworkIpSendRawMessageToMacLayerWithDelay

6. NetworkIpSendPacketToMacLayer

7. NetworkIpSendPacketToMacLayerWithDelay

8. NetworkIpSendPacketOnInterface

9. NetworkIpSendPacketOnInterfaceWithDelay

10.NetworkIpSendPacketToMacLayerWithNewStrictSourceRoute
QualNet 5.2 Programmer’s Guide 180

Network Layer Chapter 4
void
AodvHandleProtocolEvent(
 Node* node,
 Message* msg)
{
 AodvData* aodv = NULL;

 if (MESSAGE_GetProtocol(msg) == ROUTING_PROTOCOL_AODV6)
 {
 aodv = (AodvData *) NetworkIpGetRoutingProtocol(
 node,
 ROUTING_PROTOCOL_AODV6,
 NETWORK_IPV6);
 }
 else
 {
 aodv = (AodvData *) NetworkIpGetRoutingProtocol(
 node,
 ROUTING_PROTOCOL_AODV,
 NETWORK_IPV4);
 }
 switch (MESSAGE_GetEvent(msg))
 {
 // Remove an entry from the RREQ Seen Table
 case MSG_NETWORK_FlushTables:
 {
 ...
 AodvDeleteSeenTable(&aodv->seenTable);
 MESSAGE_Free(node, msg);
 break;
 }
 // Check connectivity based on hello msg
 case MSG_NETWORK_CheckNeighborTimeout:
 {
 ...
 }
 // Remove the route that has not been used for awhile
 case MSG_NETWORK_CheckRouteTimeout:
 {
 ...
 }
 case MSG_NETWORK_DeleteRoute:
 {
 ...
 }
 ...
 default:
 {
 ...
 }
 }
}

FIGURE 4-78. AODV Event Dispatcher
181 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.5.7 Modifying IP Functions
The IP function NetworkRoutingGetAdminDistance, implemented in network_ip.cpp, returns the
administrative distance of a routing protocol (see Section 4.4.3). This function should be modified to
enable IP to determine the routing distance (i.e., the relative priority) of MYPROTOCOL, if MYPROTOCOL
uses the IP forwarding table. Figure 4-79 shows the modifications that need to be made to
NetworkRoutingGetAdminDistance to add MYPROTOCOL.

NetworkRoutingAdminDistanceType
NetworkRoutingGetAdminDistance(
 Node *node,
 NetworkRoutingProtocolType type)
{
 switch (type)
 {
 case ROUTING_PROTOCOL_STATIC:
 {
 return ROUTING_ADMIN_DISTANCE_STATIC;
 }
 ...
 case ROUTING_PROTOCOL_BELLMANFORD:
 {
 return ROUTING_ADMIN_DISTANCE_BELLMANFORD;
 }
 case ROUTING_PROTOCOL_MYPROTOCOL:
 {
 return ROUTING_ADMIN_DISTANCE_MYPROTOCOL;
 }
 ...
 }
}

FIGURE 4-79. Modifications to Function NetworkRoutingGetAdminDistance

4.4.5.8 Processing Routing Packets
A routing protocol running at the Network Layer of a node exchanges routing packets with other nodes to
maintain routing information. Routing packets are control packets that carry information for the routing
protocol. These routing packets are different from data packets, which carry user data. Data packets are
received at the Network Layer from the Transport Layer or from other nodes. Data packets received from
other nodes that are addressed to the node are delivered to the Transport Layer. Data packets received
from the Transport Layer and data packets received from other nodes that are not addressed to the node
are sent out on the interface determined by the packets’ destination address and the routing information
maintained by the routing protocol.

In this section, we describe the steps for implementing the function that processes routing packets of a
Network Layer routing protocol. Section 4.4.5.8.1 describes how to modify the IP packet handling function
to call the protocol’s routing packet handler. Section 4.4.5.8.2 describes how to implement the protocol’s
routing packet handler.

4.4.5.8.1 Modifying IP Packet Handler

The IP function DeliverPacket, defined in network_ip.cpp, implements the packet handler for IP.
DeliverPacket sends packets received from the MAC layer to the appropriate Network Layer or Transport
Layer protocol based upon the IP protocol number contained in the IP header of the received packet. To
add a new routing protocol, MYPROTOCOL, at the Network Layer, assign an IP protocol number to
MYPROTOCOL and modify function DeliverPacket to deliver packets to MYPROTOCOL.
QualNet 5.2 Programmer’s Guide 182

Network Layer Chapter 4
1. Define an IP Protocol Number for MYPROTOCOL. File network_ip.h contains constant definitions for all
Transport Layer and Network Layer protocols (see Figure 4-80). For example, the IP Protocol Number
for AODV is 123. Add a constant definition to associate an IP Protocol Number with MYPROTOCOL.

Be sure to use an IP Protocol Number that is not already used for some other protocol.

//--
// IP protocol numbers
//--

// IP protocol numbers for network-layer and transport-layer protocols

...
// /**
// CONSTANT :: IPPROTO_AODV : 123
// DESCRIPTION :: IP protocol numbers for AODV.
// **/
#define IPPROTO_AODV 123

// /**
// CONSTANT :: IPPROTO_DSR : 135
// DESCRIPTION :: IP protocol numbers for DSR.
// **/
...
// /**
// CONSTANT :: IPPROTO_MYPROTOCOL : 255
// DESCRIPTION :: IP protocol number for MYPROTOCOL.
// **/
#define IPPROTO_MYPROTOCOL 255
...

FIGURE 4-80. Declaring IP Protocol Number for MYPROTOCOL

2. Function DeliverPacket, shown in Figure 4-81, performs a switch on the IP Protocol Number,

ipProtocolNumber, contained in the IP header of the received packet, and calls the appropriate

routine to deliver the packet to the protocol identified by ipProtocolNumber. If ipProtocolNumber

corresponds to a unicast routing protocol running at the Network Layer, DeliverPacket checks if that

routing protocol is running at the specified interface by calling function

NetworkIpGetUnicastRoutingProtocolType. If ipProtocolNumber corresponds to the routing protocol

running at that interface, DeliverPacket calls the packet handler function for that protocol. For example,

DeliverPacket calls function AodvHandleProtocolPacket to deliver a packet to AODV if the IP Protocol

Number read from the packet’s header is 123 and AODV is running at that interface.

Add code to DeliverPacket to call MYPROTOCOL’s packet handler function,
MyprotocolHandleProtocolPacket, with appropriate parameters, if the IP Protocol Number read from the
packet’s header is IPPROTO_MYPROTOCOL (defined in step 1) as shown in Figure 4-81.
183 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
static void //inline//
DeliverPacket(Node *node, Message *msg,
 int interfaceIndex, NodeAddress previousHopAddress)
{
 ...
 switch (ipProtocolNumber)
 {
 ...
 // Delivery to network-layer routing protocols.
 ...
 case IPPROTO_AODV:
 {
 if (NetworkIpGetUnicastRoutingProtocolType(node, interfaceIndex) ==
 ROUTING_PROTOCOL_AODV)
 {
 Address srcAddress;
 Address destAddress;
 SetIPv4AddressInfo(&srcAddress, sourceAddress);
 SetIPv4AddressInfo(&destAddress, destinationAddress);
 AodvHandleProtocolPacket(node, msg, srcAddress, destAddress,
 ttl, interfaceIndex);
 }
 else
 {
 //Trace drop
 ...
 MESSAGE_Free(node, msg);
 }
 break;
 }
 case IPPROTO_MYPROTOCOL:
 {
 if (NetworkIpGetUnicastRoutingProtocolType(node, interfaceIndex) ==
 ROUTING_PROTOCOL_MYPROTOCOL)
 {
 // Write Code similar to AODV.
 // Call MyprotocolHandleProtocolPacket here
 }
 else
 {
 MESSAGE_Free(node, msg);
 }
 break;
 }
 ...
 }//switch//
}//DeliverPacket//

FIGURE 4-81. Delivering Packets from IP to Network Layer Routing Protocols

4.4.5.8.2 Implementing the Protocol Packet Handler

A routing protocol's packet handler should include a switch on all types of packets that the protocol may
receive. It can then process each packet type either inside the switch or by calling a function to handle the
packet type received. For example, function AodvHandleProtocolPacket, shown in Figure 4-82 and
implemented in routing_aodv.cpp, processes AODV routing packets.
QualNet 5.2 Programmer’s Guide 184

Network Layer Chapter 4
As part of processing a received packet, a routing protocol at a node may transmit packets to its peers.
See Section 4.4.5.6.2 for details of sending packets.

Write function MyprotocolHandleProtocolPacket to handle routing packets for MYPROTOCOL. Follow the
example of AodvHandleProtocolPacket or the packet handler for some other Network Layer unicast
routing protocol in QualNet.

void
AodvHandleProtocolPacket(
 Node* node,
 Message* msg,
 NodeAddress srcAddr,
 NodeAddress destAddr,
 int ttl,
 int interfaceIndex)
{
 UInt32* packetType = (UInt32*)MESSAGE_ReturnPacket(msg);
 BOOL IPV6 = FALSE;

 if(srcAddr.networkType == NETWORK_IPV6)
 {
 IPV6 = TRUE;
 }

 if (AODV_DEBUG_AODV_TRACE)
 {
 AodvPrintTrace(node, msg, 'R', IPv6);
 }

 switch (*packetType >> 24)
 {
 case AODV_RREQ:
 {
 ...
 AodvHandleRequest(
 node,
 msg,
 srcAddr,
 ttl,
 interfaceIndex);

 MESSAGE_Free(node, msg);
 break;
 }
 ...
 default:
 {
 ERROR_Assert(FALSE, "Unknown packet type for Aodv");
 break;
 }
 }
}

FIGURE 4-82. AODV Routing Packet Handling Function
185 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.5.9 Implementing Callback Functions
As explained in Section 4.4.5.5.3.3, a Network Layer routing protocol in QualNet implements certain
callback functions, including a router function to determine routes. When IP receives a data packet from
the Transport Layer, it calls function RoutePacketAndSendToMac to determine the next hop and outgoing
interface for the packet. Similarly, when IP receives a data packet from the MAC Layer that needs to be
forwarded to another node, IP calls RoutePacketAndSendToMac to determine the next hop and outgoing
interface for the packet. Function RoutePacketAndSendToMac calls the router function of the routing
protocol running at the interface on which the packet arrives (see Figure 4-83).

void
RoutePacketAndSendToMac(Node *node,
 Message *msg,
 int incomingInterface,
 int outgoingInterface,
 NodeAddress previousHopAddress)
{
 ...
 if (!packetWasRouted)
 {
 RouterFunctionType routerFunction = NULL;
 routerFunction = NetworkIpGetRouterFunction(node,
 interfaceIndex);
 if (routerFunction)
 {
 (routerFunction)(node,
 msg,
 ipHeader->ip_dst,
 previousHopAddress,
 &PacketWasRouted);
 }
 if (!packetWasRouted)
 {
 if (IpHeaderHasSourceRoute(ipHeader))
 {
 SourceRouteThePacket(node, msg);
 }
 else
 {
 RouteThePacketUsingLookupTable(node,
 msg,
 incomingInterface);
 }//if//
 }//if//
 }//if//
 }//if//
}//RoutePacketAndSendToMac//

FIGURE 4-83. Calling the Router Function
QualNet 5.2 Programmer’s Guide 186

Network Layer Chapter 4
The details of the router function depend upon the routing algorithm used by the protocol. As an example,
function AodvRouterFunction, defined in routing_aodv.cpp, is the router function for AODV. The prototype
for the function AodvRouterFunction is shown below:

void AodvRouterFunction(
 Node *node,
 Message *msg,
 Address destAddr,
 Address previousHopAddress,
 BOOL *packetWasRouted) {}

Another example of a callback function is the MAC Layer status handler function. Some Network Layer
routing protocols interact with the MAC Layer and update their routing information when the status of the
MAC Layer changes. AODV is an example of such a protocol. AODV implements a MAC Layer status
handler function, AodvMacLayerStatusHandler, to handle MAC Layer status changes.
AodvMacLayerStatusHandler is defined in routing_aodv.cpp.

Write the router function for MYPROTOCOL. Write any other callback functions that MYPROTOCOL may
need. Use AODV or some other appropriate routing protocol as an example. Register all callback functions
with IP in the protocol’s initialization function (see Section 4.4.5.5.3.3).

4.4.5.10 Collecting and Reporting Statistics

In this section, we describe how to collect and report statistics for a Network Layer routing protocol.

4.4.5.10.1 Declaring Statistics Variables

A Network Layer routing protocol can be configured to record statistics specified by the programmer, such
as:

• Number of request packets sent

• Number of reply packets received

• Number of data packets forwarded

To enable statistics collection for the protocol, include the statistic collection variables in the structure used
to hold the protocol state (see Section 4.4.5.4). The statistics related variables can also be defined in a
structure and then that structure is included in the state variable. For example, the data structure for AODV,
AodvData, contains the AODV statistics variable, AodvStats, shown below:

typedef struct {
 D_UInt32 numRequestInitiated;
 UInt32 numRequestResent;
 UInt32 numRequestRelayed;
 ...
 UInt32 numReplyRecved;
 ...
 UInt32 numDataInitiated;
 UInt32 numDataForwarded;
 ...
} AodvStats;

AodvData and AodvStats are defined in routing_aodv.h.
187 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.5.10.2 Initializing Statistics

Initialize statistics variables in the protocol’s initialization function. Determine whether statistics collection is
enabled for the protocol and set the statistics collection flag accordingly. For example, field
statsCollected of AodvData is a Boolean flag that indicates whether statistics collection is enabled for
AODV. This flag is set to TRUE or FALSE by the initialization function AodvInit depending upon the input
configuration, as shown in Figure 4-84. Function AodvInit allocates memory for the AODV data structure
AodvData, which contains the AODV statistics structure AodvStats, and initializes all fields of
AodvStats to 0.

void
AodvInit(
 Node* node,
 AodvData** aodvPtr,
 const NodeInput* nodeInput,
 int interfaceIndex,
 NetworkRoutingProtocolType aodvProtocolType)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 AodvData* aodv = (AodvData *) MEM_malloc(sizeof(AodvData));
 BOOL retVal;
 char buf[MAX_STRING_LENGTH];
 int i = 0;
 ...
 (*aodvPtr) = aodv;

 memset(aodv, 0, sizeof(AodvData));
 ...

 // Read whether statistics needs to be collected for the protocol
 IO_ReadString(
 node->nodeId,
 ANY_ADDRESS,
 nodeInput,
 "ROUTING-STATISTICS",
 &retVal,
 buf);

 if ((retVal == FALSE) || (strcmp(buf, "NO") == 0))
 {
 aodv->statsCollected = FALSE;
 }
 else if (strcmp(buf, "YES") == 0)
 {
 aodv->statsCollected = TRUE;
 }
 else
 {
 ERROR_ReportError("Needs YES/NO against STATISTICS");
 }
 ...
}

FIGURE 4-84. Initializing Statistics Variables for a Routing Protocol
QualNet 5.2 Programmer’s Guide 188

Network Layer Chapter 4
4.4.5.10.3 Updating Statistics

After declaring and initializing the statistics variables, update their values during the protocol life cycle, as
required. For example, AODV increments the value of numReplyRecved in function AodvHandleReply
(see routing_aodv.cpp) every time AODV receives an AODV reply packet, as shown in Figure 4-85.

static
void AodvHandleReply(
 Node* node,
 Message* msg,
 Address srcAddr,
 int interfaceIndex,
 Address destAddr)
{
 AodvData* aodv = NULL;
 AodvRrepPacket* rrepPkt = NULL;
 ...
 Aodv6RrepPacket* rrep6Pkt = NULL;
 if(srcAddr.networkType == NETWORK_IPV6)
 {
 aodv = (AodvData *) NetworkIpGetRoutingProtocol(
 node,
 ROUTING_PROTOCOL_AODV6,
 NETWORK_IPV6);
 ...
 }
 else
 {
 aodv = (AodvData *) NetworkIpGetRoutingProtocol(
 node,
 ROUTING_PROTOCOL_AODV,
 NETWORK_IPV4);
 ...
 }
 ...
 aodv->stats.numReplyRecved++;
 ...
}

FIGURE 4-85. Updating AODV Statistics

4.4.5.10.4 Printing Statistics

As a final step towards statistics collection, create a function to print statistics. Call this function from the
finalization function of the protocol, which is discussed in Section 4.4.5.11. Alternatively, statistics can be
printed directly in the finalization function, as shown in Figure 4-87.

4.4.5.10.5 Adding Dynamic Statistics

Dynamic statistics are statistic variables whose values can be observed in the QualNet GUI during the
simulation. See Section 5.2.3 for adding dynamic statistics to a protocol. Refer to QualNet User’s Guide for
details of viewing dynamic statistics during the simulation.
189 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.5.11 Finalization
The finalization function of the protocol is called by the simulator at the end of simulation. It is the last code
that executes during the simulation. This function is responsible for printing statistics to the statistics file.

At the end of simulation, the finalization function for each protocol is called to print the protocol statistics.
As discussed in Section 3.4.3, the finalization function is called hierarchically. The node finalization
function, PARTITION_Finalize, which is defined in QUALNET_HOME/main/partition.cpp, calls the
finalization function for Network Layer, NETWORK_Finalize, defined in QUALNET_HOME/main/
network.cpp. If IP is running at the Network Layer, NETWORK_Finalize calls the IP finalization function,
NetworkIpFinalize, defined in network_ip.cpp. NetworkIpFinalize calls the finalization function of the
routing protocol running at each interface.

4.4.5.11.1 Modifying the IP Finalization Function

Call the finalization function of a Network Layer routing protocol from the IP finalization function,
NetworkIpFinalize, defined in network_ip.cpp. Figure 4-86 shows the outline of code that needs to be
added to NetworkIpFinalize. Function MyprotocolFinalize is the finalization function of the protocol
MYPROTOCOL.

void
NetworkIpFinalize(Node *node)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 Scheduler *schedulerPtr = NULL;
 int i = 0;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 ...
 switch (NetworkIpGetUnicastRoutingProtocolType(node, i))
 {
 case MULTICAST_PROTOCOL_STATIC:
 {
 RoutingMulticastStaticFinalize(node);
 break;
 }

 ...
 case ROUTING_PROTOCOL_AODV:
 {
 AodvFinalize(node, i, NETWORK_IPV4);
 break;
 }
 ...
 case ROUTING_PROTOCOL_MYPROTOCOL:
 {
 MyprotocolFinalize(node, ...);
 break;
 }
 ...
 }
 ...
}

FIGURE 4-86. Finalization Function for IP
QualNet 5.2 Programmer’s Guide 190

Network Layer Chapter 4
4.4.5.11.2 Implementing the Protocol Finalization Function

Write the finalization function for protocol, MyprotocolFinalize. If statistics collection is enabled for
MYPROTOCOL, call a function to print the protocol statistics (see Section 4.4.5.10.4), or add code directly
to MyprotocolFinalize to print statistics. AODV follows the latter approach. Function AodvFinalize, shown in
Figure 4-87 and implemented in routing_aodv.cpp, is the finalization function for AODV. Use AodvFinalize
as a template to write MyprotocolFinalize.

Function AodvFinalize calls the C function sprintf to create a single string containing the statistic name and
statistic value, and then calls function IO_PrintStat to print that string to a file. Function IO_PrintStat
function, defined in QUALNET_HOME/include/fileio.h, requires the following parameters:

• Node pointer: Pointer to the node reporting the statistics.

• Layer: String indicating the layer. Set this to "Network" for the Network Layer.

• Protocol: String indicating the protocol name.

• Interface address: Interface address. Set this to ANY_DEST for Network Layer routing protocols.

• Instance identifier: Instance identifier or port number. Set this to -1 if there is no instance identifier.

• Buffer: String containing the statistics.

void
AodvFinalize(Node* node, int i, NetworkType networkType)
{
 ...
 if (aodv->statsCollected && !aodv->statsPrinted)
 {
 aodv->statsPrinted = TRUE;

 sprintf(buf, "Number of RREQ Packets Initiated = %u",
 (unsigned short) aodv->stats.numRequestInitiated);
 IO_PrintStat(
 node,
 "Network",
 aodvVerBuf,
 ANY_DEST,
 -1,
 buf);
 ...
 sprintf(buf, "Number of RREP Packets Received = %u",
 aodv->stats.numReplyRecved);

 IO_PrintStat(
 node,
 "Network",
 aodvVerBuf,
 ANY_DEST,
 -1,
 buf);
 ...
 }
}

FIGURE 4-87. Finalization Function for AODV
191 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.5.12 Including and Compiling Files
The final step in integrating your routing protocol into QualNet is to add the source file to the QualNet
source tree and compile.

If you have created the files for the routing protocol in an existing library or addon, then add the source file
to the Makefile-common for that library or addon. For example, if you have created your model files in the
Developer library, then modify QUALNET_HOME/libraries/developer/Makefile-common as shown in
Figure 4-88. Recompile QualNet after making the changes.

...
common sources
#
DEVELOPER_SRCS = \
$(DEVELOPER_SRCDIR)/adaptation_aal5.cpp \
$(DEVELOPER_SRCDIR)/adaptation.cpp \
...
$(DEVELOPER_SRCDIR)/resource_manager_cbq.cpp \
$(DEVELOPER_SRCDIR)/route_atm.cpp \
$(DEVELOPER_SRCDIR)/routing_bellmanford.cpp \
$(DEVELOPER_SRCDIR)/routing_myprotocol.cpp \
$(DEVELOPER_SRCDIR)/routing_rip.cpp \
$(DEVELOPER_SRCDIR)/routing_ripng.cpp \
$(DEVELOPER_SRCDIR)/routing_static.cpp \
...

FIGURE 4-88. Adding Model to Makefile-common

If you have created a new library called user_models, then follow the instructions given in Section 4.10.5 to
integrate the user_models library into QualNet.

4.4.5.13 Integrating the Protocol into the GUI

To make the new protocol available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.

4.4.6 Adding a Network Layer Multicast Routing Protocol

This section provides an overview of the flow of a Network Layer multicast routing protocol and provides an
outline for developing and adding a new Network Layer multicast routing protocol to QualNet. It describes
how to develop code components common to most routing protocols such as initializing, sending and
receiving packets, determining routes, and collecting statistics.

A multicast routing protocol performs many of the tasks performed by a unicast routing protocol. In
addition, a multicast routing protocol also has to perform group management functions. In general, a
multicast routing protocol employs Internet Group Management Protocol (IGMP) utilities for group
management. When developing a new multicast routing protocol, the user should also refer to
Section 4.4.5, since many of the tasks are the same as for developing a unicast routing protocol.

We illustrate the process of adding a Network Layer multicast routing protocol by using as an example the
implementation code for the PIM (Protocol Independent Routing) routing protocol. PIM operates in two
modes, Dense Mode (PIM-DM) and Sparse Mode (PIM-SM). The header file for the PIM implementation
(for both PIM-DM and PIM-SM) is QUALNET_HOME/libraries/multimedia_enterprise/src/multicast_pim.h.
The PIM implementation uses three source files, multicast_pim.cpp (for both PIM-DM and PIM-SM),
multicast_pim_dm.cpp (for PIM-DM only), and multicast_pim_sm.cpp (for PIM-SM only) in
QUALNET_HOME/libraries/multimedia_enterprise/src. In this section, we use the PIM-DM implementation
QualNet 5.2 Programmer’s Guide 192

Network Layer Chapter 4
as an example and use code segments from the PIM-DM implementation files throughout this section to
illustrate different steps in writing a Network Layer multicast routing protocol. After understanding the
discussed code segments, look at the complete code for PIM-DM to understand how a Network Layer
multicast routing protocol is implemented in QualNet.

The following list summarizes the actions that need to be performed for adding a Network Layer multicast
routing protocol, MYPROTOCOL, to QualNet. For those steps that are similar to the steps for writing a
Network Layer unicast routing protocol, we refer the reader to the appropriate subsection of Section 4.4.5.
The steps that are different for multicast routing protocols are described in detail in subsequent sections.

1. Create header and source files. Modify the file network_ip.cpp to include the protocol’s header file (see

Section 4.4.6.1).

2. Include the protocol in the list of Network Layer protocols and trace protocols (see Section 4.4.6.2).

3. Define data structures for the protocol (see Section 4.4.6.3).

4. Decide on the format for the protocol-specific configuration parameters (see Section 4.4.5.5.1).

5. Call the protocol’s initialization function from the routing initialization function, IpRoutingInit (see

Section 4.4.6.4.2).

6. Write the initialization function for the protocol. The initialization function should include the following

tasks:

a. Read and store the configuration parameters (see Section 4.4.6.4.3.1).

b. Initialize the state variables and data structures (see Section 4.4.6.4.3.2).

c. Register the protocol’s callback functions with IP and IGMP (see Section 4.4.6.4.3.3).

d. Initialize timers (see Section 4.4.6.4.3.4).

7. Call the protocol event dispatcher from the IP event dispatcher, NetworkIpLayer (see Section 4.4.6.5.1).

8. Declare any new event types used by the protocol in the header file QUALNET_HOME/include/api.h

(see Section 4.4.6.5.2).

9. Write the protocol event dispatcher (see Section 4.4.6.5.2).

10.Implement the protocol’s routing packet handler.

a. Define an IP Protocol Number for the protocol (see Section 4.4.6.6.1).

b. Write a function to handle routing packets (see Section 4.4.6.6.2).

c. Call the routing packet handler function from the IP function DeliverPacket (see Section 4.4.6.6.1).

11.Write the call back functions used by the protocol (see Section 4.4.6.7).

12.Include code in various functions to collect statistics.

a. Declare statistics variables (see Section 4.4.5.10.1).

b. Initialize the statistics variables in the protocol’s initialization function (see Section 4.4.5.10.2).

c. Update the statistics as appropriate (see Section 4.4.5.10.3).

d. Write a function to print the statistics (see Section 4.4.5.10.4).

e. Add dynamic statistics to the protocol, if desired (see Section 4.4.5.10.5) .

13.Call the protocol finalization function from the IP finalization function, NetworkIpFinalize (see

Section 4.4.5.11.1).

14.Write the protocol finalization function (see Section 4.4.5.11.2). Call the function to print statistics from

the protocol finalization function.

15.Include the protocol header and source files in the QualNet tree and compile (see Section 4.4.5.12).

16.To make the protocol available in the QualNet GUI, modify the GUI settings files (see Section 4.4.6.10).
193 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.6.1 Creating Files
This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.2), except that in
keeping with the naming guidelines of Section 4.4.5.1, the files for the example multicast routing protocol
are called multicast_myprotocol.h and multicast_myprotocol.cpp.

4.4.6.2 Including MYPROTOCOL in List of Routing Protocols
This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.3), except that there
is no routing administrative distance associated with a multicast protocol.

For our example protocol, add the entry MULTICAST_PROTOCOL_MYPROTOCOL to
NetworkRoutingProtocolType, defined in QUALNET_HOME/include/network.h, as shown in
Figure 4-89.

typedef enum
{
 NETWORK_PROTOCOL_IP = 0,
 NETWORK_PROTOCOL_IPV6,
 NETWORK_PROTOCOL_MOBILE_IP,
 ...
 ROUTING_PROTOCOL_AODV6,
 ROUTING_PROTOCOL_DYMO,
 ROUTING_PROTOCOL_DYMO6,
 MULTICAST_PROTOCOL_MYPROTOCOL
} NetworkRoutingProtocolType;

FIGURE 4-89. Adding MYPROTOCOL to List of Network Layer Protocols

Always add to the end of lists in header files.

Similarly, add an entry TRACE_MYPROTOCOL just before the entry TRACE_ANY_PROTOCOL in the
enumeration TraceProtocolType, defined in the file QUALNET_HOME/include/trace.h, as shown in
Figure 4-68.

4.4.6.3 Defining Data Structures
Each routing protocol has its own data structures, which are defined in the protocol’s header file. The data
structures store information such as:

1. Protocol parameters (see Section 4.4.5.5.3.1)

2. Protocol state (see Section 4.4.6.4.3.2)

3. Statistics variables (see Section 4.4.5.10.1)

4. Forwarding table (see Section 4.4.6.4.3.2)

Define an appropriate data structure for MYPROTOCOL called MyprotocolData in the protocol header
file, multicast_myprotocol.h. As an example, the following data structure (defined in multicast_pim.h) is
used by the PIM protocol:
QualNet 5.2 Programmer’s Guide 194

Network Layer Chapter 4
typedef struct struct_routing_pim_str
{
 RoutingPimInterface* interface;
 RoutingPimStats stats;
 BOOL showStat;
 BOOL statPrinted;
 RoutingPimModeType modeType;
 void* pimModePtr;
 RandomSeed seed;
} PimData;

PimData stores information for both modes of PIM. In addition, if PIM is operating in dense mode, the
following data structure is also used:

typedef struct struct_routing_pim_dm_str
{
 RoutingPimDmStats stats;
 RoutingPimDmForwardingTable fwdTable;
} PimDmData;

In the above declaration, RoutingPimDmForwardingTable is the data structure for the PIM-DM
forwarding table and RoutingPimDmStats is the data structure for PIM-DM statistics.

4.4.6.4 Initialization

In this section, we describe the tasks that need to be performed as part of the initialization process of a
Network Layer multicast routing protocol.

4.4.6.4.1 Determining the Protocol Configuration Format

This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.5.1).

4.4.6.4.2 Calling the Protocol Initialization Function

The protocol stack of each node is initialized in a bottom-up manner. The initialization of the Network Layer
occurs after the layers below it have been initialized. This process is performed in the node initialization
function PARTITION_InitializeNodes, implemented in QUALNET_HOME/main/partition.cpp (see
Section 3.4.1).

The node initialization function, PARTITION_InitializeNodes, calls the Network Layer initialization function
NETWORK_Initialize, which is implemented in the file QUALNET_HOME/main/network.cpp. Function
NETWORK_Initialize, in turn, calls the IP initialization function NetworkIpInit and the routing initialization
function IpRoutingInit, which are implemented in the file QUALNET_HOME/libraries/developer/src/
network_ip.cpp. Function NetworkIpInit in turn calls function NetworkIpParseAndSetRoutingProtocolType,
which reads the name of the multicast protocol for each interface from the configuration file and updates
the multicast protocol information for that interface. Function IpRoutingInit calls the initialization function of
the routing protocol configured on the interface. The code segments from
NetworkIpParseAndSetRoutingProtocolType and IpRoutingInit corresponding to PIM are shown in
Figure 4-91 and Figure 4-91, respectively. The functions used in the example are explained below.

• Function IO_ReadString reads the name of the routing protocol from the configuration file. The
prototype for IO_ReadString is defined in QUALNET_HOME/include/fileio.h.

• Function NetworkIpGetInterfaceAddress, defined in network_ip.cpp, returns the IP address associated
with an interface.
195 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
• Function NetworkIpAddMulticastRoutingProtocolType, defined in network_ip.cpp, initializes the
multicast routing protocol information for an interface. In the example of Figure 4-90,
NetworkIpAddMulticastRoutingProtocolType updates the IpInterfaceInfoType structure
associated with the interface (see Section 4.4.3) by setting the multicastProtocolType field to
MULTICAST_PROTOCOL_PIM and the multicastRoutingProtocol field to NULL.

• Function NetworkIpGetMulticastRoutingProtocol, defined in network_ip.cpp, returns a pointer to the
data structure associated with the specified multicast routing protocol. If the same multicast routing
protocol is running at multiple interfaces of a node, a single instance of the data structure for the
multicast routing protocol is shared by all interfaces. If the multicast routing protocol is running at one of
the interfaces and that interface has been assigned a multicast routing protocol structure,
NetworkIpGetMulticastRoutingProtocol returns a pointer to that structure; otherwise, it returns NULL. In
the example of Figure 4-91, NetworkIpGetMulticastRoutingProtocol returns a pointer to the structure
PimData or NULL.

• RoutingPimInit is called if function NetworkIpGetMulticastRoutingProtocol returns NULL, i.e., an
instance of PimData is not associated with any interface. Function RoutingPimInit, defined in
multicast_pim.cpp, contains code to initialize PIM. In addition to performing other initializing tasks (see
Section 4.4.5.5.3), RoutingPimInit creates an instance of the PIM data structure, PimData, and
associates it with the specified interface by updating the multicastRoutingProtocol field of the
IpInterfaceInfoType structure associated with the interface to point to the newly created instance
of PimData.

• Function NetworkIpUpdateMulticastRoutingProtocolAndRouterFunction, defined in network_ip.cpp, is
called if function NetworkIpGetMulticastRoutingProtocol returns a non-NULL pointer, i.e., if PIM is
running at another interface and an instance of PimData has been associated with that interface.
NetworkIpUpdateMulticastRoutingProtocolAndRouterFunction associates the same instance of
PimData with the specified interface. This ensures that even if a multicast routing protocol is running at
multiple interfaces of a node, all interfaces running the same multicast routing protocol share one
instance of the protocol data structure.

• Function IgmpSetMulticastProtocolInfo, defined in QUALNET_HOME/libraries/developer/src/
multicast_igmp.cpp, is an IGMP function that registers the multicast protocol’s function to manage
groups. IgmpSetMulticastProtocolInfo is called if IGMP is enabled. A pointer to the PIM function,
RoutingPimLocalMembersJoinOrLeave, is passed as a parameter to IgmpSetMulticastProtocolInfo.
RoutingPimLocalMembersJoinOrLeave, defined in multicast_pim.cpp, calls function
RoutingPimDmLocalMembersJoinOrLeave if PIM is operating in dense mode.
RoutingPimDmLocalMembersJoinOrLeave, defined in multicast_pim_dm.cpp, takes appropriate
actions when a node joins or leaves a group.
QualNet 5.2 Programmer’s Guide 196

Network Layer Chapter 4
void
NetworkIpParseAndSetRoutingProtocolType (Node *node,
 const NodeInput *nodeInput)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 BOOL retVal;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 ...
 IO_ReadString(
 node->nodeId,
 NetworkIpGetInterfaceAddress(node, i),
 nodeInput,
 "MULTICAST-PROTOCOL",
 &retVal,
 protocolString);

 if (retVal)
 {
 ...
 else if (strcmp(protocolString, "PIM") == 0)
 {
 multicastProtocolType = MULTICAST_PROTOCOL_PIM;
 }
 ...
 }

 NetworkIpAddMulticastRoutingProtocolType(
 node,
 multicastProtocolType,
 i);
 }
 }
 ...
}

FIGURE 4-90. Initializing Multicast Routing Protocol Information for an Interface
197 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
void
IpRoutingInit(Node *node, const NodeInput *nodeInput)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 BOOL retVal;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 ...

 switch (ip->interfaceInfo[i]->multicastProtocolType)
 {

case MULTICAST_PROTOCOL_PIM:
{

if (!NetworkIpGetMulticastRoutingProtocol(node,
 MULTICAST_PROTOCOL_PIM))

{
 RoutingPimInit(node, nodeInput, i);
}
 else
 {
 NetworkIpUpdateMulticastRoutingProtocolAndRouterFunction(

 node,
 MULTICAST_PROTOCOL_PIM,
 i);

 /* Inform IGMP about multicast routing protocol */
 if (ip->isIgmpEnable == TRUE)
 {
 IgmpSetMulticastProtocolInfo(
 node,
 i,
 &RoutingPimLocalMembersJoinOrLeave);
 }
 }

break;
 } //end case
 ...
 } // end switch
 ...
 } // end for
 ...
}

FIGURE 4-91. Calling PIM Initialization Function from IP Initialization Function
QualNet 5.2 Programmer’s Guide 198

Network Layer Chapter 4
Figure 4-92 shows the modifications to be made to IpRoutingInit to incorporate MYPROTOCOL in
QualNet. RoutingMyprotocolInit is the initialization function for MYPROTOCOL (see Section 4.4.6.4.3) and
RoutingMyprotocolLocalMembersJoinOrLeave is the MYPROTOCOL function to handle members joining
or leaving groups.

void
IpRoutingInit(Node *node, const NodeInput *nodeInput)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 BOOL retVal;
 ...
 for (i = 0; i < node->numberInterfaces; i++)
 {
 ...
 switch (ip->interfaceInfo[i]->multicastProtocolType)
 {
 case MULTICAST_PROTOCOL_PIM:
 {
 ...
 } //end case
 ...
 case MULTICAST_PROTOCOL_MYPROTOCOL:
 {
 if (!NetworkIpGetMulticastRoutingProtocol(
 node,
 MULTICAST_PROTOCOL_MYPROTOCOL))
 {
 RoutingMyprotocolInit(node, nodeInput, i);
 }
 else
 {
 NetworkIpUpdateMulticastRoutingProtocolAndRouterFunction(
 node,
 MULTICAST_PROTOCOL_MYPROTOCOL,
 i);

 /* Inform IGMP about multicast routing protocol */
 if (ip->isIgmpEnable == TRUE)
 {
 IgmpSetMulticastProtocolInfo(
 node,
 i,
 &RoutingMyprotocolLocalMembersJoinOrLeave);
 }
 }
 break;
 } //end case
 ...
 }
 }
 ...
}

FIGURE 4-92. Calling MYPROTOCOL Initialization Function from IP Initialization Function
199 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.6.4.3 Implementing the Protocol Initialization Function

The initialization of a Network Layer routing protocol takes place in the initialization function of the protocol
that is called by the routing initialization function IpRoutingInit (see Figure 4-91). The initialization function
of a multicast routing protocol commonly performs the following tasks:

• Create an instance of the protocol data structure

• Read and store the user-specified configuration parameters

• Initialize the state variables, groups, and forwarding table

• Register the protocol’s router function and other callback functions with IP and IGMP

• Schedule a timer to itself for starting the protocol

Like all other functions belonging to the protocol, the prototype for the initialization function,
RoutingMyprotocolInit, should be included in the protocol's header file, multicast_myprotocol.h.

4.4.6.4.3.1 Creating an Instance and Reading Configuration Parameters

The initialization function initializes the protocol state. Each protocol has a structure that it uses to store
state information. This may include information such as flags, connection information, forwarding table
used by the protocol, etc.

To store the state, declare the structure to hold the protocol state in the header file, multicast_myprotocol.h
(see Section 4.4.5.4). As an example, see the declaration of the PIM-DM data structures PimData and
PimDataDm in multicast_pim.h.

Create an instance of the protocol state by allocating memory to the state structure. PIM-DM performs this
task in its initialization function RoutingPimInit by calling the function MEM_malloc to allocate memory for
the PIM-DM data structures PimData and PimDmData, as shown in Figure 4-93. RoutingPimInit and the
other PIM-DM functions are implemented in multicast_pim.cpp and multicast_pim_dm.cpp. Data structure
and constant definitions for PIM-DM are contained in multicast_pim.h. RoutingPimInit calls the IP function
NetworkIpSetMulticastRoutingProtocol, defined in network_ip.cpp, which assigns the newly created
PimData as the multicast data structure for the specified interface (see Section 4.4.3).

If MYPROTOCOL has any user-specified configuration parameters, these should be read in the protocol’s
initialization function. PIM-DM does not have any user-specified configuration parameters. To understand
how configuration parameters are read from an input file, refer to the AODV example in
Section 4.4.5.5.3.1.
QualNet 5.2 Programmer’s Guide 200

Network Layer Chapter 4
void RoutingPimInit(Node *node,
 const NodeInput *nodeInput,
 int interfaceIndex)
{
 /* Allocate PIM layer structure */
 PimData *pim = (PimData *)
 MEM_malloc (sizeof(PimData));
 PimDmData* pimDmData;
 ...
 /* Determine PIM routing mode */
 IO_ReadString(node->nodeId, interfaceAddress, nodeInput,
 "PIM-ROUTING-MODE", &retVal, buf);
 ...
 if (strcmp(buf, "DENSE") == 0)
 {
 pim->modeType = ROUTING_PIM_MODE_DENSE;
 pimDmData = (PimDmData*)
 MEM_malloc (sizeof(PimDmData));

 pim->pimModePtr = (void*) pimDmData;
 }
 ...
 if (ip->ipForwardingEnabled == TRUE)
 {
 NetworkIpAddToMulticastGroupList(node, ALL_PIM_ROUTER);
 }
 /* Set Multicast Routing Protocol */
 NetworkIpSetMulticastRoutingProtocol(node, pim, interfaceIndex);
 /* Inform IGMP about multicast routing protocol */
 if (ip->isIgmpEnable == TRUE)
 {
 IgmpSetMulticastProtocolInfo(node, interfaceIndex,
 &RoutingPimLocalMembersJoinOrLeave);
 }
 if (pim->modeType == ROUTING_PIM_MODE_DENSE)
 {
 /* Set Router function */
 NetworkIpSetMulticastRouterFunction(node,
 &RoutingPimDmRouterFunction, interfaceIndex);
 /* Set funtion pointer to get informed when route changed */
 NetworkIpSetRouteUpdateEventFunction(node,
 &RoutingPimDmAdaptUnicastRouteChange);
 /* Initialize forwarding table */
 RoutingPimDmInitForwardingTable(node);
 ...
 }
 ...
 /* Initializes interface structure */
 RoutingPimInitInterface(node);
 ...
 }

FIGURE 4-93. PIM Initialization Function
201 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.6.4.3.2 Initializing State Variables, Groups, and Forwarding Table

The state variables of the routing protocol should be initialized in the protocol’s initialization function.

The initialization function of a multicast routing protocol also initializes the list of multicast groups used by
the protocol. For PIM, this is done in RoutingPimInit by calling the IP function
NetworkIpAddToMulticastGroupList, defined in network_ip.cpp.

The initialization function of a multicast routing protocol also initializes the forwarding table used by the
protocol. For PIM-DM, this is done by calling the PIM-DM function RoutingPimDmInitForwardingTable,
which is shown in Figure 4-94.

void RoutingPimDmInitForwardingTable(Node* node)
{
 PimData* pim = (PimData*)
 NetworkIpGetMulticastRoutingProtocol(node, MULTICAST_PROTOCOL_PIM);
 PimDmData* pimDmData = (PimDmData*)pim->pimModePtr;

 RoutingPimDmForwardingTable* fwdTable = &pimDmData->fwdTable;
 int size =
 sizeof(RoutingPimDmForwardingTableRow)* PIM_INITIAL_TABLE_SIZE;

 BUFFER_InitializeDataBuffer(&fwdTable->buffer, size);
 fwdTable->numEntries = 0;
}

FIGURE 4-94. Initializing PIM-DM Forwarding Table

A routing protocol may need to maintain certain information about its interfaces. In this case, the interface
information should be initialized in the initialization function of the protocol. For PIM-DM, this is done in
RoutingPimInit by calling the PIM function RoutingPimInitInterface.

4.4.6.4.3.3 Registering Callback Functions with IP and IGMP

Just as a unicast routing protocol, a multicast routing protocol also implements callback functions that it
registers with IP during the protocol’s initialization. These callback functions are described in
Section 4.4.5.5.3.3. In addition, a multicast routing protocol may implement the following callback function
that it registers with IP during initialization:

Callback Function: Multicast router function used by the protocol

API to Register Function: NetworkIpSetMulticastRouterFunction

Function Type: MulticastRouterFunctionType

In addition, a multicast protocol also interacts with the IGMP protocol and implements the following
callback function that it registers with IGMP during the protocol’s initialization. See QUALNET_HOME/
libraries/developer/src/multicast_igmp.cpp for a description of the function parameters.

Callback Function: Function used by the protocol to handle members leaving or joining groups

API to Register Function: IgmpSetMulticastProtocolInfo

Function Type: MulticastProtocolType

As an example, the PIM-DM initialization function RoutingPimInit (see Figure 4-93) calls function
NetworkIpSetMulticastRouterFunction to register with IP the PIM-DM router function,
RoutingPimDmRouterFunction. RoutingPimInit calls function NetworkIpSetSetRouteUpdateEventFunction
to register with IP the PIM-DM function, RoutingPimDmAdaptUnicastRouteChange, which handles
QualNet 5.2 Programmer’s Guide 202

Network Layer Chapter 4
changes in the unicast routes. If IGMP is enabled, RoutingPimInit calls function
IgmpSetMulticastProtocolInfo to register with IGMP the PIM function,
RoutingPimLocalMembersJoinOrleave, which handles members joining or leaving multicast groups.
RoutingPimLocalMembersJoinOrLeave calls function RoutingPimDmLocalMembersJoinOrLeave if PIM is
operating in dense mode. RoutingPimDmLocalMembersJoinOrLeave, defined in multicast_pim_dm.cpp,
takes appropriate actions when a node joins or leaves a group.

Note that function IgmpSetMulticastProtocolInfo is called by function NetworkIpInit (see Section 4.4.6.4.2)
as well as function RoutingPimInit. This is because function RoutingPimLocalMembersJoinOrleave has to
be registered for each interface on which PIM is running. The other callback functions are registered only
once for a node.

4.4.6.4.3.4 Initializing Timers

A routing protocol may need to set a timer at initialization. For example, the PIM initialization function
RoutingPimInit sets a timer of type MSG_ROUTING_PimScheduleHello to trigger after a random delay.
See Section 3.3.2.2 for details on setting timers.

4.4.6.5 Implementing the Event Dispatcher

In this section, we describe the steps for implementing the event dispatcher function for a Network Layer
multicast routing protocol. Some steps are the same as for adding a unicast routing protocol, described in
Section 4.4.5.6.

4.4.6.5.1 Modifying the IP Event Dispatcher

This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.6.1). To enable the
protocol MYPROTOCOL to receive events, add a case in the switch statement in the IP event dispatcher
function, NetworkIpLayer, to call MYPROTOCOL’s event dispatcher function,
MyprotocolHandleProtocolEvent, when the protocol type of the received message is
MULTICAST_PROTOCOL_MYPROTOCOL.

4.4.6.5.2 Implementing the Protocol Event Dispatcher

This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.6.2).

Declare any additional event types used by the protocol in the enumeration file api.h, as shown in Figure 4-
77.

Write the event dispatcher for MYPROTOCOL, MyprotocolHandleProtocolEvent, which should include a
switch on all message types that the protocol may receive. The event dispatcher function for a routing
protocol generally handles timer events. As an example, Figure 4-95 shows the PIM event dispatcher
function RoutingPimHandleProtocolEvent.

A multicast routing protocol typically performs the following functions which are triggered by time outs:

• Send hello packets and other routing packets periodically. For example, function
RoutingPimHandleProtocolEvent calls function RoutingPimSendHelloPacket to send hello packets
when the timer event MSG_ROUTING_PimScheduleHello occurs.

• Perform pruning functions to handle members leaving a multicast group. For example,
RoutingPimHandleProtocolEvent performs pruning operations when timer event
MSG_ROUTING_PimPruneTimeoutAlarm occurs.

• Perform grafting functions to handle members joining a multicast group. For example,
RoutingPimHandleProtocolEvent performs grafting operations when timer event
MSG_ROUTING_PimGraftRtmxtTimeOut occurs.
203 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
As part of handling an event, a routing protocol at a node may transmit packets to its peers. See
Section 4.4.5.6.2 for details of sending packets.

void RoutingPimHandleProtocolEvent(Node *node, Message *msg)
{
 ...
 switch (msg->eventType)
 {
 case MSG_ROUTING_PimScheduleHello:
 {
 ...
 /* Send Hello packet on all of its interfaces */
 RoutingPimSendHelloPacket(node, interfaceIndex);
 /* Reschedule Hello packet broadcast */
 newMsg = MESSAGE_Alloc(node,
 NETWORK_LAYER,
 MULTICAST_PROTOCOL_PIM,
 MSG_ROUTING_PimScheduleHello);
 MESSAGE_AddInfo(node, newMsg, sizeof(int), INFO_TYPE_PhyIndex);
 memcpy(MESSAGE_ReturnInfo(newMsg, INFO_TYPE_PhyIndex),
 &interfaceIndex, sizeof(int));
 MESSAGE_Send(node, newMsg,
 pim->interface[interfaceIndex].helloInterval);
 break;
 }
 ...
 case MSG_ROUTING_PimDmPruneTimeoutAlarm:
 {
 ...
 }
 ...
 case MSG_ROUTING_PimDmGraftRtmxtTimeOut:
 {
 ...
 }
 case MSG_ROUTING_PimDmJoinTimeOut:
 {
 ...
 }
 case MSG_ROUTING_PimDmScheduleJoin:
 {
 ...
 }
 ...
 default:
 {
 printf(" Event Type = %d\n", msg->eventType);
 ERROR_Assert(FALSE, "Unknown protocol event in PIM\n");
 }
 }
 MESSAGE_Free(node, msg);
}

FIGURE 4-95. PIM Event Dispatcher
QualNet 5.2 Programmer’s Guide 204

Network Layer Chapter 4
4.4.6.6 Processing Routing Packets
This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.8).

4.4.6.6.1 Modifying IP Packet Handler

To add a new multicast routing protocol, MYPROTOCOL, at the Network Layer, assign an IP protocol
number to MYPROTOCOL and modify the IP function DeliverPacket to deliver packets to MYPROTOCOL.

1. Define an IP Protocol Number for MYPROTOCOL, IPPROTOCOL_MYPROTOCOL, in the file
network_ip.h. See Section 4.4.5.8.1 for details.

2. Modify the IP function DeliverPacket, defined in network_ip.cpp, to deliver packets to MYPROTOCOL.

This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.8.1).

Add code to DeliverPacket to call MYPROTOCOL’s packet handler function,
RoutingMyprotocolHandleProtocolPacket, with appropriate parameters, if the IP Protocol Number read
from the packet’s header is IPPROTO_MYPROTOCOL (defined in step 1) as shown in Figure 4-96.

static void //inline//
DeliverPacket(Node *node, Message *msg,
 int interfaceIndex, NodeAddress previousHopAddress)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 NodeAddress sourceAddress = 0;
 NodeAddress destinationAddress =0;
 unsigned char ipProtocolNumber;
 unsigned ttl =0;
 ...
 switch (ipProtocolNumber)
 {
 ...
 // Delivery to network-layer routing protocols.
 ...
 case IPPROTO_PIM:
 {
 RoutingPimHandleProtocolPacket(node, msg, sourceAddress,
 interfaceIndex);
 break;
 }
 case IPPROTO_MYPROTOCOL:
 {
 RoutingMyprotocolHandleProtocolPacket(node, msg, ...);
 break;
 }
 ...
 }//switch//
}//DeliverPacket//

FIGURE 4-96. Delivering Packets from IP to Network Layer Routing Protocols

4.4.6.6.2 Implementing the Protocol Packet Handler

A routing protocol's packet handler should include a switch on all types of packets that the protocol may
receive. It can then process each packet type either inside the switch or by calling a function to handle the
packet type received. For example, function RoutingPimHandleProtocolPacket, shown in Figure 4-97 and
implemented in multicast_pim.cpp, processes PIM routing packets.
205 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
As part of processing a received packet, a routing protocol at a node may transmit packets to its peers.
See Section 4.4.5.6.2 for details of sending packets.

Write function RoutingMyprotocolHandleProtocolPacket to handle routing packets for MYPROTOCOL.
Follow the example of RoutingPimHandleProtocolPacket or the packet handler for some other Network
Layer multicast routing protocol in QualNet.

void RoutingPimHandleProtocolPacket(Node *node, Message *msg,
 NodeAddress srcAddr, int interfaceId)
{
 PimData* pim = (PimData*)
 NetworkIpGetMulticastRoutingProtocol(node, MULTICAST_PROTOCOL_PIM);

 /* Get PIM Common header */
 RoutingPimCommonHeaderType *commonHeader =
 (RoutingPimCommonHeaderType *) MESSAGE_ReturnPacket(msg);

 /* Make sure that PIM is running over this interface */
 if (!RoutingPimIsPimEnabledInterface(node, interfaceId))
 {
 MESSAGE_Free(node, msg);
 return;
 }
 switch (RoutingPimCommonHeaderGetType(commonHeader->rpChType)) {
 case ROUTING_PIM_HELLO:
 {
 RoutingPimHelloPacket *helloPkt =
 (RoutingPimHelloPacket *) MESSAGE_ReturnPacket(msg);
 int size = MESSAGE_ReturnPacketSize(msg);
 ...
 if (pim->modeType == ROUTING_PIM_MODE_DENSE)
 {
 PimDmData* pimDmData = (PimDmData*) pim->pimModePtr;
 pimDmData->stats.helloReceived++;
 RoutingPimDmHandleHelloPacket(node, srcAddr, helloPkt, size,
 interfaceId);
 }
 else
 {
 ...
 }
 break;
 }
 case ROUTING_PIM_JOIN_PRUNE:
 {
 ...
 }
 ...
 default:
 {
 ERROR_Assert(FALSE, "Unknown packet type\n");
 }
 }
 MESSAGE_Free(node, msg);
}

FIGURE 4-97. PIM Routing Packet Handling Function
QualNet 5.2 Programmer’s Guide 206

Network Layer Chapter 4
4.4.6.7 Implementing Callback Functions
As explained in Section 4.4.6.4.3.3, a Network Layer multicast routing protocol in QualNet implements
certain callback functions. The implementation of these functions is similar to those for a unicast routing
protocol (see Section 4.4.5.9).

If the multicast protocol uses IGMP services, it should implement a callback function that handles
members joining or leaving a group. As an example, function RoutingPimDmLocalMembersJoinorLeave,
shown in Figure 4-98 and implemented in multicast_pim_dm.cpp, is the PIM-DM function that takes
appropriate actions when a member joins or leaves a group. This function is called by function
RoutingPimLocalMembersJoinorLeave, which is registered with IGMP during the protocol’s initialization
(see Section 4.4.6.4.3.3).

void RoutingPimDmLocalMembersJoinOrLeave(Node *node,
 NodeAddress groupAddr,
 int interfaceId,
 LocalGroupMembershipEventType event)
{
 PimData* pim = (PimData*)
 NetworkIpGetMulticastRoutingProtocol(node, MULTICAST_PROTOCOL_PIM);
 PimDmData* pimDmData = (PimDmData*)pim->pimModePtr;

 RoutingPimDmForwardingTableRow* rowPtr;
 RoutingPimDmDownstreamListItem* downstreamInfo;
 RoutingPimInterface* thisInterface;
 unsigned int i;

 rowPtr = (RoutingPimDmForwardingTableRow *)
 BUFFER_GetData(&pimDmData->fwdTable.buffer);
 thisInterface = &pim->interface[interfaceId];

 switch (event)
 {
 case LOCAL_MEMBER_JOIN_GROUP:
 {
 ...
 }

 case LOCAL_MEMBER_LEAVE_GROUP:
 {
 ...
 }

 default:
 {
 ERROR_Assert(FALSE, "Unknown IGMP Event\n");
 }
 }
}

FIGURE 4-98. PIM-DM Function to Handle Members Leaving or Joining a Group
207 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
Write the callback functions that MYPROTOCOL may need. Use PIM or some other appropriate multicast
routing protocol as an example. Register all callback functions with IP and IGMP in the protocol’s
initialization function (see Section 4.4.6.4.3.3).

4.4.6.8 Collecting and Reporting Statistics

This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.10).

4.4.6.9 Finalization
This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.11).

4.4.6.10 Including and Compiling Files

This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.12).

4.4.6.11 Integrating the Protocol into the GUI

To make the new protocol available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.

4.4.7 QualNet Queuing Protocols

This section describes the queuing protocols implemented in QualNet. Section 4.4.7.1 and Section 4.4.7.2
describe the implementation of queues in QualNet. Section 4.4.7.3 describes how QualNet protocol
models use the existing queuing models. Section 4.4.7.4 describes the procedure to add a new queue
model to QualNet.

4.4.7.1 Data Structures and Classes

QualNet implements several queue management algorithms (see Table 4-9). Queues are implemented
using C++ classes. This section gives details of the base class that implements the FIFO queue and from
which classes that implement other queuing disciplines are derived. This section also describes some of
the data structures used in the implementation of queues. These data structures and classes are defined in
QUALNET_HOME/include/if_queue.h. (Note that only a partial description of the data structures is
provided here. Refer to the file if_queue.h for a complete description.)

1. QueueOperation: This enumeration type lists the different types of dequeue operations.

typedef enum
{
 PEEK_AT_NEXT_PACKET, // 0 : Handles false dequeue functionality
 DEQUEUE_PACKET, // 1 : Handles dequeue functionality
 DISCARD_PACKET, // 2 : Handles drop functionality
 DROP_PACKET // 3 : Handles forcefully drop functionality
} QueueOperation;
QualNet 5.2 Programmer’s Guide 208

Network Layer Chapter 4
2. PacketArrayEntry: This data structure represents an entry in the array of stored messages. The

fields of the data structure are described below.

typedef struct packet_array_entry_str
{
 Message *msg;
 clocktype insertTime;
 double infoField[PACKET_ARRAY_INFO_FIELD_SIZE / sizeof(double)];
 double serviceTag;
} PacketArrayEntry;

• msg: A pointer to the message.

• insertTime: Simulation time when the message is inserted in the queue.

• infoField: Array that stores queuing algorithm-dependent data.

• serviceTag: Variable that stores user-specific data.

3. Queue: This is the base class that is used to derive specific queue classes. This class implements the

FIFO discipline and all other queue disciplines are derived from it. Figure 4-99, Figure 4-100 and

Figure 4-101 show the declaration of the Queue class.
209 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
class Queue
{
 protected:
 PacketArrayEntry* packetArray;
 int numPackets;
 int maxPackets;
 int infoFieldSize;
 int bytesUsed;
 int queueSizeInBytes;
 int headIndex;
 int tailIndex;
 ...
 // QOS interface observation statistics
 int qDelay;
 int totalTransmission;
 clocktype qosMonitorInterval;
 clocktype queueCreationTime;

 // currentPeriod statistics
 clocktype currentStateStartTime;
 clocktype utilizedTime;
 ...
 clocktype currentPeriodStartTime;
 ...
 // standard statistics collected
 float delayAveragingWeight; // used to calculate running average delay
 BOOL isCollectStats;
 D_Float64 avgSize;
 int peakSize;
 int numPacketsQueued;
 int numPacketsDequeued;
 D_Float64 numPacketsDropped;
 ...
 clocktype lastChange;
 clocktype totalDelays;
 clocktype longestDelay;

 // Utility functions
 inline int RetriveArrayIndex(int index);
 void UpdateQueueLengthStats(const clocktype currentTime);
 void UpdateQueueDelayStats(int packetArrayIndex,
 const clocktype currentTime);
 void FinalizeQueue(Node *node,
 const char *layer,
 const char *protocol,
 const int interfaceIndex,
 const int instanceId,
 const char *invokingProtocol);
 public:
 ...
};

FIGURE 4-99. Declaration of Class Queue: Protected Members
QualNet 5.2 Programmer’s Guide 210

Network Layer Chapter 4
class Queue
{
 protected:
 ...
 public:

 Queue(){};
 ~Queue();

 virtual void SetupQueue(Node* node,
 const char queueTypeString[],
 const int queueSize,
 const int infoFieldSize = 0,
 const int interfaceIndex = 0,
 const int queueNumber = 0,
 const BOOL enableQueueStat = FALSE,
 const BOOL showQueueInGui = FALSE,
 const clocktype currentTime = 0,
 const void* configInfo = NULL);

 virtual void insert(Message* msg,
 const void* infoField,
 BOOL* QueueIsFull,
 const clocktype currentTime,
 const double serviceTag = 0.0);

 virtual void insert(Message* msg,
 const void* infoField,
 BOOL* QueueIsFull,
 const clocktype currentTime,
 TosType* tos,
 const double serviceTag = 0.0);

 virtual BOOL retrieve(Message** msg,
 const int index,
 const QueueOperation operation,
 const clocktype currentTime,
 double* serviceTag = NULL);

 virtual BOOL isEmpty();

 virtual int bytesInQueue();

 virtual int freeSpaceInQueue();

 virtual int packetsInQueue();
 ...
}

FIGURE 4-100. Declaration of Class Queue: Public Members (Part 1)
211 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
class Queue
{
 protected:
 ...
 public:

 Queue(){};
 ~Queue();
 ...
 virtual int packetsInQueue();

 inline int sizeOfQueue();

 void setServiceTag(double serviceTag);
 virtual int replicate(Queue* newQueue);

 // Resource Management API
 void setQueueBehavior(BOOL suspend = FALSE);

 // QOS interface observation API
 virtual void qosQueueInformationUpdate(int* qDelayVal,
 int* totalTransmissionVal,
 const clocktype currentTime,
 BOOL isResetTotalTransmissionVal = FALSE);

 // CurrentPeriod statistics API
 inline int byteDequeuedInPeriod();

 inline clocktype utilizationInPeriod();

 inline clocktype averageTimeInQueue();

 inline void resetPeriod (clocktype currentTime);

 inline clocktype periodStartTime();

 virtual void finalize(Node* node,
 const char* layer,
 const int interfaceIndex,
 const int instanceId,
 const char* invokingProtocol = "IP",
 const char* splStatStr = NULL);

 clocktype getPacketInsertTime(int pktIndex);

};

FIGURE 4-101. Declaration of Class Queue: Public Members (Part 2)
QualNet 5.2 Programmer’s Guide 212

Network Layer Chapter 4
Some of the data members of the Queue class are described below. The utility functions of the Queue
class are described in Section 4.4.7.2.

• packetArray: Array of packets in the queue.

• numPackets: Number of packets in the queue.

• maxPackets: Maximum number of packets that the queue can hold.

• infoFieldSize: Size of the infoField array in PacketArrayEntry.

• bytesUsed: Total number of bytes in the packets in the queue.

• queueSizeInBytes: Maximum queue size, in bytes.

• headIndex: Index of the packet at the head of the queue.

• tailIndex: Index of the packet at the tail of the queue.

• qDelay: Average packet delay in the current measurement period. A measurement period is the
time period from the last call to function resetPeriod (or from the beginning of simulation, if
resetPeriod has not been called) to the current simulation time.

• totalTransmission: Total number of bytes removed from the queue in the current measurement
period.

• queueCreationTime: Simulation time when the queue was created.

• currentPeriodStartTime: Start time of the current measurement period.

• utilizedTime: Total time that the queue was non-empty in the current measurement period.

• delayAveragingWeight: Weight used to calculate the running average delay.

• avgSize: Average queue size, in bytes, since the start of simulation.

• peakSize: Largest queue size, in bytes, since the start of simulation.

• numPacketsQueued: Number of packets enqueued since the start of simulation.

• numPacketsDequeued: Number of packets dequeued since the start of simulation.

• numPacketsDropped: Number of packets dropped since the start of simulation.

• numBytesQueued: Number of bytes enqueued since the start of simulation.

• lastChange: Simulation time when the statistics were last updated.

• totalDelays: Total of the packet delays since the start of simulation.

• longestDelay: Longest packet delay since the start of simulation.

4.4.7.2 Interface Functions
The protected interface functions provided by the Queue class are listed below. These functions are
implemented in QUALNET_HOME/libraries/developer/src/if_queue.cpp.

• RetriveArrayIndex: This function returns the position of a packet in the queue.

• UpdateQueueLengthStats: This function calculates the average queue size.

• UpdateQueueDelayStats: This function calculates the queue delay.

• FinalizeQueue: This is the finalization function for the queue and prints the queue statistics.

In addition to the functions listed above, the Queue class contains prototypes for the following virtual
functions. See file if_queue.cpp for an explanation of the parameters of these functions as well as the
implementations of the functions for the base class. A class derived from the Queue class can provide
alternate implementation of these functions.

• SetupQueue: This function initializes a queue.

• insert: This function inserts a message into a queue.
213 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
• retrieve: This function dequeues, drops, or takes a peek at a message in a queue.

• isEmpty: This function determines if a queue is empty.

• bytesInQueue: This function returns the total number of bytes stored in a queue.

• freeSpaceInQueue: This function returns the total number of free bytes available in the buffer.

• packetsInQueue: This function returns the total number of packets stored in a queue.

• sizeOfQueue: This function returns the maximum size of a queue, in bytes.

• setServiceTag: This function updates the service tag of the last enqueued packet.

• replicate: This function replicates a queue.

• qosQueueInformationUpdate: This function updates QOS information.

• byteDequeuedInPeriod: This function returns the total number of bytes dequeued from a queue in a the
current measurement period, i.e., the time period from the last call to function resetPeriod (or from the
beginning of simulation, if resetPeriod has not been called) to the current simulation time.

• utilizationInPeriod: This function returns the queue utilization, i.e., the amount of time that the queue is
non-empty, in the current measurement period.

• averageTimeInQueue: This function returns the average time a packet spends in a queue in the current
measurement period.

• resetPeriod: This function resets the measurement period and the period statistics variables.

• periodStartTime: This function returns the start time of the current measurement period.

• finalize: This function outputs the final queue statistics by calling FinalizeQueue.

• get PacketInsertTime: This function returns the insertion time of the top packet of the queue. If the
queue is empty, it returns 0.

In addition to the interface functions provided by the Queue class, function QUEUE_Setup is also available
for implementing queue management algorithms. Function QUEUE_Setup is used to create and initialize
an object of the base Queue class or an object of a class derived from the base Queue class. The
prototype of QUEUE_Setup is contained in if_queue.h and the implementation is contained in
if_queue.cpp. The prototype of QUEUE_Setup is shown in Figure 4-102. See file if_queue.h for a
description of the function parameters.

void QUEUE_Setup(
 Node* node,
 Queue** queue,
 const char queueTypeString[],
 const int queueSize,
 const int interfaceIndex,
 const int queueNumber,
 const int infoFieldSize = 0,
 const BOOL enableQueueStat = FALSE,
 const BOOL showQueueInGui = FALSE,
 const clocktype currentTime = 0,
 const void* configInfo = NULL);

FIGURE 4-102. Prototype of Function QUEUE_Setup
QualNet 5.2 Programmer’s Guide 214

Network Layer Chapter 4
4.4.7.3 Using the Queue Class
This section describes how protocols use the Queue class and interface functions to implement queues.

The Queue class can be used to implement queues at any layer. In this section, we illustrate the use of
queues by taking code segments from the implementation of the Messenger application, which is
implemented by files app_messenger.h and app_messenger.cpp in the folder QUALNET_HOME/libraries/
developer/src.

4.4.7.3.1 Creating and Initializing a Queue

To create a queue, declare a pointer variable that points to an object of the Queue class and call function
QUEUE_Setup (see Section 4.4.7.2). The type of queue that is created is determined by the parameter
queueTypeString of QUEUE_Setup. Table 4-11 shows the different types of queues implemented in
QualNet. Other queue types can be derived from the Queue class (see Section 4.4.7.4).

TABLE 4-11. Implemented Queue Types

queueTypeString Queue Type

“FIFO” FIFO queue

“RED” Random Early Detection queue

“RED-ECN” RED with Explicit Congestion Notification

“WRED” Weighted RED queue

“RIO” RED with In/Out bit

“ATM-RED” RED for use in ATM networks
215 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
As an example, Figure 4-103 shows the Messenger function MessengerOutputQueueInitialize which
initializes a FIFO queue by calling function QUEUE_Setup. MessengerOutputQueueInitialize is
implemented in app_messenger.cpp and the data structure MessengerState is defined in
app_messenger.h.

static void
MessengerOutputQueueInitialize(
 Node *node,
 MessengerState *messenger)
{
 Queue* queuePtr = NULL;

 // a single FIFO queue
 QUEUE_Setup(
 node,
 &queuePtr,
 "FIFO",
 DEFAULT_APP_QUEUE_SIZE,
 APP_MESSENGER, // this is used to set the random seed
 0,
 0, // infoFieldSize
 FALSE,
 FALSE,
 getSimTime(node),
 NULL);

 messenger->queue = queuePtr;
}

FIGURE 4-103. Creating and Initializing a Queue
QualNet 5.2 Programmer’s Guide 216

Network Layer Chapter 4
4.4.7.3.2 Performing Queue Operations

Queue operations, such as insertion, deletion, and checking if the queue is empty, are performed by calling
the interface functions defined for the Queue class (see Section 4.4.7.2). The interface functions for the
base class, Queue, are implemented in if_queue.cpp.

As an example, Figure 4-104 shows the Messenger function MessengerSendAllFromOutputQueue.
MessengerSendAllFromOutputQueue calls the Queue class interface functions retrieve and
packetsInQueue to dequeue packets from a queue. Other interface functions can be called in a similar way
to perform queue operations.

static void
MessengerSendAllFromOutputQueue(Node *node, MessengerState *messenger)
{
 Queue* queuePtr = messenger->queue;
 int packetIndex = 0;

 // Dequeue all the packets from the queue which are currently there.
 while (queuePtr->packetsInQueue())
 {
 Message *queueMsg = NULL;
 ...
 queuePtr->retrieve(&queueMsg,
 packetIndex,
 DEQUEUE_PACKET,
 TIME_getSimTime(node));
 if (queueMsg != NULL)
 {
 if (DEBUG_QUEUE)
 {
 printf("\t\tDequeuing a packet from Queue\n");
 }
 if (TEST_VOICE_APP)
 {
 ...
 }
 messenger->messageLastSentTime = TIME_getSimTime(node);
 // Send All Queued Messeges
 MESSAGE_Send(node, queueMsg, PROCESS_IMMEDIATELY);
 }
 }
}

FIGURE 4-104. Calling Interface Functions for Queue Operations

4.4.7.4 Adding a New Queue Model

This section describes the procedure to add a new queue model to QualNet. It describes how to develop
code components common to most queuing protocols such as deriving a new queue class from the base
class, reading queue-specific parameters, and implementing interface functions.

We illustrate the process of adding a queue model by using as an example the implementation code for the
RED (Random Early Detection) queuing protocol. The header file for the RED implementation is
queue_red.h and the source file is queue_red.cpp in the folder QUALNET_HOME/libraries/developer/src.
We use code snippets from these two files throughout this section to illustrate different steps in writing a
queuing protocol. After understanding the discussed snippets, look at the complete code for RED to
understand how a queue model is derived from the FIFO queue model described in Section 4.4.7.1 and
Section 4.4.7.2.
217 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
The following list summarizes the actions that need to be performed for adding a new queue model,
MYQUEUE, to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.4.7.4.1).

2. Modify the file if_queue.cpp to include the queue model’s header file (see Section 4.4.7.4.1).

3. Define data structures for the queue model (see Section 4.4.7.4.2).

4. Decide on the format for the queue model-specific configuration parameters (see Section 4.4.7.4.3).

5. Write a function to read the queue model-specific configuration parameters (see Section 4.4.7.4.4).

6. Derive the new queue class based on the base Queue class (see Section 4.4.7.4.5).

7. Implement interface functions for the new queue model (see Section 4.4.7.4.6).

8. Modify function QUEUE_Setup to call MYQUEUE’s setup function (see Section 4.4.7.4.7)

9. Include the queue model’s header and source files in the QualNet tree and compile (see

Section 4.4.7.4.8).

10.To make the model available in the QualNet GUI, modify the GUI settings files (see Section 4.4.7.4.9).

4.4.7.4.1 Creating Files

This step is similar to the one for Network Layer routing protocols (see Section 4.4.5.2). Create the header
and source files for the queue model. Name these files in a way that clearly indicates the model that they
implement. For queue models, prefix the file names with queue_.

Examples:

• queue_red.cpp, queue.h: These files in the folder QUALNET_HOME/libraries/developer/src implement
the RED queueing discipline.

• queue_rio_ecn.cpp, queue_rio_ecn.h: These files in the folder QUALNET_HOME/libraries/developer/
src implement the RIO ECN queueing discipline.

For the example queue, MYQUEUE, create files queue_myqueue.h and queue_myqueue.cpp in the
appropriate folder. If MYQUEUE is a general-purpose queue, add the files to the folder QUALNET_HOME/
libraries/user_models/src (see Section 4.4.5.2). If MYQUEUE is meant to be used by a specific protocol,
add it to the same folder as the protocol files.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems, even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file for the queue model, queue_myqueue.h, should contain the following:

• Constant definitions

• Data structure definitions

• Class definition for the new queue model derived from the base Queue class (see Section 4.4.7.1)

• Prototypes for any additional interface functions in the queue model’s source file

• Statement to include the generic queue model’s header file:

#include “if_queue.h”
QualNet 5.2 Programmer’s Guide 218

Network Layer Chapter 4
The source file for the queue model, queue_myqueue.cpp, should contain the following:

• Statement to include the queue model’s header file:

#include “queue_myqueue.h”

• Statements to include standard library functions and other header files needed by the queue model’s
source file. A typical queue model source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "api.h" // QUALNET_HOME/include/api.h
#include "if_queue.h" // QUALNET_HOME/include/if_queue.h. This allows
 // for the use of the base Queue class.

• Function to read MYQUEUE parameters, if any, from the configuration file

• Interface functions for MYQUEUE

The file QUALNET_HOME/libraries/developer/src/if_queue.cpp contains the generic function to setup a
queue, QUEUE_Setup. QUEUE_Setup in turn calls setup functions for specific queue types. To make the
MYQUEUE setup function available to function QUEUE_Setup, insert the following include statement in
the file if_queue.cpp:

#include “queue_myqueue.h”

4.4.7.4.2 Defining Data Structures

In QualNet, queue types are defined as classes derived from the base Queue class. In addition to the
variables that are part of Queue class, a queue type may require other variables. For example, the RED
queue implementation uses the data structure RedParameters, defined in queue_red.h, to store the
queue-specific parameters.

typedef struct
{
 int minThreshold;
 int maxThreshold;
 double maxProbability;
 double queueWeight;
 clocktype typicalSmallPacketTransmissionTime;
} RedParameters;

For MYQUEUE, define an appropriate data structure for MYQUEUE-specific parameters, if needed, in the
file queue_myqueue.h.
219 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.7.4.3 Determining the Queue Configuration Format

A queue model may use model-specific configuration parameters. The configuration parameters are
specified in the QualNet configuration file. The format for specifying a queue model’s configuration
parameters is:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.

<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.

As an example, the following configuration specifies that the RED queue is to be used and gives the values
of the parameters for the RED queue. Refer to file QUALNET_HOME/scenarios/default/default.config for
an explanation of these parameters.

IP-QUEUE-TYPE RED
RED-MIN-THRESHOLD 5
RED-MAX-THRESHOLD 15
RED-MAX-PROBABILITY 0.02
RED-QUEUE-WEIGHT 0.002
RED-SMALL-PACKET-TRANSMISSION-TIME 10MS

A configuration parameter is not always mandatory. If an optional configuration parameter is not assigned
a value, the default value is used. For example, if a user does not specify a value for RED-MIN-
THRESHOLD, the default value of 5 (DEFAULT_RED_MIN_THRESHOLD) is used by the model.

Decide on the format for specifying the new queue model’s configuration parameters. For our example
queue, specify the configuration parameters in the QualNet configuration file using the following format
(<Identifier> and <Index> can also be used to qualify the parameter declarations, as described
above):

 IP-QUEUE-TYPE MYQUEUE
 <param1> <value1>
 ...
 <paramN> <valueN>

 where:

<param1>, ..., <paramN> : Names of parameters for MYQUEUE.

<value1>, ..., <valueN> : Values of the queue parameters.

Section 4.4.7.4.4 explains how to read user input specified in this format.

4.4.7.4.4 Reading Configuration Parameters

This section explains how to read user-specified configuration parameters for queue models (see
Section 4.4.7.4.3) and provide them to the queue setup function.
QualNet 5.2 Programmer’s Guide 220

Network Layer Chapter 4
As an example, Figure 4-105 shows how IP function NetworkIpInitOutputQueueConfiguration reads the
configuration parameters for the RED queue by calling function ReadRedConfigurationParameters and
initializes a RED queue by calling the generic queue setup function QUEUE_Setup.
NetworkIpInitOutputQueueConfiguration is implemented in network_ip.cpp.
ReadRedConfigurationParameters is implemented in queue_red.cpp. QUEUE_Setup is implemented in
if_queue.cpp.

void
NetworkIpInitOutputQueueConfiguration(
 Node *node,
 const NodeInput *nodeInput,
 int interfaceIndex)
{
 ...
 for (i = 0; i < numPriorities; i++)
 {
 Queue* queue = NULL;
 char queueTypeString[MAX_STRING_LENGTH] = {0};
 ...
 void* spConfigInfo = NULL; // Queue Specific configurations.

 IO_ReadStringInstance(
 node, node->nodeId, interfaceIndex, nodeInput, "IP-QUEUE-TYPE",
 i, TRUE, &wasFound, queueTypeString);
 ...

 if (!strcmp(queueTypeString, "FIFO"))
 {
 // No specific configuration for FIFO
 }
 else if (!strcmp(queueTypeString, "RED"))
 {
 IO_ReadString(
 node, node->nodeId, interfaceIndex,
 nodeInput, "ECN", &wasFound, buf);
 if (wasFound && (!strcmp(buf, "YES")))
 {
 ...
 }
 else
 {
 RedParameters* redParams = NULL;
 ReadRedConfigurationParameters(node, interfaceIndex, nodeInput,
 enableQueueStat, i, &redParams);
 spConfigInfo = (void*)(redParams);
 }
 }
 else
 ...
 // Initialize Queue depending on queueTypeString specification
 QUEUE_Setup(node, &queue, queueTypeString, queueSize, interfaceIndex,
 priority, 0, enableQueueStat, node->guiOption,
 getSimTime(node), spConfigInfo);
 ...
 }
}

FIGURE 4-105. Setting Up Queues
221 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
Figure 4-106 shows the RED queue function ReadRedConfigurationParameters.
ReadRedConfigurationParameters uses IO functions such as IO_ReadTimeInstance and
IO_ReadIntInstance to read parameter values from the input file and store them in the appropriate fields of
the RED queue data structure RedParameters (see Section 4.4.7.4.2). If a value is not specified for a
parameter in the input file, ReadRedConfigurationParameters stores the default value for that parameter.
IO_ReadTimeInstance, IO_ReadIntInstance, and other IO functions are defined in QUALNET_HOME/
include/fileio.h.

For the example queue, MYQUEUE, write a function to read user-specified configuration parameters if
MYQUEUE uses such parameters.

void ReadRedConfigurationParameters(
 Node* node,
 int interfaceIndex,
 const NodeInput* nodeInput,
 BOOL enableQueueStat,
 int queueIndex,
 RedParameters** redConfigParams)
{
 BOOL retVal = FALSE;
 RedParameters* red = NULL;
 int nodeId = node->nodeId;

 red = (RedParameters*) MEM_malloc(sizeof(RedParameters));
 memset(red, 0, sizeof(RedParameters));
 IO_ReadTimeInstance(
 node,
 nodeId,
 interfaceIndex,
 nodeInput,
 "RED-SMALL-PACKET-TRANSMISSION-TIME",
 queueIndex, // parameterInstanceNumber
 TRUE, // fallbackIfNoInstanceMatch
 &retVal,
 &(red->typicalSmallPacketTransmissionTime));

 if (!retVal)
 {
 red->typicalSmallPacketTransmissionTime =
 DEFAULT_RED_SMALL_PACKET_TRANSMISSION_TIME;
 }
 ...
 // Attch Info
 *redConfigParams = red;
}

FIGURE 4-106. Reading Queue Configuration Parameters
QualNet 5.2 Programmer’s Guide 222

Network Layer Chapter 4
4.4.7.4.5 Deriving New Queue Class from Base Queue Class

In QualNet all queues are implemented as classes derived from the base Queue class (see Section 4.4.7.1
and Section 4.4.7.2). This section describes how to implement a new queue type as a class derived from
the base Queue class by taking as an example the implementation of the RED queue.

Figure 4-107 shows the declaration of the class RedQueue that implements the RED queue model.
RedQueue is declared in queue_red.h and is derived from the base class Queue. One of the variables
declared in RedQueue is a pointer to the data structure RedParameters (see Section 4.4.7.4.2) which
stores the RED queue configurable parameters. Class RedQueue also contains prototypes of interface
functions that are specific to RED queue or that override the base Queue class functions. Implementation
of these functions is discussed in Section 4.4.7.4.6.

For the example queue, MYQUEUE, declare a class Myqueue derived from the base class Queue in the
file queue_myqueue.h.
223 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
class RedQueue:public Queue
{
 protected:
 clocktype startIdleTime; // Start of idle time
 double averageQueueSize;
 RedParameters* redParams;
 int packetCount; // packet since last marked packet
 RandomSeed randomDropSeed; // A random seed
 // Utility Functions
 void UpdateAverageQueueSize(const BOOL queueIsEmpty,
 const int numPackets,
 const double queueWeight,
 const clocktype smallPktTxTime,
 const clocktype startIdleTime,
 double* avgQueueSize,
 const clocktype theTime);
 BOOL RedDropThePacket();
 public:
 virtual void SetupQueue(Node* node,
 const char queueTypeString[],
 const int queueSize,
 const int interfaceIndex,
 const int queueNumber,
 const int infoFieldSize = 0,
 const BOOL enableQueueStat = FALSE,
 const BOOL showQueueInGui = FALSE,
 const clocktype currentTime = 0,
 const void* configInfo = NULL);
 virtual void insert(Message* msg,
 const void* infoField,
 BOOL* QueueIsFull,
 const clocktype currentTime,
 const double serviceTag = 0.0);
 virtual void insert(Message* msg,
 const void* infoField,
 BOOL* QueueIsFull,
 const clocktype currentTime,
 TosType* tos,
 const double serviceTag = 0.0);
 virtual BOOL retrieve(Message** msg,
 const int index,
 const QueueOperation operation,
 const clocktype currentTime,
 double* serviceTag = NULL);
 virtual void finalize(Node* node,
 const char* layer,
 const int interfaceIndex,
 const int instanceId,
 const char* invokingProtocol = "IP",
 const char* splStatStr = NULL);
};

FIGURE 4-107. Deriving a New Queue from Queue Class
QualNet 5.2 Programmer’s Guide 224

Network Layer Chapter 4
4.4.7.4.6 Implementing Interface Functions

The next step in adding a new queue type is to implement the interface functions for the derived queue
class (see Section 4.4.7.4.5). The derived queue class inherits the functions of the base class, but any
additional functions that are declared in the derived queue class and any functions that override the base
class functions need to be implemented. For the example queue, MYQUEUE, add these functions in the
file queue_myqueue.cpp.

As an example, Figure 4-108 shows the implementation of the RedQueue function insert. The RedQueue
function insert performs tasks specific to the RED queue model, and then calls the insert function of the
base class Queue.
225 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
void RedQueue::insert(
 Message* msg,
 const void* infoField,
 BOOL* QueueIsFull,
 const clocktype currentTime,
 TosType* tos,
 const double serviceTag
)
{
 ...
 if (!(MESSAGE_ReturnPacketSize(msg) <= (queueSizeInBytes - bytesUsed)))
 {
 // No space for this item in the queue
 *QueueIsFull = TRUE;
 // Update Generic Drop Stats
 numPacketsDropped++;
 numBytesDropped += MESSAGE_ReturnPacketSize(msg);
 return;
 }

 // Update Average Queue Size.
 UpdateAverageQueueSize(
 isEmpty(),
 packetsInQueue(),
 redParams->queueWeight,
 redParams->typicalSmallPacketTransmissionTime,
 startIdleTime,
 &averageQueueSize,
 currentTime);

 if (RedDropThePacket())
 {
 ...
 // A router has decided from its active queue management
 // mechanism, to drop a packet.
 *QueueIsFull = TRUE;

 // Update Generic Drop Stats
 numPacketsDropped++;
 numBytesDropped += MESSAGE_ReturnPacketSize(msg);
 return;
 }
 // Inserting a packet in the queue
 Queue::insert(msg,
 infoField,
 QueueIsFull,
 currentTime,
 serviceTag);
}

FIGURE 4-108. Implementation of an Interface Function
QualNet 5.2 Programmer’s Guide 226

Network Layer Chapter 4
4.4.7.4.7 Modifying the Queue Setup Function

Function QUEUE_Setup, implemented in if_queue.cpp, is used by protocols to set up a queue. To add the
example queue, MYQUEUE, modify QUEUE_Setup as shown in Figure 4-109.

void QUEUE_Setup(
 Node* node,
 Queue** queue,
 const char queueTypeString[],
 const int queueSize,
 const int interfaceIndex,
 const int queueNumber,
 const int infoFieldSize,
 const BOOL enableQueueStat,
 const BOOL showQueueInGui,
 const clocktype currentTime,
 const void* configInfo)
{
 if (!strcmp(queueTypeString, "FIFO"))
 {
 *queue = new Queue;
 (*queue)->SetupQueue(node,
 queueTypeString,
 queueSize,
 interfaceIndex,
 queueNumber,
 infoFieldSize,
 enableQueueStat,
 showQueueInGui);
 }
 else if (!strcmp(queueTypeString, "RED"))
 {
 *queue = new RedQueue;
 ...
 }
 ...
 else if (!strcmp(queueTypeString, "MYQUEUE"))
 {
 *queue = new Myqueue;
 (*queue)->SetupQueue(node,
 queueTypeString,
 queueSize,
 interfaceIndex,
 queueNumber,
 infoFieldSize,
 enableQueueStat,
 showQueueInGui,
 ...);
 }
 ...
}

FIGURE 4-109. Modifying Function QUEUE_Setup
227 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.7.4.8 Including and Compiling Files

This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.12).

4.4.7.4.9 Integrating the Model into the GUI

To make the new model available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.

4.4.8 QualNet Schedulers

This section describes the scheduling schemes implemented in QualNet. Section 4.4.8.1 and
Section 4.4.8.2 describe the implementation of schedulers in QualNet. Section 4.4.8.3 describes how
QualNet protocol models use the existing scheduler models. Section 4.4.8.4 describes the procedure to
add a new scheduler model to QualNet.

4.4.8.1 Data Structures and Classes

QualNet implements several scheduling schemes (see Table 4-10). Schedulers are implemented using
C++ classes. This section gives details of the base class used for deriving specific classes that implement
different scheduling schemes. This section also describes some of the data structures used in the
implementation of schedulers. These data structures and classes are defined in QUALNET_HOME/
include/if_scheduler.h. (Note that only a partial description of the data structures is provided here. Refer to
the file if_scheduler.h for a complete description.)

1. QueueData: This structure contains information for one queue.

typedef struct queue_data_str
{
 Queue* queue;
 int priority;
 float weight;
 float rawWeight;
 char* infoField;
} QueueData;

• queue: A pointer to an object of the Queue class implementing the queue.

• priority: Priority of the queue.

• weight: Weight of the queue.

• rawWeight: Raw weight, i.e., without normalization.

• infoField: User-specified data.

2. Scheduler: This is the base class that is used to derive specific scheduler classes. Figure 4-110,

Figure 4-111, and Figure 4-112 show the declaration of the Scheduler class.
QualNet 5.2 Programmer’s Guide 228

Network Layer Chapter 4
class Scheduler
{
 protected:
 QueueData* queueData;
 int numQueues;
 int maxQueues;
 int infoFieldSize;
 int packetsLostToOverflow;

 // CurrentPeriod statistics
 clocktype currentStateStartTime;
 clocktype utilizedTime;
 BOOL stateIsIdle;
 int bytesDequeuedInPeriod;
 int packetsDequeuedInPeriod;
 clocktype currentPeriodStartTime;
 clocktype queueDelaysDuringPeriod;

 // Scheduler statistic collection
 BOOL schedulerStatEnabled;
 void* schedGraphStatPtr;
 // Utility function for packet retrieval from specified priority queue
 QueueData* SelectSpecificPriorityQueue(int priority);

 public:
 ...
}

FIGURE 4-110. Declaration of Class Scheduler: Protected Members
229 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
class Scheduler
{
 protected:
 ...

 public:
 void setRawWeight(const int priority, double rawWeight);
 void normalizeWeight();

 virtual int numQueue();
 virtual int GetQueuePriority(int queueIndex);

 virtual void insert(Message* msg,
 BOOL* QueueIsFull,
 const int priority,
 const void* infoField,
 const clocktype currentTime) = 0;

 virtual void insert(Message* msg,
 BOOL* QueueIsFull,
 const int priority,
 const void* infoField,
 const clocktype currentTime,
 TosType* tos) = 0;

 virtual BOOL retrieve(const int priority,
 const int index,
 Message** msg,
 int* msgPriority,
 const QueueOperation operation,
 const clocktype currentTime) = 0;

 virtual void setQueueBehavior(const int priority,
 QueueBehavior suspend = RESUME);

 virtual QueueBehavior getQueueBehavior(const int priority);

 virtual BOOL isEmpty(const int priority);

 virtual int bytesInQueue(const int priority);

 virtual int numberInQueue(const int priority);

 virtual int addQueue(Queue* queue,
 const int priority = ALL_PRIORITIES,
 const double weight = 1.0) = 0;

 virtual void removeQueue(const int priority) = 0;
 ...

FIGURE 4-111. Declaration of Class Scheduler: Public Members (Part 1)
QualNet 5.2 Programmer’s Guide 230

Network Layer Chapter 4
class Scheduler
{
 protected:
 ...

 public:
 ...
 virtual void removeQueue(const int priority) = 0;

 virtual void swapQueue(Queue* queue, const int priority) = 0;

 virtual void qosInformationUpdate(int queueIndex,
 int* qDelayVal,
 int* totalTransmissionVal,
 const clocktype currentTime,
 BOOL isResetTotalTransmissionVal = FALSE);
 // Scheduler current period statistic collection
 //virtual int bytesDequeuedInPeriod(const int priority);
 //virtual clocktype utilizationInPeriod(const int priority);
 //virtual clocktype averageTimeInQueueDuringPeriod(const int priority);
 //virtual int resetPeriod(const clocktype currentTime);
 //virtual clocktype periodStartTime();

 // Scheduler statistic collection for graph
 virtual void collectGraphData(int priority,
 int packetSize,
 const clocktype currentTime);

 virtual void invokeQueueFinalize(Node* node,
 const char* layer,
 const int interfaceIndex,
 const int instanceId,
 const char* invokingProtocol = "IP",
 const char* splStatStr = NULL);

 virtual void invokeQueueFinalize(Node* node,
 const char* layer,
 const int interfaceIndex,
 const int instanceId,
 const int fcsQosQueue,
 const char* invokingProtocol = "IP",
 const char* splStatStr = NULL);

 virtual void finalize(Node* node,
 const char* layer,
 const int interfaceIndex,
 const char* invokingProtocol = "IP",
 const char* splStatStr = NULL) = 0;

 // Virtual Destructor for Scheduler Class
 virtual ~Scheduler(){};
};

FIGURE 4-112. Declaration of Class Scheduler: Public Members (Part 2)
231 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
Some of the data members of the Scheduler class are described below. The utility functions of the
Scheduler class are described in Section 4.4.8.2.

• queueData: List of queues controlled by the scheduler.

• numQueues: Number of queues instantiated by the scheduler.

• maxQueues: Current maximum size of queueData. This can be changed during execution.

• infoFieldSize: Size of infoField field of QueueData.

• packetsLostToOverflow: Total number of packets dropped by all queues controlled by the
scheduler.

• currentStateStartTime: Start time of the current measurement period.

• schedulerStatEnabled: Indication whether statistics collection is enabled for the scheduler.

• schedGraphStatPtr: Pointer to the structure SchedGraphStat. This structure stores
information for collecting and printing dynamic statistics.

4.4.8.2 Interface Functions

The protected interface function provided by the Scheduler class is listed below. This function is
implemented in QUALNET_HOME/libraries/developer/src/if_scheduler.cpp.

• SelectSpecificPriorityQueue: This function returns a pointer to the QueueData structure associated
with the queue with the specified priority

In addition to the above function, the Scheduler class contains prototypes for the following virtual
functions. Some of these functions for the base class are also implemented in the file if_scheduler.cpp. A
class derived from the Scheduler class can provide alternate implementation of these functions and
should provide implementations for the other virtual functions.

• numQueue: This function returns the number of queues associated with the scheduler.

• GetQueuePriority: This function returns the priority of the specified queue.

• insert: This function inserts a packet in the specified queue.

• retrieve: This function dequeues or takes a peek at a packet in the specified queue.

• isEmpty: This function determines if the queue with the specified priority is empty.

• bytesInQueue: This function returns the total number of bytes stored in a specific queue, or the total
number of bytes stored in all queues associated with the scheduler.

• numberInQueue: This function returns the total number of messages in a specific queue, or the total
number of bytes in all queues associated with the scheduler.

• addQueue: This function adds a queue to the scheduler.

• removeQueue: This function removes a queue from the scheduler.

• swapQueue: This function swaps a new queue and an existing queue with the specified priority. if no
queue exists with the specified priority, this function adds a queue with that priority.

• qosInformatiopnUpdate: This function enables QOS monitoring for the specified queue.

• collectGraphData: This function enables performance data collection for the scheduler.

• invokeQueueFinalize: This function invokes the queue finalization function.

• finalize: This function outputs the final scheduler statistics.

In addition to the interface functions provided by the Scheduler class, function SCHEDULER_Setup is
also available for implementing scheduling disciplines. Function SCHEDULE_Setup is used to create and
initialize an object of the base Scheduler class or an object of a class derived from the base Scheduler
class. The prototype of SCHEDULER_Setup is contained in if_scheduler.h and the implementation is
QualNet 5.2 Programmer’s Guide 232

Network Layer Chapter 4
contained in if_scheuler.cpp. The prototype of SCHEDULER_Setup is shown below. See file if_scheduler.h
for a description of the function parameters.

void SCHEDULER_Setup(
 Scheduler** scheduler,
 const char schedulerTypeString[],
 BOOL enableSchedulerStat = false,
 const char* graphDataStr = "NA");

4.4.8.3 Using the Scheduler Class

This section describes how protocols use the Scheduler class and interface functions to implement
schedulers.

The Scheduler class can be used to implement schedulers at any layer. In this section, we illustrate the
use of schedulers by taking code segments from the implementation of the IP protocol, which is
implemented by files network_ip.h and network_ip.cpp in the folder QUALNET_HOME/libraries/developer/
src.

4.4.8.3.1 Creating and Initializing a Scheduler

To create a scheduler, declare a pointer variable that points to an object of the Scheduler class and call
function SCHEDULER_Setup (see Section 4.4.8.2). The type of scheduler that is created is determined by
the second parameter (schedulerTypeString) of SCHEDULER_Setup. Table 4-12 shows the different
types of schedulers implemented in QualNet. Other scheduler types can be derived from the Scheduler
class (see Section 4.4.8.4).

As an example, Figure 4-113 shows the IP function NetworkIpInitCpuQueueConfiguration which initializes
a strict priority scheduler by calling function SCHEDULER_Setup.

TABLE 4-12. Implemented Scheduler Types

schedulerTypeString Scheduler Type

“STRICT-PRIORITY” Strict priority scheduler

“ROUND-ROBIN” Round robin scheduler

“WEIGHTED-ROUND-ROBIN” Weighted round robin scheduler

“WEIGHTED-FAIR” Weighted fair queuing scheduler

“SELF-CLOCKED-FAIR” Self-clocked fair queuing scheduler

“ATM” Scheduler for ATM networks
233 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
void
NetworkIpInitCpuQueueConfiguration(
 Node *node,
 const NodeInput *nodeInput)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 Scheduler *cpuSchedulerPtr = NULL;
 Queue* queue = NULL;
 queue = new Queue;
 BOOL enableQueueStat = FALSE;
 BOOL enableSchedulerStat = FALSE;
 char buf[MAX_STRING_LENGTH] = {0};
 BOOL wasFound = FALSE;
 int queueSize = DEFAULT_CPU_QUEUE_SIZE;
 if (ip->backplaneType == BACKPLANE_TYPE_CENTRAL)
 {
 queueSize = DEFAULT_CPU_QUEUE_SIZE * (node->numberInterfaces);
 }
 IO_ReadString(
 node->nodeId,
 ANY_ADDRESS,
 nodeInput,
 "INPUT-QUEUE-STATISTICS",
 &wasFound,
 buf);
 if (wasFound && (!strcmp(buf, "YES")))
 {
 enableQueueStat = TRUE;
 }
 IO_ReadString(
 node->nodeId,
 ANY_ADDRESS,
 nodeInput,
 "INPUT-SCHEDULER-STATISTICS",
 &wasFound,
 buf);
 if (wasFound && (!strcmp(buf, "YES")))
 {
 enableSchedulerStat = TRUE;
 }
 queue->SetupQueue(node, "FIFO", queueSize, 0, 0, 0, enableQueueStat);

 SCHEDULER_Setup(&cpuSchedulerPtr,
 "STRICT-PRIORITY",
 enableSchedulerStat);
 ip->cpuScheduler = cpuSchedulerPtr;
 // Scheduler add Queue Functionality
 cpuSchedulerPtr->addQueue(queue);
}

FIGURE 4-113. Creating and Initializing a Scheduler
QualNet 5.2 Programmer’s Guide 234

Network Layer Chapter 4
4.4.8.3.2 Performing Scheduler Operations

Scheduler operations, such as adding and removing a queue and inserting and deleting a packet from a
queue with a specified priority, are performed by calling the interface functions defined for the Scheduler
class (see Section 4.4.8.2). The base class, Scheduler, implements some of the interface functions. The
implementation of these functions can be found in if_scheduler.cpp. Implementation of the other interface
functions are provided by the implementation of schedulers derived from the base class.

As an example, Figure 4-113 shows how the IP function NetworkIpInitCpuQueueConfiguration adds a
queue by calling the Scheduler function addQueue. As another example, Figure 4-114 shows how the
Scheduler function insert is used by the IP function NetworkIpQueueInsert to insert a packet in a queue
controlled by the scheduler at the interface. NetworkIpInitCpuQueueConfiguration and
NetworkIpQueueInsert are implemented in network_ip.cpp. Other Scheduler interface functions can be
called in a similar way to perform scheduler operations.

void
NetworkIpQueueInsert(
 Node *node,
 Scheduler *scheduler,
 Message *msg,
 NodeAddress nextHopAddress,
 NodeAddress destinationAddress,
 int outgoingInterface,
 int networkType,
 BOOL *queueIsFull,
 int incomingInterface,
 BOOL isOutputQueue)
{
 int queueIndex = ALL_PRIORITIES;
 IpHeaderType *ipHeader = NULL;
 QueuedPacketInfo *infoPtr;
 BOOL isResolved = FALSE;

 ipHeader = (IpHeaderType*) MESSAGE_ReturnPacket(msg);

 // Tack on the nextHopAddress to the message using the insidious "info"
 // field.
 ...
 MESSAGE_InfoAlloc(node, msg, sizeof(QueuedPacketInfo));
 infoPtr = (QueuedPacketInfo *) MESSAGE_ReturnInfo(msg);
 ...
 // Call the Scheduler "insertFunction"
 queueIndex = GenericPacketClassifier(scheduler,
 (int) ReturnPriorityForPHB(node,
 IpHeaderGetTOS(ipHeader->ip_v_hl_tos_len)));

 (*scheduler).insert(msg,
 queueIsFull,
 queueIndex,
 NULL, //const void* infoField,
 getSimTime(node));
 }

FIGURE 4-114. Calling Interface Functions for Scheduler Operations
235 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
4.4.8.4 Adding a New Scheduler
This section describes the procedure to add a new scheduler to QualNet. It describes how to derive a new
scheduler class from the base class and how to implement interface functions.

We illustrate the process of adding a scheduler model by using as an example the implementation code for
the strict priority scheduler. The header file for the strict priority scheduler implementation is
sch_strictprio.h and the source file is sch_strictprio.cpp in the folder QUALNET_HOME/libraries/developer/
src. We use code snippets from these two files throughout this section to illustrate different steps in writing
a scheduler model. After understanding the discussed snippets, look at the complete code for the strict
priority scheduler to understand how a scheduler model is derived from the base Scheduler class
described in Section 4.4.8.1 and Section 4.4.8.2.

The following list summarizes the actions that need to be performed for adding a new scheduler model,
MYSCHEDULER, to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.4.8.4.1).

2. Modify the file if_scheduler.cpp to include the scheduler’s header file (see Section 4.4.8.4.1).

3. Define data structures for the scheduler model (see Section 4.4.8.4.2).

4. Derive the new scheduler class based on the base Scheduler class (see Section 4.4.8.4.3).

5. Implement interface functions for the new scheduler model (see Section 4.4.8.4.4).

6. Modify function SCHEDULER_Setup to call MYSCHEDULER’s constructor function (see

Section 4.4.8.4.5)

7. Include the scheduler’s header and source files in the QualNet tree and compile (see

Section 4.4.8.4.6).

8. To make the model available in the QualNet GUI, modify the GUI settings files (see Section 4.4.8.4.7).

4.4.8.4.1 Creating Files

This step is similar to the one for Network Layer routing protocols (see Section 4.4.5.2). Create the header
and source files for the scheduler model. Name these files in a way that clearly indicates the model that
they implement. For scheduler models, prefix the file names with sch_.

Examples:

• sch_roundrobin.cpp, sch_roundrobin.h: These files in the folder QUALNET_HOME/libraries/developer/
src implement the round-robin scheduler.

• sch_strictprio.cpp, sch_strictprio.h: These files in the folder QUALNET_HOME/libraries/developer/src
implement the strict priority scheduler.

For the example scheduler, MYSCHEDULER, create files sch_myscheduler.h and sch_myscheduler.cpp
in the folder QUALNET_HOME/libraries/user_models/src (see Section 4.4.5.2).

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems, even if the compilation process does not indicate any error.
QualNet 5.2 Programmer’s Guide 236

Network Layer Chapter 4
While adding code to the files, it is important to organize the code well between the files. Generally, the
header file for the scheduler model, sch_myscheduler.h, should contain the following:

• Constant definitions

• Data structure definitions

• Class definition for the new scheduler model derived from the base Scheduler class (see
Section 4.4.8.1)

• Prototypes for any additional interface functions in the scheduler model’s source file

• Statement to include the generic scheduler header file:

#include “if_scheduler.h”

The source file for the scheduler model, sch_myscheduler.cpp, should contain the following:

• Statement to include the scheduler model’s header file:

#include “sch_myscheduler.h”

• Statements to include standard library functions and other header files needed by the queue model’s
source file. A typical queue model source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "api.h" // QUALNET_HOME/include/api.h
#include "sch_graph.h"
 // QUALNET_HOME/libraries/developer/src/sch_graph.h

• Interface functions for MYSCHEDULER

The file QUALNET_HOME/libraries/developer/src/if_scheduler.cpp contains the generic function to setup a
scheduler, SCHEDULER_Setup. SCHEDULER_Setup in turn calls constructor functions for specific
scheduler types. To make the MYSCHEDULER constructor function available to function
SCHEDULER_Setup, insert the following include statement in the file if_scheduler.cpp:

#include “sch_myscheduler.h”

4.4.8.4.2 Defining Data Structures

In QualNet, scheduler types are defined as classes derived from the base Scheduler class. In addition to
the variables that are part of Scheduler class, a scheduler type may require other variables. For
example, the strict priority scheduler implementation uses the data structure StrictPriorityStat,
defined in sch_strictprio.h, to store the statistic variables.

typedef struct
{
 unsigned int packetQueued; // Total packet queued
 unsigned int packetDequeued; // Total packet dequeued
 unsigned int packetDropped; // Total packet dropped
}StrictPriorityStat;
237 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
For MYSCHEDULER, define an appropriate data structure for MYSCHEDULER-specific variables, if
needed, in the file sch_myscheduler.h.

4.4.8.4.3 Deriving New Scheduler Class from Base Scheduler Class

In QualNet all schedulers are implemented as classes derived from the base Scheduler class (see
Section 4.4.8.1 and Section 4.4.8.2). This section describes how to implement a new scheduler as a class
derived from the base Scheduler class by taking as an example the implementation of the strict priority
scheduler.

Figure 4-115 shows the declaration of the class StrictPriorityScheduler that implements the strict
priority scheduler. StrictPriorityScheduler is declared in sch_strictprio.h and is derived from the
base class Scheduler. Class StrictPriorityScheduler declares a variable which is a pointer to the
statistics data structure StrictPriorityStat (see Section 4.4.8.4.2) which stores the strict priority
scheduler statistics. Class StrictPriorityScheduler also contains prototypes of interface functions
that override the base Scheduler class functions. Implementation of these functions is discussed in
Section 4.4.8.4.4.

For the example scheduler, MYSCHEDULER, declare a class Myscheduler derived from the base class
Scheduler in the file sch_myscheduler.h.
QualNet 5.2 Programmer’s Guide 238

Network Layer Chapter 4
class StrictPriorityScheduler : public Scheduler
{
 protected:
 StrictPriorityStat* stats;

 public:
 StrictPriorityScheduler(BOOL enableSchedulerStat,
 const char graphDataStr[]);

 virtual ~StrictPriorityScheduler();

 virtual void insert(Message* msg,
 BOOL* QueueIsFull,
 const int queueIndex,
 const void* infoField,
 const clocktype currentTime);

 virtual void insert(Message* msg,
 BOOL* QueueIsFull,
 const int queueIndex,
 const void* infoField,
 const clocktype currentTime,
 TosType* tos);

 virtual BOOL retrieve(const int priority,
 const int index,
 Message** msg,
 int* msgPriority,
 const QueueOperation operation,
 const clocktype currentTime);

 virtual int addQueue(Queue* queue,
 const int priority = ALL_PRIORITIES,
 const double weight = 1.0);

 virtual void removeQueue(const int priority);

 virtual void swapQueue(Queue* queue, const int priority);

 virtual void finalize(Node* node,
 const char* layer,
 const int interfaceIndex,
 const char* invokingProtocol = "IP",
 const char* splStatStr = NULL);
};

FIGURE 4-115. Deriving a New Scheduler from Scheduler Class

4.4.8.4.4 Implementing Interface Functions

The next step in adding a new scheduler type is to implement the interface functions for the derived
scheduler class (see Section 4.4.8.4.3). The derived scheduler class inherits the functions of the base
class, but any functions that are declared in the derived queue class and any functions that override the
base class functions need to be implemented. In addition, any virtual functions of the base class that are
not implemented by the base class should be implemented in the derived class. For the example
scheduler, MYSCHEDULER, add these functions in the file sch_myscheduler.cpp.
239 QualNet 5.2 Programmer’s Guide

Chapter 4 Network Layer
As an example, Figure 4-116 shows the implementation of the StrictPriorityScheduler function insert.

void StrictPriorityScheduler::insert(
 Message* msg,
 BOOL* QueueIsFull,
 const int priority,
 const void *infoField,
 const clocktype currentTime,
 TosType* tos
)
{
 QueueData* qData = NULL;
 int queueIndex;
 int i;

 queueIndex = numQueues;
 for (i = 0; i < numQueues; i ++)
 {
 if (queueData[i].priority == priority)
 {
 queueIndex = i;
 break;
 }
 }
 ERROR_Assert((queueIndex >= 0) && (queueIndex < numQueues),
 "Queue does not exist!!!\n");

 // The priority queue in which incoming packet will be inserted
 qData = &queueData[queueIndex];
 ...
 // Insert the packet in the queue
 if(tos == NULL)
 {
 qData->queue->insert(msg, infoField, QueueIsFull, currentTime);
 }
 else
 {
 qData->queue->insert(msg, infoField, QueueIsFull, currentTime, tos);
 }

 if (!*QueueIsFull)
 {
 ...
 // Update packet enqueue status
 stats[queueIndex].packetQueued++;
 }
 else
 {
 ...
 // Update packet dequeue status
 stats[queueIndex].packetDropped++;
 }
}

FIGURE 4-116. Implementation of an Interface Function
QualNet 5.2 Programmer’s Guide 240

Network Layer Chapter 4
4.4.8.4.5 Modifying the Scheduler Setup Function

Function SCHEDULER_Setup, implemented in if_scheduler.cpp, is used by protocols to set up a
scheduler. To add the example scheduler, MYSCHEDULER modify SCHEDULER_Setup as shown in
Figure 4-117.

void SCHEDULER_Setup(
 Scheduler** scheduler,
 const char schedulerTypeString[],
 BOOL enableSchedulerStat,
 const char* graphDataStr)
{
 if (!strcmp(schedulerTypeString, "STRICT-PRIORITY"))
 {
 *scheduler =
 new StrictPriorityScheduler(enableSchedulerStat, graphDataStr);
 }
 else if (!strcmp(schedulerTypeString, "ROUND-ROBIN"))
 {
 *scheduler =
 new RoundRobinScheduler(enableSchedulerStat, graphDataStr);
 }
 else if (!strcmp(schedulerTypeString, "MYSCHEDULER"))
 {
 *scheduler = new Myscheduler(enableSchedulerStat, graphDataStr);
 }
 ...
 if (*scheduler == NULL)
 {
 // Error:
 char errStr[MAX_STRING_LENGTH] = {0};
 sprintf(errStr, "Scheduler Error: Failed to assign memory for"
 " scheduler %s", schedulerTypeString);
 ERROR_ReportError(errStr);
 }
}

FIGURE 4-117. Modifying Function SCHEDULER_Setup

4.4.8.4.6 Including and Compiling Files

This step is similar to the one for adding a unicast routing protocol (see Section 4.4.5.12).

4.4.8.4.7 Integrating the Model into the GUI

To make the new model available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.
241 QualNet 5.2 Programmer’s Guide

.
4.5 MAC Layer

The MAC Layer resides between the Network and Physical Layers in the QualNet protocol stack, as
shown in Figure 4-1. The MAC Layer provides error-free transfer of data across a link using the services of
the Physical Layer. In QualNet, some MAC protocols do not use the Physical Layer. Instead, the Physical
Layer functionality is incorporated in the MAC protocol.

This section gives a detailed description of how to add a MAC Layer protocol to QualNet.

4.5.1 MAC Layer Protocols in QualNet

QualNet provides a large number of MAC Layer protocols, both wired and wireless. If a node has multiple
interfaces, it may run different MAC protocols at different interfaces. The MAC protocols running at
different interfaces of a node can be a mix of wired and wireless protocols.

Besides different MAC protocols, QualNet also simulates faults and switches at the MAC Layer. Table 4-13
lists the different MAC protocol models in QualNet. Table 4-13 lists some of the protocols for switches in
QualNet. See the corresponding model library for a detailed description of each protocol and its
parameters.

TABLE 4-13. MAC Protocols in QualNet

MAC Protocol Description Model Library

ABSTRACT Models the abstract MAC protocol for point-to-point
links.

Developer

ALE Models the Automatic Link Establishment MAC
protocol.

ALE/ASAPS
Advanced
Propagation

ANE Models the Abstract Satellite Equation MAC protocol for
satellites.

Satellite

ALOHA Models the ALOHA MAC protocol. Wireless

CELLULAR-MAC Indicates that a cellular system MAC protocol is to be
used.

When this option is selected, the MAC protocol for the
cellular system should be specified by using the
parameter CELLULAR-MAC-PROTOCOL.

Cellular

CSMA Models the Carrier Sense Multiple Access (CSMA) MAC
protocol.

Wireless

GENERICMAC Models an abstract wireless MAC protocol. Wireless

GSM Models the GSM MAC Layer. Cellular

MAC-WORMHOLE Models the MAC protocol used in the Worm Hole
adversary model.

Network Security

MAC802.3 Models the IEEE 802.3 MAC specification. Developer

MAC802.15.4 Models the IEEE 802.15.4 MAC (ZigBee MAC)
specification.

Sensor Networks

MAC802.16 Models the IEEE 802.16 MAC (WiMAX MAC)
specification.

Advanced Wireless

MACA Models the Multiple Access with Collision Avoidance
(MACA) MAC protocol.

Wireless

MACDOT11 Models the IEEE 802.11 MAC specification. Wireless
Chapter 4 MAC Layer
QualNet 5.2 Programmer’s Guide 242

MAC Layer Chapter 4
4.5.2 MAC Layer Organization: Files and Folders

In this section, we briefly examine the files and folders that are relevant to MAC Layer protocols. These
files contain detailed comments on functions and other code components.

The MAC Layer API is composed of several macros, functions, and structures. These are defined in the
following header files:

• QUALNET_HOME/include/api.h

This file defines the events and data structures needed to communicate between different layers of the
protocol stack.

• QUALNET_HOME/include/mac.h

This file contains definitions common to MAC Layer protocols, the MAC data structure in the node
structure, and prototypes of functions defined in QUALNET_HOME/main/mac.cpp.

• QUALNET_HOME/libraries/developer/src/network_ip.h

This file contains definitions of some general API functions for interface address information operations.

• QUALNET_HOME/include/phy.h

This file contains definitions of API functions needed to communicate with the Physical Layer.

MACDOT11e Models the IEEE 802.11e MAC specification.

This is a QoS enhancement to the IEEE 802.11 MAC.

Wireless

SATCOM Models an abstract MAC protocol for satellites. Developer

SATELLITE-BENTBIPE Models the bentpipe MAC protocol for satellites.

This MAC protocol is used with the Satellite-RSV PHY
model.

Satellite

SWITCHED-ETHERNET Models an abstract switch connecting a subnet.

This model does not have detailed models of switch
ports, etc., and is limited to one subnet.

Multimedia and
Enterprise

TDMA Models the Time Division Multiple Access (TDMA) MAC
protocol.

Wireless

TABLE 4-14. Protocols for Switches in QualNet

Protocol Description Network
Type

GARP Generic Attribute Registration Protocol Multimedia and
Enterprise

GVRP GARP VLAN Registration Protocol Multimedia and
Enterprise

STP Spanning Tree Protocol Multimedia and
Enterprise

VLAN Virtual Local Area Network Multimedia and
Enterprise

TABLE 4-13. MAC Protocols in QualNet (Continued)

MAC Protocol Description Model Library
243 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
Additionally, the following header files are also relevant to the MAC Layer:

• QUALNET_HOME/include/fileio.h

This file contains prototypes of functions to read input files and create output files.

• QUALNET_HOME/include/mapping.h

This file contains prototypes of functions to map between node ids and IP addresses.

The following are the folders and source files associated with the MAC Layer:

• QUALNET_HOME/libraries/developer/src, QUALNET_HOME/libraries/developer/src

These folders contain the source and header files for most of the MAC Layer protocols implemented in
QualNet. The file names are based on the name of the protocol that they implement, e.g., to see the
implementation for IEEE 802.3, look at files mac_802_3.cpp and mac_802_3.h in the folder
QUALNET_HOME/libraries/developer/src. Other library folders may also contain code for other MAC
protocols.

• QUALNET_HOME/main/mac.cpp

This file contains MAC Layer functions, including the initialization, message processing, and finalization
functions.

4.5.3 MAC Layer Data Structures

The MAC Layer data structures are defined in QUALNET_HOME/include/mac.h. This section describes
the main data structures. (Note that only a partial description of the data structures is provided here. Refer
to file mac.h for a complete description.)

1. MAC_PROTOCOL: This is an enumeration type that lists all the MAC Layer protocols.

typedef enum
{
 MAC_PROTOCOL_MPLS = 1,
 MAC_PROTOCOL_CSMA,
 MAC_PROTOCOL_FCSC_CSMA,
 MAC_PROTOCOL_MACA,
 MAC_PROTOCOL_FAMA,
 ...
 MAC_PROTOCOL_ABSTRACT,
 MAC_PROTOCOL_CELLULAR,
 MAC_PROTOCOL_ANE,
 MAC_PROTOCOL_WORMHOLE,
 MAC_PROTOCOL_ANODR,
 MAC_PROTOCOL_802_15_4,
 MAC_PROTOCOL_NONE // this must be the last one
} MAC_PROTOCOL;

2. MacData: This is the main data structure used by the MAC Layer and stores information about the

MAC protocol running at a specific interface. Some important fields of this structure are explained

below.
QualNet 5.2 Programmer’s Guide 244

MAC Layer Chapter 4
(The structure struct_mac_str, shown in Figure 4-118, is defined in mac.h. The structure MacData
is defined to be equivalent to struct_mac_str in QUALNET_HOME/include/main.h by means of a
typedef statement.)

struct struct_mac_str
{
 MAC_PROTOCOL macProtocol;
 D_UInt32 macProtocolDynamic;
 int interfaceIndex;
 BOOL macStats;
 BOOL promiscuousMode;
 Int64 bandwidth; // In bytes.
 clocktype propDelay;
 BOOL interfaceIsEnabled;
 int phyNumber;
 void *macVar;
 void *mplsVar;
 MacHasFrameToSendFn sendFrameFn;
 MacReceiveFrameFn receiveFrameFn;
 LinkedList *interfaceStatusHandlerList;
 NodeAddress virtualMacAddress;
 MacVlan* vlan;
 void* bgMainStruct; //ptr of background traffic main structure
 void* randFault; //ptr of the random link fault data structure
 short faultCount; //flag for link fault.
 MacHWAddress macHWAddr;
 BOOL isLLCEnabled;
 BOOL interfaceCardFailed;
};

FIGURE 4-118. MacData Data Structure

• macProtocol: This is the MAC protocol running at the interface.

• interfaceIndex: This is the index of the interface.

• macStats: This Boolean variable indicates whether MAC statistics should be printed at end of
simulation.

• promiscuousMode: This Boolean variable indicates whether the interface operates in promiscuous
mode.

• bandwidth: This variable stores the bandwidth of the attached network.

• propDelay: This variable stores the propagation delay suffered by a packet.

• phyNumber: This is an index to the Physical Layer protocol running at the interface.

• macVar: This is a pointer to the data structure for the MAC protocol running at this interface.

• sendFrameFn: This is a pointer to the function used to send packets to the network.

• receiveFrameFn: This is a pointer to the function used to handle packets received from the
network.

• macHWAddr: This is the MAC Layer address of the interface.
245 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
4.5.4 MAC Layer APIs and Inter-layer Communication

This section describes the APIs used by the Network Layer to communicate with the MAC Layer (see
Section 4.5.4.1), the APIs used by the MAC Layer to communicate with the Network Layer (see
Section 4.5.4.2), the APIs used by the MAC Layer protocols to communicate with the Physical Layer (see
Section 4.5.4.3), and the APIs used by the Physical Layer to communicate with the MAC Layer (see
Section 4.5.4.4). This section also lists some of the MAC Layer utility APIs (see Section 4.5.4.5).

The complete list of APIs, with their parameters and description, can be found in API Reference Guide.

4.5.4.1 Network Layer to MAC Layer Communication
The API MAC_NetworkLayerHasPacketToSend is used by the Network Layer to inform the MAC Layer
that a packet is available for transmission in the output queue.

When ARP is not enabled, the Network Layer calls function to IPv4AddresstoHWAddress to convert the IP
address of the next hop of a packet to the MAC address used by the MAC protocol running at the interface.

The prototype for the functions MAC_NetworkLayerHasPacketToSend and IPv4AddresstoHWAddress are
contained in the file mac.h. The functions are implemented in the file mac.cpp.

4.5.4.2 MAC Layer to Network Layer Communication

MAC Layer protocols use several APIs to communicate with the Network Layer. The prototypes for these
functions are contained in the file mac.h. The file mac.cpp contains the implementation of these functions.

Some of the APIs used for communication from the MAC Layer to the Network Layer are listed below.

• MAC_OutputQueueIsEmpty: This functions checks if the output queue at an interface is empty.

• MAC_OutputQueueDequeuePacket: This function dequeues a packet from an output queue.

• MAC_OutputQueueTopPacket: This function is used to view the top packet of a queue without
dequeuing it.

• MAC_OutputQueueDequeuePacketForAPriority: This function dequeues a specific priority packet from
an output queue.

• MAC_HandOffSuccessfullyReceivedPacket: This function is used by the MAC Layer to pass a received
packet to the upper layers.

• MAC_MacLayerAcknowledgement: This function notifies the Network Layer that a packet has been
successfully delivered by the MAC protocol.

• MAC_NotificationOfPacketDrop: This function notifies the upper layer protocols when a packet is
dropped at the MAC Layer.

4.5.4.3 MAC Layer to Physical Layer Communication

MAC Layer protocols use several APIs to communicate with the Physical Layer. The prototypes for these
API functions are contained in the file QUALNET_HOME/include/phy.h.

Some of the functions used for communication from the MAC Layer to the Physical Layer are listed below.

• PHY_StartTransmittingSignal: This function is used by the MAC Layer to send a packet to the Physical
Layer.

• PHY_StartListeningToChannel: This function is used by the MAC Layer to direct the Physical Layer to
start listening to the specified channel.

• PHY_StopListeningToChannel: This function is used by the MAC Layer to direct the Physical Layer to
stop listening to the specified channel.
QualNet 5.2 Programmer’s Guide 246

MAC Layer Chapter 4
• PHY_SetTransmissionChannel: This function is used by the MAC Layer to set the channel for
transmission.

4.5.4.4 Physical Layer to MAC Layer Communication

Physical Layer protocols use several APIs to communicate with the MAC Layer. The prototypes for these
API functions are contained in the file mac.h. The file mac.cpp contains the implementation of these
functions.

Some of the functions used for communication from the Physical Layer to the MAC Layer are listed below.

• MAC_ReceivePacketFromPhy: This function delivers a packet from the Physical Layer to the MAC
Layer.

• MAC_ReceivePhyStatusChangeNotification: This function notifies the MAC Layer of a status change at
the Physical Layer.

4.5.4.5 MAC Layer Utility APIs
Several APIs are available at the MAC Layer that perform tasks internal to the MAC Layer. Some of these
functions can be used by other layers, as well. The prototypes for these API functions are contained in the
file mac.h. The file mac.cpp contains the implementation of these functions.

Some of the MAC Layer utility APIs are listed below.

• MAC_IsMyHWAddress: This function checks whether a particular MAC address belongs to a specific
interface of a node. The function returns TRUE if the address is a broadcast address or if the address is
the unicast address of a specific interface of a node.

• MAC_IsMyAddress: This is an overloaded function which checks whether a particular address belongs
to a specific node. One version of the function checks whether the address is the unicast address of
any interface of the node. The other version checks whether the address is the unicast address of a
specific interface of the node.

• MAC_IsBroadcastHWAddress: This function checks whether a particular address is a broadcast
address.

• GetMacHWAddress: This function returns the MAC address of an interface of the node.

• MAC_IsWiredNetwork: This function checks if the attached network is a wired network.

• MAC_IsPointToPointNetwork: This function checks if the attached network is a point-to-point network.

4.5.5 Adding a Wired MAC Protocol

Although the working of each MAC protocol is different, there are certain functions that are performed by
most MAC protocols. This section provides an overview of the flow of a MAC protocol for a wired network
and provides an outline for developing and adding a MAC protocol, MYPROTOCOL, for a wired network to
QualNet. It describes how to develop code components common to most MAC protocols such as
initializing, sending and receiving packets, and collecting statistics.

We illustrate the process of adding a MAC protocol for a wired network by using as an example the
implementation code for the IEEE 802.3 protocol. The header file for the IEEE 802.3 implementation is
mac_802_3.h and the source file is mac_802_3.cpp in the folder QUALNET_HOME/libraries/developer/
src. We use code snippets from these two files throughout this section to illustrate different steps in writing
a wired MAC protocol. After understanding the discussed snippets, look at the complete code for IEEE
802.3 to understand how a wired MAC protocol is implemented in QualNet.

The following list summarizes the actions that need to be performed for adding a wired MAC protocol to
QualNet. Each of these steps is described in detail in subsequent sections.
247 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
1. Create header and source files (see Section 4.5.5.2).

2. Modify the file mac.cpp to include the protocol’s header file (see Section 4.5.5.2).

3. Include the protocol in the list of MAC Layer protocols and trace protocols (see Section 4.5.5.3).

4. Define data structures for the protocol (see Section 4.5.5.4).

5. Decide on the format for the protocol-specific configuration parameters (see Section 4.5.5.5.1).

6. Read the protocol’s configuration parameters and call the protocol’s initialization function from the MAC

Layer initialization function, MAC_Initialize (see Section 4.5.5.5.2).

7. Call the appropriate function to assign MAC addresses to interfaces (see Section 4.5.5.5.3). If

MYPROTOCOL uses a new type of MAC address, then implement a function to assign MAC addresses

of that type.

8. Write the initialization function for the protocol. The initialization function should include the following

tasks:

a. Declare and initialize the state variables (see Section 4.5.5.5.4.1).

b. Initialize send and receive function pointers (see Section 4.5.5.5.4.2).

c. Initialize the neighbor list (see Section 4.5.5.5.4.3).

d. Initialize times, if needed (see Section 4.5.5.5.4.4).

9. Implement functions to translate between IP and MAC addresses used by MYPROTOCOL (see

Section 4.5.5.6).

10.Call the protocol’s event dispatcher from the MAC Layer event dispatcher, MAC_ProcessEvent (see

Section 4.5.5.7.1).

11.Declare any new event types used by the protocol in the header file QUALNET_HOME/include/api.h

(see Section 4.5.5.7.2).

12.Write the protocol event dispatcher (see Section 4.5.5.7.2).

13.Modify MAC Layer functions to integrate the new MAC protocol (see Section 4.5.5.8).

a. Modify function MAC_NetworkLayerHasPacketToSend to deliver packets received from the Network
Layer to MYPROTOCOL.

b. Modify functions MAC_IsWiredNetwork, MAC_IsPointToPointNetwork, etc., to return the correct
network type for the interface that MYPROTOCOL runs on.

14.Write a function to handle outgoing packets (see Section 4.5.5.9.1).

15.Write a function to process incoming packets (see Section 4.5.5.9.2).

16.Include code in various functions to collect statistics.

a. Declare statistics variables (see Section 4.5.5.10.1).

b. Initialize the statistics variables in the protocol’s initialization function (see Section 4.5.5.10.2).

c. Update the statistics as appropriate (see Section 4.5.5.10.3).

d. Write a function to print the statistics (see Section 4.5.5.10.4).

e. Add dynamic statistics to the protocol, if desired (see Section 4.5.5.10.5) .

17.Call the protocol finalization function from the MAC Layer finalization function, MAC_Finalize (see

Section 4.5.5.11.1).

18.Write the protocol finalization function (see Section 4.5.5.11.2). Call the function to print statistics from

the protocol finalization function.

19.Include the protocol header and source files in the QualNet tree and compile (see Section 4.5.5.12).

20.To make the protocol available in the QualNet GUI, modify the GUI settings files (see Section 4.5.5.13).
QualNet 5.2 Programmer’s Guide 248

MAC Layer Chapter 4
4.5.5.1 Naming Guidelines
In QualNet, each component (file, data structure, function, etc.) is given a name that indicates the name of
the protocol, the layer in which the protocol resides, and the functionality of the component, as appropriate.
We recommend that when adding a new protocol, the programmer name the different components of the
new protocol in a similar manner. It will be helpful to examine the implementation of IEEE 802.3 in QualNet
for hints for naming and coding different components of the new protocol.

In this section, we describe the steps for developing a wired MAC protocol called “MYPROTOCOL”. We
will use the string “Myprotocol” in the names of the different components of this protocol, just as the string
“Mac802_3” appears in the names of the components of the IEEE 802.3 implementation.

4.5.5.2 Creating Files
The first step towards adding a MAC protocol is creating files. Most models comprise two files: the header
file and the source file. These files can be placed in any library, e.g., in the folder QUALNET_HOME/
libraries/developer/src. However, it is recommended that all user-developed models be made part of a
library. In our example, we will place the MAC protocol in an a library called user_models. See
Section 4.10 for instructions for creating and activating a library.

If it doesn’t already exist, create a directory in QUALNET_HOME/libraries called user_models and a
subdirectory in QUALNET_HOME/libraries/user_models called src. Create the files for the MAC protocol
and place them in the folder QUALNET_HOME/libraries/user_models/src. Name these files in a way that
clearly indicates the model that they implement. Prefix the file names with mac_ to designate the files as
MAC protocol files.

Examples:

• mac_802_3.h, mac_802_3.cpp: These files in the folder QUALNET_HOME/libraries/developer/src
implement the IEEE 802.3 MAC protocol.

• mac_tdma.h, mac_tdma.cpp: These files in the folder QUALNET_HOME/libraries/wireless/src
implement the TDMA MAC protocol.

In keeping with the naming guidelines of Section 4.5.5.1, the header file for the example protocol is called
mac_myprotocol.h, and the source file is called mac_myprotocol.cpp.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file, mac_myprotocol.h, should contain the following:

• Prototypes for interface functions in the source file, mac_myprotocol.cpp

• Constant definitions

• Data structure definitions and data types: struct and enum declarations

The source file, mac_myprotocol.cpp, should contain the following:

• Statement to include the protocol’s header file:

#include “mac_myprotocol.h”
249 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
• Statements to include standard library functions and other header files needed by the protocol source
file. A typical protocol source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "api.h" // QUALNET_HOME/include/api.h
#include "mac.h" // QUALNET_HOME/include/mac.h
#include "network_ip.h"
 // QUALNET_HOME/libraries/developer/src/network_ip.h
#include “partition.h” // QUALNET_HOME/include/partition.h

• Initialization function for the protocol, MacMyprotocolInit

• Event dispatcher function for the protocol, MacMyprotocolLayer

• Finalization function for the protocol, MacMyprotocolFinalize

• Additional protocol implementation functions

The file mac.cpp contains the layer level initialization, event dispatcher, and finalization functions. These
layer level functions in turn call the protocol’s initialization, event dispatcher, and finalization functions.
Therefore, to make these protocol functions available to the layer level functions, insert the following
include statement in the file mac.cpp:

#include “mac_myprotocol.h”

4.5.5.3 Including MYPROTOCOL in List of MAC Layer Protocols

Each node in QualNet hosts an operating protocol stack. For each layer in the stack, a list of protocols
running at that layer is maintained. When a new MAC Layer protocol is added to QualNet, it needs to be
included in the list of MAC Layer protocols. To do this, add the protocol name to the enumeration
MAC_PROTOCOL defined in mac.h (see Section 4.5.3).

For our example protocol, add the entry MAC_PROTOCOL_MYPROTOCOL to MAC_PROTOCOL, as shown in
Figure 4-119.

typedef enum
{
 MAC_PROTOCOL_MPLS = 1,
 MAC_PROTOCOL_CSMA,
 MAC_PROTOCOL_FCSC_CSMA,
 MAC_PROTOCOL_MACA,
 MAC_PROTOCOL_FAMA,
 ...
 MAC_PROTOCOL_WORMHOLE,
 MAC_PROTOCOL_ANODR,
 MAC_PROTOCOL_802_15_4,
 MAC_PROTOCOL_MYPROTOCOL,
 MAC_PROTOCOL_NONE // this must be the last one
} MAC_PROTOCOL;

FIGURE 4-119. Adding MYPROTOCOL to List of MAC Layer Protocols

Always add to the end of lists in header files.
QualNet 5.2 Programmer’s Guide 250

MAC Layer Chapter 4
QualNet provides for detailed traces of packets as they traverse the protocol stack at nodes in the network.
A packet trace lists, among other information, the protocol that is handling the packet at the time of the
trace. To facilitate tracing, QualNet lists all protocols in an enumeration, TraceProtocolType, in the file
QUALNET_HOME/include/trace.h. For our example protocol, add an entry TRACE_MYPROTOCOL in
TraceProtocolType, as shown in Figure 4-120.

typedef enum
{
 TRACE_UNDEFINED = 0,
 TRACE_TCP, // 1
 TRACE_UDP, // 2
 TRACE_IP, // 3
 TRACE_CBR, // 4
 ...
 TRACE_MYPROTCOL,
 // Must be last one!!!
 TRACE_ANY_PROTOCOL
}TraceProtocolType;

FIGURE 4-120. Adding MYPROTOCOL to List of Trace Protocols

Always add to the end of lists in header files (just before the entry TRACE_ANY_PROTOCOL).

4.5.5.4 Defining Data Structures
Each MAC Layer protocol has its own data structures, which are defined in the protocol’s header file. The
data structures store information such as:

1. Protocol parameters (see Section 4.5.5.5.2)

2. Protocol state (see Section 4.5.5.5.4.1)

3. Statistics variables (see Section 4.5.5.10.1)
251 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
Define an appropriate data structure, MacDataMyprotocol, for MYPROTCOL in the protocol header file,
mac_myprotocol.h. As an example, the following data structure, defined in mac_802_3.h, is used by the
IEEE 802.3 protocol:

typedef struct struct_mac_802_3_str
{
 MacData* myMacData;
 int bwInMbps;
 clocktype slotTime;
 clocktype interframeGap;
 clocktype jamTrDelay;
 Message* msgBuffer;
 MAC802_3StationState stationState;
 int backoffWindow;
 int collisionCounter;
 BOOL wasInBackoff;
 int seqNum;
 MAC802_3Statistics stats;
 LinkedList* neighborList;
 BOOL isFullDuplex;
 MAC802_3FullDuplexStatistics* fullDupStats;
 ...
} MacData802_3;

In the above declaration, MAC802_3Statistics is the statistics data structure and
MAC802_3StationState is the enumeration of protocol states for the IEEE 802.3 protocol. See the
declaration of MacData802_3 in mac_802_3.h for a description of the other fields of the data structure.

4.5.5.5 Initialization

In this section, we describe the tasks that need to be performed as part of the initialization process of a
wired MAC protocol.

4.5.5.5.1 Determining the Protocol Configuration Format

A MAC protocol may use protocol-specific configuration parameters. The configuration parameters are
specified in the QualNet configuration file. The format for specifying a MAC protocol’s configuration
parameters is:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.

<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.
QualNet 5.2 Programmer’s Guide 252

MAC Layer Chapter 4
Generally, a wired MAC protocol requires the data rate and propagation delay to be specified. As an
example, the following configuration specifies the subnet data rate and propagation delay as 10 Mbps and
1 micro-second, respectively.

 SUBNET-DATA-RATE 10000000
 SUBNET-PROPAGATION-DELAY 1US

Decide on the format for specifying the new protocol’s configuration parameters. For our example protocol,
specify the configuration parameters in the QualNet configuration file using the following format
(<Identifier> and <Index> can also be used to qualify the parameter declarations, as described
above):

 MAC-PROTOCOL MYPROTOCOL
 <param1> <value1>
 ...
 <paramN> <valueN>

where:

<param1>, ..., <paramN> : Names of parameters for MYPROTOCOL.

<value1>, ..., <valueN : Values of the protocol parameters.

Section 4.5.5.5.2 explains how to read user input specified in this format to initialize the protocol.

4.5.5.5.2 Reading Configuration Parameters and Calling the Protocol Initialization Function

QualNet can configure a protocol to the parameters specified by the user in the QualNet configuration file
that sets up the experiment. This section explains how to read these user-specified configuration
parameters for the MAC protocol and provide them to the protocol's initialization function.

The protocol stack of each node is initialized in a bottom up manner. For wired networks, the MAC Layer is
the bottom-most layer and is initialized first. This process is performed in the node initialization function
PARTITION_InitializeNodes, implemented in QUALNET_HOME/main/partition.cpp (see Section 3.4.1).

The node initialization function, PARTITION_InitializeNodes, calls the MAC Layer initialization function
MAC_Initialize. Function MAC_Initialize reads the configuration file for lines starting with the keywords
SUBNET or LINK (see Figure 4-121). If the input line begins with the keyword SUBNET, MAC_Initialize calls
the function ProcessSubnetLine. If the input line begins with the keyword LINK, MAC_Initialize calls the
function ProcessLinkLine.
253 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
void
MAC_Initialize(Node *firstNode,
 const NodeInput *nodeInput)
{
 ...
 char* subnetAddressString = (char*) MEM_malloc(MAX_ADDRESS_STRING_LENGTH);
 ...
 for (i = 0; i < nodeInput->numLines; i++)
 {
 char* currentLine = nodeInput->values[i];
 char *nextSubnetString = currentLine;
 BOOL isLink = FALSE;
 if (strcmp(nodeInput->variableNames[i], "SUBNET") == 0)
 {
 }
 else if (strcmp(nodeInput->variableNames[i], "LINK") == 0)
 {
 isLink = TRUE;
 }
 else
 {
 continue;
 }
 ...
 if (isLink == FALSE)
 {
 ProcessSubnetLine(firstNode,
 nodeInput,
 ipv4subnetAddress,
 numHostBits,
 &IPv6subnetAddress,
 IPv6subnetPrefixLen,
 p,
 &subnetData->subnetList[subnetIndex],
 subnetIndex,
 siteCounter);
 }
 else
 {
 ProcessLinkLine(firstNode,
 nodeInput,
 p,
 siteCounter);
 }
 }
 ...
}

FIGURE 4-121. Processing Input File SUBNET and LINK Statements in MAC_Initialize
QualNet 5.2 Programmer’s Guide 254

MAC Layer Chapter 4
Function ProcessSubnetLine assigns an IPv4 or IPv6 address to the subnet interface for each node in the
subnet and calls function AddNodeToSubnet (AddNodeToIpv6Network) for each node. Function
AddNodeToSubnet and AddNodeToIpv6Network initialize the interface information for the subnet interface
and calls the initialization function for the MAC protocol specified for the subnet in the configuration file. For
example, if IEEE 802.3 is specified as the MAC protocol, AddNodeToSubnet (see Figure 4-122) and
AddNodeToIpv6Network (see Figure 4-123) call function CreateMac802_3. Functions MAC_Initialize,
ProcessSubnetLine, ProcessLinkLine, AddNodeToSubnet, AddNodeToIpv6Network, and
CreateMac802_3 are implemented in the file mac.cpp.

For some MAC protocols, function AddNodeToSubnet also updates the Network Layer forwarding table to
include the routing information for nodes in the subnet. For IEEE 802.3, AddNodeToSubnet calls function
NetworkUpdateForwardingTable to add an entry for nodes in the subnet.
255 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
static void //inline//
AddNodeToSubnet(
 Node *node,
 const NodeInput *nodeInput,
 NodeAddress subnetAddress, //base address
 NodeAddress interfaceAddress, //my IP# on this interface
 int numHostBits,
 char *macProtocolName,
 PartitionSubnetMemberData* subnetList,
 int nodesInSubnet,
 int subnetListIndex,
 BOOL isNewInterface,
 short subnetIndex)
{
 int interfaceIndex;
 ...
 Address address;

 MacAddNewInterface(node, interfaceAddress, numHostBits, &interfaceIndex,
 nodeInput, macProtocolName, isNewInterface);
 ...
 if(strcmp(macProtocolName, "MAC802.3") == 0 || ...)
 {
 /* Automatically add directly connected route to forwarding table. */
 NetworkUpdateForwardingTable(
 node, subnetAddress,
 ConvertNumHostBitsToSubnetMask(numHostBits),
 0, interfaceIndex, 1, ROUTING_PROTOCOL_DEFAULT);
 }
 ...
 /* Select the MAC protocol and initialize. */
 if (strcmp(macProtocolName, "MAC802.3") == 0)
 {
 if (nodesInSubnet < 2)
 {
 char errorStr[MAX_STRING_LENGTH];
 sprintf(errorStr, "There are %d nodes (fewer than two) in subnet "
 "%d", nodesInSubnet, subnetAddress);
 ERROR_ReportError(errorStr);
 }
 CreateMac802_3(node, &address, nodeInput, interfaceIndex,
 (SubnetMemberData *) subnetList, nodesInSubnet,
 NETWORK_IPV4);
 return;
 }
 else if (strcmp(macProtocolName, "SATCOM") == 0)
 {
 ...
 }
 ...
}

FIGURE 4-122. Wired MAC Initialization: Adding a Node to an IPv4 Subnet
QualNet 5.2 Programmer’s Guide 256

MAC Layer Chapter 4
static void //inline//
AddNodeToIpv6Network(
 Node *node,
 const NodeInput *nodeInput,
 in6_addr *globalAddr,
 in6_addr *subnetAddr,
 unsigned int subnetPrefixLen,
 char* macProtocolName,
 short subnetIndex,
 SubnetMemberData* subnetList,
 int nodesInSubnet,
 int subnetListIndex,
 unsigned short siteCounter,
 BOOL isNewInterface)
{
 int interfaceIndex;
 ...
 Address address;
 ...
 MacAddNewInterface(node, globalAddr, subnetAddr, subnetPrefixLen,
 &interfaceIndex, nodeInput, siteCounter,
 macProtocolName, isNewInterface);
 ...
 SetIPv6AddressInfo(&address, *globalAddr);
 ...
 /* Select the MAC protocol and initialize. */

 if (strcmp(macProtocolName, "MAC802.3") == 0)
 {
 if (nodesInSubnet < 2)
 {
 char errorStr[MAX_STRING_LENGTH];
 /*sprintf(errorStr, "There are %d nodes (fewer than two) in subnet"
 " TLA=%u, NLA=%u, SLA=%u", nodesInSubnet, tla, nla, sla);*/
 ERROR_ReportError(errorStr);
 }
 CreateMac802_3(node, &address, nodeInput,
 interfaceIndex, subnetList, nodesInSubnet, NETWORK_IPV6);
 return;
 }
 else if (strcmp(macProtocolName, "SATCOM") == 0)
 {
 ...
 }
 ...
}

FIGURE 4-123. Wired MAC Initialization: Adding a Node to an IPv6 Subnet
257 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
Function CreateMac802_3, shown in Figure 4-124, reads the parameters for the protocol by calling
function Mac802_3GetSubnetParameters, stores the parameters in the protocol data structure for the
interface, macData[interfaceIndex], initializes the Network Layer queues for the interface by calling
function NetworkIpCreateQueues, and calls the initialization function for the IEEE 802.3 protocol,
Mac802_3Init. NetworkIpCreateQueues is implemented in QUALNET_HOME/libraries/developer/src/
network_ip.cpp and the IEEE 802.3 functions are implemented in mac_802_3.cpp.

static void
CreateMac802_3(
 Node* node,
 Address* address,
 const NodeInput* nodeInput,
 int interfaceIndex,
 SubnetMemberData* subnetList,
 int nodesInSubnet,
 NetworkType networkType,
 BOOL fromLink = FALSE)
{
 Int64 subnetBandwidth;
 clocktype subnetPropDelay;
 ...
 Mac802_3GetSubnetParameters(node,
 interfaceIndex
 nodeInput,
 address,
 &subnetBandwidth,
 &subnetPropDelay,
 fromLink);

 if (fromLink)
 {
 SetMacConfigParameter(node,
 interfaceIndex,
 nodeInput);
 }

 NetworkIpCreateQueues(node, nodeInput, interfaceIndex);

 node->macData[interfaceIndex]->macProtocol = MAC_PROTOCOL_802_3;
 node->macData[interfaceIndex]->bandwidth = subnetBandwidth;
 node->macData[interfaceIndex]->propDelay = subnetPropDelay;
 node->macData[interfaceIndex]->mplsVar = NULL;

 Mac802_3Init(node,
 nodeInput,
 interfaceIndex,
 subnetList,
 nodesInSubnet);
}

FIGURE 4-124. MAC Protocol Initialization: Function CreateMac802_3
QualNet 5.2 Programmer’s Guide 258

MAC Layer Chapter 4
4.5.5.5.3 Initializing MAC Address

As part of the initialization of the MAC protocol at an interface, the interface is assigned a MAC address.
This section describes how this is done for IPv4 networks. For IPv6 networks, the steps are very similar.

If a node is added to a subnet by means of the SUBNET keyword in the configuration file, function
MAC_Initialize calls function ProcessInpuFileSubnetLine, which in turn calls function AddNodeToSubnet.
(see Section 4.5.5.5.2). Function AddNodeToSubnet calls function MacAddNewInterface, which initializes
the interface information for the node’s interface to the subnet. MacAddNewInterface calls function
MacConfigureHWAddress to initialize the MAC address for the interface.

MacConfigureHWAddress configures the hardware address at an interface of the node.
MacAddNewInterface reads the MAC address configuration file if this interface address is not defined in
the scenario configuration (.config) file. If the MAC address configuration file contains a MAC address for
the interface being initialized, then that MAC address is assigned to the interface. Otherwise,
MacConfigureHWAddress calls one of the following functions to assign a MAC address to the interface:

• MacSetDefaultHWAddress: To assign an Ethernet-type (6-byte) MAC address as a combination of
node identifier and interface index

• MAC_SetFourByteMacAddress: To assign a 4-byte MAC address

• MAC_SetTwoByteMacAddress: To assign a 2-byte MAC address

Modify MacConfigureHWAddress to call the function to configure the MAC address for MYPROTOCOL, as
shown in Figure 4-125. The example in Figure 4-125 assumes that MYPROTOCOL uses a 4-byte MAC
address which is configured by function MAC_SetFourByteMacAddress.

If MYPROTOCOL supports a different type of MAC address, then you may need to implement a new MAC
address generation function and call it from MacConfigureHWAddress.
259 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
static
void MacConfigureHWAddress(
 Node* node,
 NodeId nodeId,
 int interfaceIndex,
 const NodeInput* nodeInput,
 MacHWAddress* macAddr,
 char *macProtocolName,
 NetworkType networkType,
 Address ipAddr)
{
 ...
 macAddrConfigured = readInterfaceMacAddress(node, nodeid, interfaceIndex,
 nodeInput, macAddr,
 readMacAddress, ipAddr);
 if(!macAddrConfigured)
 {
 IO_ReadCachedFile(node, nodeid, interfaceIndex, nodeInput,
 "MAC-ADDRESS-CONFIG-FILE", &retVal, &macAddrInput);
 ...
 }
 if (!macAddrConfigured)
 {
 if(strcmp(macProtocolName, "MAC802.3")==0 ||
 ...
 strcmp(macProtocolName, "SWITCHED-ETHERNET") == 0)
 {
 MacSetDefaultHWAddress(nodeId, macAddr, interfaceIndex);
 }
 else if(strcmp(macProtocolName, "MAC-LINK-11") == 0 ||
 strcmp(macProtocolName, "MYPROTOCOL") == 0 ||
 ...
 strcmp(macProtocolName, "MAC-SRW") == 0)
 {
 MAC_SetFourByteMacAddress(node, nodeId, macAddr, interfaceIndex);
 }
 else if(strcmp(macProtocolName, "MAC802.15.4") == 0)
 {
 MAC_SetTwoByteMacAddress(node, macAddr, interfaceIndex);
 }
 else
 {
 ERROR_Assert(FALSE,
 "Invalid Mac Protocol or does not "
 "have any supported Mac address type");
 }
 }
 ...
}

FIGURE 4-125. MAC Address Configuration Function
QualNet 5.2 Programmer’s Guide 260

MAC Layer Chapter 4
4.5.5.5.4 Implementing the Protocol Initialization Function

The initialization of a MAC protocol takes place in the initialization function of the protocol that is indirectly
called by the MAC Layer initialization function MAC_Initialize. The initialization function of a wired MAC
protocol commonly performs the following tasks:

• Create an instance of the protocol data structure

• Calculate and store the protocol’s operational parameters

• Initialize the state variables

• Initialize the send and receive function pointers

• Collect neighbor information and create the neighbor list

• Schedule timers, if required

Like all other functions belonging to the protocol, the prototype for the initialization function should be
included in the protocol's header file, mac_myprotocol.h.

4.5.5.5.4.1 Creating an Instance and Initializing the State

The initialization function initializes the protocol state. Each protocol has a structure that it uses to store
state information. This may include information such as the protocol state and parameters, neighbor
information, etc. Each instance of the protocol maintains its own state variable.

To store the state, declare the structure to hold the protocol state in the header file, mac_myprotocol.h (see
Section 4.5.5.4). As an example, see the declaration of the IEEE 802.3 data structure MacData802_3 in
mac_802_3.h.

Create an instance of the protocol state by allocating memory to the state structure. IEEE 802.3 performs
this task in its initialization function Mac802_3Init by calling the function MEM_malloc to allocate memory
for the IEEE 802.3 data structure MacData802_3, as shown in Figure 4-126. Mac802_3Init and the other
IEEE 802.3 functions are implemented in mac_802_3.cpp. Data structure and constant definitions for IEEE
802.3 are contained in mac_802_3.h.

Mac802_3Init also sets up pointers between the newly created instance of the IEEE 802.3 data structure
MacData802_3 and the data structure that stores the MAC Layer information for the interface,
macData[interfaceIndex].

The state variables for the protocol are also initialized in the initialization function. For example,
Mac802_3Init initializes the protocol status (mode), backoff window, message buffer, etc.

The initialization function of a wired MAC protocol also calculates and stores the values of parameters that
it requires in its operation. For example, function Mac802_3Init calculates and stores the values of the slot
time, inter-frame gap and jam transmission time used by IEEE 802.3 by calling functions
Mac802_3GetSlotTime, Mac802_3GetInterframeDelay, and Mac802_3GetJamTrDelay, respectively.
261 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
void Mac802_3Init(
 Node* node,
 const NodeInput* nodeInput,
 int interfaceIndex,
 SubnetMemberData* nodeList,
 int numNodesInSubnet)
{
 MacData802_3* mac802_3;
 ...
 mac802_3 = (MacData802_3 *) MEM_malloc(sizeof(MacData802_3));
 memset(mac802_3, 0, sizeof(MacData802_3));
 mac802_3->myMacData = node->macData[interfaceIndex];
 mac802_3->myMacData->macVar = (void *) mac802_3;
 RANDOM_SetSeed(mac802_3->seed,
 node->globalSeed,
 node->nodeId,
 MAC_PROTOCOL_802_3,
 interfaceIndex);
 // Get channel bandwidth
 mac802_3->bwInMbps = (int) (mac802_3->myMacData->bandwidth / 1000000);
 // Initialize slot time, interframe gap and Jam transmission time.
 mac802_3->slotTime = Mac802_3GetSlotTime(node, mac802_3);
 mac802_3->interframeGap = Mac802_3GetInterframeDelay(node, mac802_3);
 mac802_3->jamTrDelay = Mac802_3GetJamTrDelay(node, mac802_3);
 // Initially there is no packet in own buffer
 mac802_3->msgBuffer = NULL;
 // Initialize state, collision counter
 // Backoff Window & Backoff Flag for this interface
 mac802_3->stationState = IDLE_STATE;
 mac802_3->collisionCounter = 0;
 mac802_3->wasInBackoff = FALSE;
 mac802_3->backoffWindow = MAC802_3_MIN_BACKOFF_WINDOW;
 mac802_3->seqNum = 0;
 ...
 // Initialize neighbor list for this station
 ListInit(node, &mac802_3->neighborList);
 mac802_3->link= (LinkData*)MEM_malloc(sizeof(LinkData));
 memset(mac802_3->link, 0, sizeof(LinkData));
 Mac802_3GetNeighborInfo(
 node,
 mac802_3->neighborList,
 nodeList,
 numNodesInSubnet,
 mac802_3->link);
 mac802_3->link->myMacData = mac802_3->myMacData;
 ...
}

FIGURE 4-126. IEEE 802.3 Initialization Function
QualNet 5.2 Programmer’s Guide 262

MAC Layer Chapter 4
4.5.5.5.4.2 Initializing Send and Receive Function Pointers

Each MAC protocol implements a function to transmit packets to the network and a function to handle
packets received from the network. The pointers to these send and receive functions are stored in the
sendFrameFn and receiveFrameFn fields, respectively, of the data structure that stores the MAC Layer
information for the interface. This initialization is also done in the protocol initialization function. For
example, the send and receive functions for the IEEE 802.3 protocol are
Mac802_3NetworkLayerHasPacketToSend and Mac802_3HandleReceivedFrame, respectively (see
Figure 4-126).

For MYPROTOCOL, write the send and receive functions MacMyprotocolNetworkLayerHasPacketToSend
and MacMyprotocolHandleReceivedFrame (see Section 4.5.5.9) and set the send receive function
pointers sendFrameFn and receiveFrameFn of the MAC data structure for the interface to point to
these functions.

4.5.5.5.4.3 Initializing Neighbor List

For a wired MAC protocol, a node maintains a list of nodes to which it is connected through the subnet
interface. This neighbor list is initialized in the protocol’s initialization function. For example, for the IEEE
802.3 protocol, function Mac802_3Init calls function Mac802_3GetNeighborInfo (see Figure 4-126) to set
up the neighbor list for a node.

4.5.5.5.4.4 Initializing Timers

A MAC protocol may need to set timers at initialization. See Section 3.3.2.2 for details on setting timers.

4.5.5.6 Implementing Address Translation Functions

Since the Network Layer and MAC Layer use different addresses for the same interface, the protocol
implementation should provide for a way to translate from one address to another. Section 4.5.5.6.1
describes the function to translate an IP address to a MAC address. Section 4.5.5.6.2 describes the
function to translate a MAC address to an IP address.

4.5.5.6.1 IP to MAC Address Translation Function

When the Network Layer passes a packet to the MAC Layer, it also passes the MAC address of the next
hop. If ARP is not enabled, the Network Layer calls function IPv4AddressToHWAddress (for IPv4
networks) to translate the IP address of the next hop to the MAC address used by the MAC protocol
running at the interface.

This section describes the translation from IPv4 to MAC addresses.

Function IPv4AddressToHWAddress translates an IP address to a MAC address based on the MAC
protocol used by the interface. For Example, for the IEEE 802.3 protocol, function
IPv4AddressToHWAddress calls function IPv4AddressToDefaultHWAddress, which translates an IPv4
address to a MAC address (see Figure 4-127). Modify function IPv4AddressToHWAddress to call the
translation function for MYPROTOCOL. The example in Figure 4-127 assumes that MYPROTOCOL uses
a 4-byte MAC address and calls MAC_FourByteMacAddressToVariableHWAddress which translates an
IPv4 address to a MAC address. Functions IPv4AddressToHWAddress,
IPv4AddressToDefaultHWAddress, and MAC_FourByteMacAddressToVariableHWAddress are
implemented in mac.cpp.

If MYPROTOCOL supports a different type of MAC address, then you may need to implement a new MAC
address to IPv4 address translation function.
263 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
BOOL IPv4AddressToHWAddress(
 Node *node,
 int interfaceIndex,
 Message* msg,
 NodeAddress ipv4Address,
 MacHWAddress* macAddr)
{
 BOOL isResolved = FALSE;
 switch (node->macData[interfaceIndex]->macProtocol)
 {
 ...
 case MAC_PROTOCOL_802_3:
 case MAC_PROTOCOL_ALOHA:
 ...
 case MAC_PROTOCOL_LINK:
 {
 (*macAddr).byte = (unsigned char*) MEM_malloc(
 sizeof(unsigned char)*MAC_ADDRESS_DEFAULT_LENGTH);
 IPv4AddressToDefaultHWAddress(node, interfaceIndex,
 ipv4Address, macAddr);
 isResolved = TRUE;
 break;
 }

 case MAC_PROTOCOL_DOT11:
 ..
 case MAC_PROTOCOL_MYPROTOCOL:
 ...
 case MAC_PROTOCOL_CES_WINTGBS:
 {
 MAC_FourByteMacAddressToVariableHWAddress(node,
 interfaceIndex,
 macAddr,
 ipv4Address);
 isResolved = TRUE;
 break;
 }
 ...
 default:
 ...
 }
 return isResolved;
}

FIGURE 4-127. Function to Translate IPv4 Addresses to MAC Addresses

4.5.5.6.2 MAC to IP Address Translation Function

When ARP is not enabled, some protocols may need to translate the MAC address of an interface to the IP
address. This section describes the translation from MAC to IPv4 addresses.

Function MacHWAddressToIpv4Address translates a MAC address to an IP address based on the MAC
address type. For example, for an Ethernet type address, function MacHWAddressToIpv4Address calls
function DefaultMac802AddressToIpv4Address to translate the MAC address to IPv4 address (see
Figure 4-127). Functions MacHWAddressToIpv4Address and DefaultMac802AddressToIpv4Address are
implemented in mac.cpp.
QualNet 5.2 Programmer’s Guide 264

MAC Layer Chapter 4
If MYPROTOCOL supports a different type of MAC address, then you may need to implement a new IPv4
address to MAC address translation function.

NodeAddress MacHWAddressToIpv4Address(
 Node *node,
 int interfaceIndex,
 MacHWAddress* macAddr)
{
 if (MAC_IsBroadcastHWAddress(macAddr))
 {
 return ANY_DEST;
 }
 else if (ArpIsEnable(node,interfaceIndex))
 {
 return ReverseArpTableLookUp(node, interfaceIndex, macAddr);
 }
 else
 {
 switch(macAddr->hwType)
 {
 case HW_TYPE_ETHER:
 {
 Mac802Address mac802Addr;
 ConvertVariableHWAddressTo802Address(node,
 macAddr,
 &mac802Addr);
 return DefaultMac802AddressToIpv4Address(node,
 &mac802Addr);
 break;
 }
 case IPV4_LINKADDRESS:
 {
 return MAC_VariableHWAddressToFourByteMacAddress (
 node,macAddr);
 break;
 }
 case HW_NODE_ID:
 {
 ...
 }
 default:
 ERROR_Assert(FALSE, "Unsupported hardware type");
 break;
 }
 }
 return 0;
}

FIGURE 4-128. Function to Translate MAC Addresses to IPv4 Addresses

4.5.5.7 Implementing the Event Dispatcher

In this section, we describe the steps for implementing the event dispatcher function for a wired MAC
protocol.

As explained in Section 3.4.2, when an event occurs, it is first handled by the node level dispatcher
function NODE_ProcessEvent, defined in QUALNET_HOME/main/node.cpp. If the event is for the MAC
265 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
Layer, NODE_ProcessEvent calls the MAC Layer event dispatcher MAC_ProcessEvent, defined in
mac.cpp.

Section 4.5.5.7.1 describes how to modify the MAC Layer event dispatcher function to call the MAC
protocol’s event dispatcher. Section 4.5.5.7.2 describes how to implement the MAC protocol’s event
dispatcher.

4.5.5.7.1 Modifying the MAC Layer Event Dispatcher

Function MAC_ProcessEvent implements the MAC Layer event dispatcher that informs the appropriate
MAC protocol of received events. Messages contain the index of the interface for which the event has
occurred. The API function MESSAGE_GetInstanceId returns the interface index. MAC_ProcessEvent
implements a switch statement on the protocol that is running at the interface read from the message and
calls the appropriate protocol-specific event dispatcher.

To enable the protocol MYPROTOCOL to receive events, add code to MAC_ProcessEvent to call the
protocol's event dispatcher function when messages for the protocol are received. Figure 4-129 shows a
code fragment from MAC_ProcessEvent with sample code for calling MYPROTOCOL’s event dispatcher
function MacMyprotocolLayer.

void
MAC_ProcessEvent(Node *node, Message *msg)
{
 int interfaceIndex = MESSAGE_GetInstanceId(msg);
 int protocol = MESSAGE_GetProtocol(msg);
 ...
 /* Select the MAC protocol model, and direct it to handle the message. */

 switch (node->macData[interfaceIndex]->macProtocol)
 {
 ...
 case MAC_PROTOCOL_DOT11:
 {
 MacDot11Layer(node, interfaceIndex, msg);
 break;
 }
 case MAC_PROTOCOL_CSMA:
 {
 MacCsmaLayer(node, interfaceIndex, msg);
 break;
 }
 ...
 case MAC_PROTOCOL_MYPROTOCOL:
 {
 MacMyprotocolLayer(node, interfaceIndex, msg);
 break;
 }
 ...
 }
}

FIGURE 4-129. MAC Layer Event Dispatcher
QualNet 5.2 Programmer’s Guide 266

MAC Layer Chapter 4
4.5.5.7.2 Implementing the Protocol Event Dispatcher

A protocol's event dispatcher should include a switch on all message types that the protocol may receive.
It can then process each message type either inside the switch or by calling a function to handle the
message type received.

All event types used by QualNet protocols are enumerated in the file QUALNET_HOME/include/api.h. If
the protocol being added needs additional event types, these should be included in the enumeration in file
api.h, as shown in Figure 4-130.

// /**
// ENUM :: MESSAGE/EVENT
// DESCRIPTION :: Event/message types exchanged in the simulation
// **/
enum
{
 /* Special message types used for internal design. */
 MSG_SPECIAL_Timer = 0,
 ...
 /* Message Types for Channel layer */
 MSG_PROP_SignalArrival = 100,
 MSG_PROP_SignalEnd = 101,
 ...
 /*
 * Any other message types which have to be added should be added before
 * MSG_DEFAULT. Otherwise the program will not work correctly.
 */
 MSG_MAC_MYPROTOCOL_NewEvent1,
 MSG_MAC_MYPROTOCOL_NewEvent2,
 MSG_DEFAULT = 10000
};

FIGURE 4-130. Declaring New Event Types

Always add to the end of lists in header files (just before the entry MSG_DEFAULT).

The event dispatcher function for a MAC protocol handles both packet and timer events. As an example,
Figure 4-131 shows the IEEE 802.3 event dispatcher function Mac802_3Layer. Note that once a message
has been processed, it is freed by calling the API MESSAGE_Free, unless it is used to forward a packet to
the upper layers. The event dispatcher also includes a default case in the switch statement to handle
events of an unknown type.

It is important to free the memory after the message has been processed; otherwise, the
simulator will leak memory.

In Figure 4-131, event MSG_MAC_StartTransmission is an example of a timer event that is scheduled
by one node for another node. Such timer events are used in wired MAC Protocols and Physical Layer
models to model signal propagation. In IEEE 802.3, when a node starts transmitting a frame, it schedules
a timer event of type MSG_MAC_StartTransmission to occur at each of its neighbor nodes after a delay
that is equal to the propagation delay between the transmitting node and the receiving node. Event
MSG_MAC_TransmissionFinished indicates the end of transmission of a frame. If the node is in the
proper state (RECEIVING_STATE), this event also indicates that a packet has arrived at the node. Event
MSG_MAC_JamSequence indicates the end of a jam sequence transmitted by a neighboring node. Event
MSG_MAC_TimerExpired is a self timer, i.e., a timer that is scheduled by a node for itself.
267 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
See files mac_802_3.h and mac_802_3.cpp for definitions of data structures and functions used for
implementing IEEE 802.3.

void Mac802_3Layer(
 Node* node,
 int interfaceIndex,
 Message* msg)
{
 MacData802_3* mac802_3 = (MacData802_3 *)
 node->macData[interfaceIndex]->macVar;
 ...
 switch (msg->eventType)
 {
 case MSG_MAC_StartTransmission:
 {
 // Indicates some node has started to send a frame
 ...
 }
 case MSG_MAC_TransmissionFinished:
 {
 // Indicates a frame has come up to this node.
 ...
 }
 case MSG_MAC_JamSequence:
 {
 ...
 }
 case MSG_MAC_TimerExpired:
 {
 MAC802_3TimerType timerType;
 MAC802_3SelfTimer* info = NULL;
 // Get info from message
 info = (MAC802_3SelfTimer *) MESSAGE_ReturnInfo(msg);
 timerType = info->timerType;
 switch (timerType)
 {
 case mac_802_3_TimerSendPacket:
 {
 ...
 }
 case mac_802_3_ChannelIdle:
 {
 ...
 }
 ...
 }
 ...
 }
 default:
 {
 ...
 }
 }
}

FIGURE 4-131. IEEE 802.3 Event Dispatcher
QualNet 5.2 Programmer’s Guide 268

MAC Layer Chapter 4
4.5.5.8 Modifying MAC Layer Functions
The MAC Layer function MAC_NetworkLayerHasPacketToSend is used by the IP protocol, when the
output queue is empty, to indicate to the MAC Layer that IP has a packet to send.
MAC_NetworkLayerHasPacketToSend calls the send function for the MAC protocol running at the
interface to process the packet from the Network Layer. To add a new MAC protocol, MYPROTOCOL,
modify MAC_NetworkLayerHasPacketToSend so that the packet handler function for MYPROTCOL is
called when MYPROTOCOL is running at the interface. MAC_NetworkLayerHasPacketToSend is
implemented in mac.cpp. Figure 4-132 shows the changes that need to be made
MAC_NetworkLayerHasPacketToSend. For IEEE 802.3, the function to handle packets received from the
Network Layer is Mac802_3NetworkLayerHasPacketToSend (see Section 4.5.5.9). A pointer to this
function is stored in the sendFrameFn field of the MAC data structure for that interface during initialization
(see Section 4.5.5.5.4.2). The changes shown in Figure 4-132 assume that the initialization for
MYPROTOCOL is done in the same way as for IEEE 802.3, described in Section 4.5.5.5.4, i.e., a pointer
to the send function for MYPROTOCOL, MacMyprotocolNetworkLayerHaspacketToSend, is stored in
sendFrameFn.

void
MAC_NetworkLayerHasPacketToSend(Node *node, int interfaceIndex)
{
 /* Select the MAC protocol model, and direct it to send/buffer the
 packet. */
 ...
 switch (node->macData[interfaceIndex]->macProtocol)
 {
 ...
 case MAC_PROTOCOL_802_3:
 {
 (*node->macData[interfaceIndex]->sendFrameFn)
 (node, interfaceIndex);
 break;
 }
 case MAC_PROTOCOL_MYPROTOCOL:
 {
 (*node->macData[interfaceIndex]->sendFrameFn)
 (node, interfaceIndex);
 break;
 }
 ...
 }
}

FIGURE 4-132. Delivering Packets from Network Layer to MAC Protocols

The MAC Layer also implements several functions that are used by upper layer protocols to determine the
type of interface. These functions are:

• MAC_IsWiredNetwork: This function returns TRUE if the interface is a wired network.

• MAC_IsPointToPointNetwork: This function returns TRUE if the interface is a point-to-point link.

• MAC_IsWiredBroadcastNetwork: This function returns TRUE if the interface is a wired broadcast
network.

• MAC_IsWirelessNetwork: This function returns TRUE if the interface is a wireless network.

• MAC_IsOneHopBroadcastNetwork: This function returns TRUE if the interface is a one-hop broadcast
network.
269 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
These functions are implemented in mac.cpp. To add MYPROTOCOL to QualNet, modify these functions
so that they correctly indicate the type of network that MYPROTCOL runs on. As an example, the
modification to function MAC_IsWiredNetwork is shown in Figure 4-133.

BOOL
MAC_IsWiredNetwork(Node *node, int interfaceIndex)
{
 // Abstract satellite model is considered a wired network
 // for the time being.

 if (node->macData[interfaceIndex]->macProtocol == MAC_PROTOCOL_LINK ||
// node->macData[interfaceIndex]->macProtocol == MAC_PROTOCOL_MPLS ||
 node->macData[interfaceIndex]->macProtocol == MAC_PROTOCOL_802_3 ||
 node->macData[interfaceIndex]->macProtocol ==
 MAC_PROTOCOL_MYPROTOCOL ||
 node->macData[interfaceIndex]->macProtocol ==
 MAC_PROTOCOL_SWITCHED_ETHERNET)
 {
 return TRUE;
 }

 return FALSE;
}

FIGURE 4-133. Determining MAC Protocol Type

4.5.5.9 Interfacing with Network Layer
In this section we describe the interface between the Network Layer and a wired MAC Protocol.

A wired MAC protocol interacts with the Network Layer in the following ways:

1. When IP has a packet to send and the output queue is empty, IP indicates to the MAC protocol that a

packet is ready for transmission. If the MAC protocol is in the appropriate state, it dequeues the packet

from the output queue, adds a MAC header, and transmits the packet. See Section 4.5.5.9.1.

2. When the state of the MAC protocol changes to one where it can transmit a packet, the MAC protocol

checks the output queue. If the queue is non-empty, the MAC protocol dequeues a packet from the

queue, adds a MAC header, and transmits the packet. See Section 4.5.5.9.1.

3. When the MAC protocol receives a packet from the network that is meant for the Network Layer, the

MAC protocol delivers the packet to the Network Layer. See Section 4.5.5.9.2.

4. When the MAC protocol receives a packet from the network that is not addressed to the node, but the

node is operating in promiscuous mode, the MAC protocol delivers the packet to the Network Layer.

See Section 4.5.5.9.2.

5. Some MAC protocols pass an indication to the Network Layer when certain events occur at the MAC

Layer. These events include: a packet being dropped at the MAC Layer and receiving a MAC Layer

acknowledgement for a transmitted packet. See Section 4.5.5.9.3.

4.5.5.9.1 Processing Outgoing Packets

When IP has a packet to send to the MAC Layer and the output queue is empty, IP calls function
MAC_NetworkLayerHasPacketToSend. MAC_NetworkLayerHasPacketToSend calls the appropriate
function for the MAC protocol running at the interface to process the packet from the Network Layer
(see.Section 4.5.5.8). If IEEE 802.3 is running at the interface, MAC_NetworkLayerHasPacketToSend
QualNet 5.2 Programmer’s Guide 270

MAC Layer Chapter 4
calls the IEEE 802.3 function Mac802_3NetworkLayerHasPacketToSend.
Mac802_3NetworkLayerHasPacketToSend, shown in Figure 4-134 and implemented in mac_802_3.cpp,
checks the status of the node.

If the node’s status is IDLE_STATE and its message buffer is empty,
Mac802_3NetworkLayerHasPacketToSend does the following:

• Mac802_3NetworkLayerHasPacketToSend calls function
Mac802_3RetrievePacketFromQIntoOwnBuffer to retrieve a packet from the output queue and add a
MAC header to it by calling function Mac802_3CreateFrame.

• Mac802_3NetworkLayerHasPacketToSend then calls function Mac802_3SenseChannel to sense the
channel and transmit the packet if the node’s status is IDLE_STATE.

static void Mac802_3NetworkLayerHasPacketToSend(
 Node* node,
 int interfaceIndex)
{
 MacData802_3* mac802_3 = (MacData802_3 *)
 node->macData[interfaceIndex]->macVar;
 ...
 if (mac802_3->stationState == IDLE_STATE)
 {
 // Check if there is any frame into own buffer
 if (mac802_3->msgBuffer != NULL)
 {
 // Frame present.
 // So no need to retrieve another.
 return;
 }

 // Retrieve the packet from queue into own buffer
 Mac802_3RetrievePacketFromQIntoOwnBuffer(node, mac802_3);

 // Sense the channel to transmit frame
 Mac802_3SenseChannel(node, mac802_3);
 }
}

FIGURE 4-134. Processing Outgoing Packets

For MYPROTOCOL, write a function, MacMyprotocolNetworkLayerHasPacketToSend, that performs
appropriate actions to process an outgoing packet.

4.5.5.9.2 Processing Incoming Packets

The arrival of an incoming packet at a node is indicated by an event that is scheduled by the transmitting
node. In IEEE 802.3, when a node completes transmission of a packet, it schedules event
MSG_MAC_TransmissionFinished at all other nodes in the subnet to occur after the propagation delay.

Figure 4-135 shows the code segment from the IEEE 802.3 event handler function Mac802_3Layer that
handles incoming packets. If the node’s status is RECEIVING_STATE, then the event
MSG_MAC_TransmissionFinished indicates that a packet has arrived at the node. Function
Mac802_3Layer calls the receive function for IEEE 802.3, Mac802_3HandleReceivedFrame, to process
the received frame. Note that a pointer to this function is stored in the receiveFrameFn field of the MAC
data structure for that interface during initialization (see Section 4.5.5.5.4.2).
271 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
void Mac802_3Layer(
 Node* node,
 int interfaceIndex,
 Message* msg)
{
 MacData802_3* mac802_3 = (MacData802_3 *)
 node->macData[interfaceIndex]->macVar;
 ...
 switch (msg->eventType)
 {
 ...
 case MSG_MAC_TransmissionFinished:
 {
 // Indicates a frame has come up to this node.
 if (mac802_3->stationState == RECEIVING_STATE)
 {
 // Frame received successfully.
 // Check the frame. If it is intended for this station
 // forward it to upper layer.
 (*mac802_3->myMacData->receiveFrameFn)(node,
 interfaceIndex,
 msg);
 if (mac802_3->wasInBackoff)
 {
 // Previously, station was in Backoff state.
 // So change station state as Backoff.
 mac802_3->stationState = BACKOFF_STATE;
 }
 else
 {
 // Station was Idle previously.
 // Make station Idle and try to send next frame
 // if available.
 mac802_3->stationState = IDLE_STATE;
 Mac802_3TryToSendNextFrame(node, mac802_3);
 }
 // Msg, containing the frame, will be freed properly later.
 }
 else
 {
 // Received a corrupted frame due to collision.
 // Discard this runt frame.
 MESSAGE_Free(node, msg);
 }
 break;
 } ...
 ...
 }
}

FIGURE 4-135. Processing Incoming Packets
QualNet 5.2 Programmer’s Guide 272

MAC Layer Chapter 4
Function Mac802_3HandleReceivedFrame, shown in Figure 4-136, performs the following tasks:

• Mac802_3HandleReceivedFrame checks if the packet is addressed to the node.

• If the packet is addressed to the node, Mac802_3HandleReceivedFrame calls function
Mac802_3ConvertFrameIntoPacket to remove the MAC header from the packet and delivers the
packet to the upper layers by calling function MAC_HandoffSuccessfullyReceivedPacket.

• If the packet is not addressed to the node but the node is operating in promiscuous mode,
Mac802_3HandleReceivedFrame calls function Mac802_3ConvertFrameIntoPacket to remove the
MAC header from the packet and then calls function MAC_SneakPeakAtMacPacket to enable the
Network Layer to examine the received packet.

• If the packet is not addressed to the node and the node is not operating in promiscuous mode,
Mac802_3HandleReceivedFrame ignores the received packet.
273 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
static void Mac802_3HandleReceivedFrame(
 Node* node,
 int interfaceIndex,
 Message* msg)
{
 MacHeaderVlanTag tagInfo;
 unsigned short lengthOfPacket = 0;
 MacHWAddress srcHWAddr;
 MacHWAddress destHWAddr;

 MacData802_3* mac802_3 = (MacData802_3 *)
 node->macData[interfaceIndex]->macVar;
 ...
 // Get destination and source address from the frame.
 Mac802_3GetSrcAndDestAddrFromFrame(node, msg, &destHWAddr, &srcHWAddr);
 ...
 BOOL isMyAddr = FALSE;
 if (NetworkIpIsUnnumberedInterface(node, interfaceIndex))
 {
 isMyAddr = (MAC_IsBroadcastHWAddress(&destHWAddr) ||
 MAC_IsMyAddress(node, &destHWAddr));
 }
 else
 {
 isMyAddr = MAC_IsMyHWAddress(node, interfaceIndex, &destHWAddr);
 }
 // Checking whether the message is intended for this station
 if (isMyAddr)
 {
 // Frame intended for me. Increase numFrameReceived statistic
 mac802_3->stats.numFrameReceived++;
 Mac802_3Trace(node, mac802_3, msg, "R");
 Mac802_3ConvertFrameIntoPacket(node, msg, &tagInfo);
 ...
 MAC_HandOffSuccessfullyReceivedPacket(
 node, interfaceIndex, msg, &srcHWAddr);
 }
 // If node is operating in promiscuous mode then let
 // Network layer sneak a peak at the packet
 else if (node->macData[interfaceIndex]->promiscuousMode)
 {
 // Frame intended for me. So increase the numFrameReceived statistic.
 mac802_3->stats.numFrameReceived++;
 Mac802_3Trace(node, mac802_3, msg, "R");
 Mac802_3ConvertFrameIntoPacket(node, msg, &tagInfo);
 ...
 MAC_SneakPeekAtMacPacket(
 node, interfaceIndex, msg, srcAddr, destHWAddr);
 MESSAGE_Free(node, msg);
 }
 else
 {
 // Message for unknown destination. So ignore it.
 MESSAGE_Free(node, msg);
 }
}

FIGURE 4-136. Handling Received Packets
QualNet 5.2 Programmer’s Guide 274

MAC Layer Chapter 4
For MYPROTOCOL, write a function, MacMyprotocolHandleReceivedFrame, that performs appropriate
actions to process a received packet.

4.5.5.9.3 Sending Indications to Network Layer

A MAC protocol may provide an indication to the Network Layer when the following events occur:

1. MAC protocol drops a packet: A MAC protocol may retransmit a packet up to a maximum number of

times. When the maximum number of retransmissions is reached, the MAC protocol drops the packet

and may inform the Network Layer of the dropped packet by calling function

MAC_NotificationOfPacketDrop. See the implementation of IEEE 802.11 MAC in QUALNET_HOME/

libraries/wireless/src/mac_dot11-sta.h to see how this function is used.

2. MAC protocol receives an acknowledgement for a transmitted packet: When a MAC protocol receives

an acknowledgement for a successfully transmitted packet, it may notify the Network Layer of the

received acknowledgement by calling function MAC_MacLayerAcknowledgement. See the

implementation of IEEE 802.11 MAC in mac_dot11-sta.h to see how this function is used.

4.5.5.10 Collecting and Reporting Statistics

In this section, we describe how to collect and report statistics for a MAC protocol.

4.5.5.10.1 Declaring Statistics Variables

A MAC Layer protocol can be configured to record statistics specified by the programmer, such as:

• Number of packets transmitted

• Number of packets received

• Number of packets discarded due to collision

To enable statistics collection for the protocol, include the statistic collection variables in the structure used
to hold the protocol state (see Section 4.5.5.4). The statistics related variables can also be defined in a
structure and then that structure is included in the state variable. For example, the data structure for IEEE
802.3, MacData802_3, contains the IEEE 802.3 statistics variable, MAC802_3Statistics, shown
below:

typedef struct struct_mac_802_3_stat
{
 Int64 numFrameTransmitted; // No of frame send by this station
 Int64 numFrameReceived; // No of frame received by this station
 Int32 numBackoffFaced; // No of times backoff faced
 Int64 numFrameLossForCollision;
 // No of frame discarded due to collision
} MAC802_3Statistics;

MacData802_3 and MAC802_3Statistics are defined in mac_802_3.h.
275 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
4.5.5.10.2 Initializing Statistics

Initialize statistics variables in the protocol’s initialization function. For example, the IEEE 802.3
initialization function Mac802_3Init, shown in Figure 4-137, initializes all fields of the statistics variable
MAC802_3Statistics to 0.

void Mac802_3Init(
 Node* node,
 const NodeInput* nodeInput,
 int interfaceIndex,
 SubnetMemberData* nodeList,
 int numNodesInSubnet)
{
 ...
 // Initialize Stat Variables
 mac802_3->stats.numFrameTransmitted = 0;
 mac802_3->stats.numFrameReceived = 0;
 mac802_3->stats.numBackoffFaced = 0;
 mac802_3->stats.numFrameLossForCollision = 0;
 ...
}

FIGURE 4-137. Initializing Statistics Variables for IEEE 802.3

4.5.5.10.3 Updating Statistics

After declaring and initializing the statistics variables, update their value during the protocol life cycle, as
required. For example, IEEE 802.3 increments the value of numFrameTransmitted in function
Mac802_3CompleteFrameTransmission, implemented in mac_802_3.cpp, every time IEEE 802.3
transmits a packet, as shown in Figure 4-138.

static void Mac802_3CompleteFrameTransmission(
 Node* node,
 MacData802_3* mac802_3)
{
 ...
 // Send the message in the LAN, ie, to each neighbor
 Mac802_3BroadcastMessage(node,
 mac802_3->msgBuffer,
 mac802_3,
 MSG_MAC_TransmissionFinished);

 // Station has sent the frame successfully.
 // Reset collision counter & Empty self buffer.

 // Increase numFrameTransmitted statistics
 mac802_3->stats.numFrameTransmitted++;
 ...
}

FIGURE 4-138. Updating IEEE 802.3 Statistics
QualNet 5.2 Programmer’s Guide 276

MAC Layer Chapter 4
4.5.5.10.4 Printing Statistics

As a final step towards statistics collection, create a function to print statistics. Call this function from the
finalization function of the protocol, which is discussed in Section 4.5.5.11.2.

Function Mac802_3PrintStats, shown in Figure 4-139, calls the C function sprintf to create a single string
containing the statistic name and statistic value, and then calls function IO_PrintStat to print that string to a
file. Function IO_PrintStat function, defined in QUALNET_HOME/include/fileio.h, requires the following
parameters:

• Node pointer: Pointer to the node reporting the statistics.

• Layer: String indicating the layer. Set this to "MAC" for the MAC Layer.

• Protocol: String indicating the protocol name.

• Interface address: Interface address. Set this to ANY_DEST for MAC Layer protocols.

• Instance identifier: Interface index.

• Buffer: String containing the statistics.

static void Mac802_3PrintStats(
 Node* node,
 MacData802_3* mac802_3,
 int interfaceIndex)
{
 char buf[MAX_STRING_LENGTH];
 char buf1[MAX_STRING_LENGTH];

 ctoa(mac802_3->stats.numFrameTransmitted, buf1);
 sprintf(buf, "Number of Frames Transmitted = %s", buf1);
 IO_PrintStat(
 node,
 "MAC",
 "802.3",
 ANY_DEST,
 interfaceIndex,
 buf);

 ctoa(mac802_3->stats.numFrameReceived, buf1);
 sprintf(buf, "Number of Frames Received = %s", buf1);
 IO_PrintStat(
 node,
 "MAC",
 "802.3",
 ANY_DEST,
 interfaceIndex,
 buf);
 ...
}

FIGURE 4-139. Function to Print Statistics

4.5.5.10.5 Adding Dynamic Statistics

Dynamic statistics are statistic variables whose values can be observed in the QualNet GUI during the
simulation. See Section 5.2.3 for adding dynamic statistics to a protocol. Refer to QualNet User’s Guide for
details of viewing dynamic statistics during the simulation.
277 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
4.5.5.11 Finalization
The finalization function of the protocol is called by the simulator at the end of simulation. It is the last code
that executes during the simulation. This function is responsible for printing statistics to the statistics file.

At the end of simulation, the finalization function for each protocol is called to print the protocol statistics.
As discussed in Section 3.4.3, the finalization function is called hierarchically. The node finalization
function, PARTITION_Finalize, which is defined in QUALNET_HOME/main/partition.cpp, calls the
finalization function for MAC Layer, MAC_Finalize, defined in mac.cpp. MAC_Finalize calls the finalization
function of the MAC protocol running at each interface.

4.5.5.11.1 Modifying the MAC Layer Finalization Function

Call the finalization function of the MAC protocol from the MAC Layer finalization function, MAC_Finalize,
defined in mac.cpp. Figure 4-140 shows the outline of code that needs to be added to MAC_Finalize.
Function MacMyprotocolFinalize is the finalization function of the protocol MYPROTOCOL (see
Section 4.5.5.11.2).

void
MAC_Finalize(Node *node)
{
 int interfaceIndex;

 for (interfaceIndex = 0;
 interfaceIndex < node->numberInterfaces;
 interfaceIndex++)
 {
 ...
 /* Select the MAC protocol model and finalize it. */
 if (node->macData[interfaceIndex])
 {
 switch (node->macData[interfaceIndex]->macProtocol)
 {
 ...
 case MAC_PROTOCOL_802_3:
 {
 Mac802_3Finalize(node, interfaceIndex);
 break;
 }
 case MAC_PROTOCOL_MYPROTOCOL:
 {
 MacMyprotocolFinalize(node, interfaceIndex);
 break;
 }
 ...
 }
 }
 ...
}

FIGURE 4-140. MAC Layer Finalization Function

4.5.5.11.2 Implementing the Protocol Finalization Function

Write the finalization function for the protocol MYPROTOCOL, MacMyprotocolFinalize. If statistics
collection is enabled for the MAC Layer, call the function to print the protocol’s statistics (see
Section 4.5.5.10.4) from the finalization function, or add code directly to MacMyprotocolFinalize to print
statistics.
QualNet 5.2 Programmer’s Guide 278

MAC Layer Chapter 4
Use the IEEE 802.3 finalization function, Mac802_3Finalize, shown in Figure 4-141, as a template.
Mac802_3Finalize is implemented in mac_802_3.cpp.

void Mac802_3Finalize(
 Node* node,
 int interfaceIndex)
{
 MacData802_3* mac802_3 = (MacData802_3 *)
 node->macData[interfaceIndex]->macVar;

 if (node->macData[interfaceIndex]->macStats == TRUE)
 {
 // The mac can be either in full or half duplex mode
 // If its a full duplex, some extra statistics may be added
 if (mac802_3->isFullDuplex)
 {
 Mac802_3FullDuplexFinalize(node, mac802_3, interfaceIndex);
 // The existing 802.3 parameters may also be needed.
 // If not needed then we may return from here.
 }
 else
 {
 Mac802_3PrintStats(node, mac802_3, interfaceIndex);
 }
 }

FIGURE 4-141. Finalization Function for IEEE 802.3

As for all other functions, specify the prototype of the finalization function in the protocol's header file,
mac_myprotocol.h.

4.5.5.12 Including and Compiling Files
The final step in integrating your MAC protocol into QualNet is to add the source file to the QualNet source
tree and compile.

If you have created the files for the MAC protocol in an existing library or addon, then add the source file to
the Makefile-common for that library or addon. For example, if you have created your model files in the
Developer library, then modify QUALNET_HOME/libraries/developer/Makefile-common as shown in
Figure 4-142. Recompile QualNet after making the changes.

...
common sources
#
DEVELOPER_SRCS = \
$(DEVELOPER_SRCDIR)/adaptation_aal5.cpp \
$(DEVELOPER_SRCDIR)/adaptation.cpp \
...
$(DEVELOPER_SRCDIR)/mac_arp.cpp \
$(DEVELOPER_SRCDIR)/mac_llc.cpp \
$(DEVELOPER_SRCDIR)/mac_background_traffic.cpp \
$(DEVELOPER_SRCDIR)/mac_link.cpp \
$(DEVELOPER_SRCDIR)/mac_myprotocol.cpp \
279 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
$(DEVELOPER_SRCDIR)/mac_satcom.cpp \
$(DEVELOPER_SRCDIR)/mobility_placement.cpp \
$(DEVELOPER_SRCDIR)/multicast_igmp.cpp \
...

FIGURE 4-142. Adding Model to Makefile-common

If you have created a new library called user_models, then follow the instructions given in Section 4.10.5 to
integrate the user_models library into QualNet.

4.5.5.13 Integrating the Protocol into the GUI

To make the new protocol available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.

4.5.6 Adding a Wireless MAC Protocol

This section provides an overview of the flow of a MAC protocol for a wireless network and provides an
outline for developing and adding a MAC protocol, MYPROTOCOL, for a wireless network to QualNet. It
describes how to develop code components common to most MAC protocols such as initializing, sending
and receiving packets, and collecting statistics.

We illustrate the process of adding a MAC protocol for a wireless network by using as an example the
implementation code for the CSMA protocol. The header file for the CSMA implementation is mac_csma.h
and the source file is mac_csma.cpp in the folder QUALNET_HOME/libraries/wireless/src. We use code
snippets from these two files throughout this section to illustrate different steps in writing a wireless MAC
protocol. After understanding the discussed snippets, look at the complete code for the CSMA protocol to
understand how a wireless MAC protocol is implemented in QualNet.

The following list summarizes the actions that need to be performed for adding a wireless MAC protocol,
MYPROTOCOL, to QualNet. For those steps that are similar to the steps for writing a wired MAC protocol,
we refer the reader to the appropriate subsection of Section 4.5.5. The steps that are different for wired
MAC protocols are described in detail in subsequent sections.

1. Create header and source files (see Section 4.5.5.2).

2. Modify the file mac.cpp to include the protocol’s header file (see Section 4.5.5.2).

3. Include the protocol in the list of MAC Layer protocols and trace protocols (see Section 4.5.5.3).

4. Define data structures for the protocol (see Section 4.5.6.1).

5. Decide on the format for the protocol-specific configuration parameters (see Section 4.5.6.2.1).

6. Call the protocol’s initialization function from the MAC Layer initialization function, MAC_Initialize (see

Section 4.5.6.2.2).

7. Call the appropriate function to assign MAC addresses to interfaces (see Section 4.5.6.2.3). If

MYPROTOCOL uses a new type of MAC address, then implement a function to assign MAC addresses

of that type.

8. Write the initialization function for the protocol. The initialization function should include the following

tasks:

a. Declare and initialize the state variables (see Section 4.5.6.2.4.1).

b. Read and store the configuration parameters (see Section 4.5.6.2.4.1).

c. Initialize times, if needed (see Section 4.5.6.2.4.2).
QualNet 5.2 Programmer’s Guide 280

MAC Layer Chapter 4
9. Implement functions to translate between IP and MAC addresses used by MYPROTOCOL (see

Section 4.5.6.3).

10.Call the protocol’s event dispatcher from the MAC Layer event dispatcher, MAC_ProcessEvent (see

Section 4.5.6.4.1).

11.Declare any new event types used by the protocol in the header file QUALNET_HOME/include/api.h

(see Section 4.5.6.4.2).

12.Write the protocol event dispatcher (see Section 4.5.6.4.2).

13.Modify MAC Layer functions to integrate the new MAC protocol (see Section 4.5.6.5).

a. Modify function MAC_NetworkLayerHasPacketToSend to deliver packets received from the Network
Layer to MYPROTOCOL.

b. Modify functions MAC_IsWirelessNetwork, MAC_IsOneHopBroadcastNetwork, etc., to return the
correct network type for the interface that MYPROTOCOL runs on.

c. Modify function MAC_ReceivePacketFromPhy to deliver packets received from the Physical Layer
to MYPROTOCOL.

d. Modify function MAC_ReceivePhyStatusChangeNotification to deliver Physical Layer status change
notifications to MYPROTOCOL.

14.Write a function to handle outgoing packets (see Section 4.5.6.6.1).

15.Write a function to process incoming packets (see Section 4.5.6.6.2).

16.Write a function to process Physical Layer status changes (see Section 4.5.6.6.3).

17.Include code in various functions to collect statistics.

a. Declare statistics variables (see Section 4.5.5.10.1).

b. Initialize the statistics variables in the protocol’s initialization function (see Section 4.5.5.10.2).

c. Update the statistics as appropriate (see Section 4.5.5.10.3).

d. Write a function to print the statistics (see Section 4.5.5.10.4).

e. Add dynamic statistics to the protocol, if desired (see Section 4.5.5.10.5) .

18.Call the protocol finalization function from the MAC Layer finalization function, MAC_Finalize (see

Section 4.5.5.11.1).

19.Write the protocol finalization function (see Section 4.5.5.11.2). Call the function to print statistics from

the protocol finalization function.

20.Include the protocol header and source files in the QualNet tree and compile (see Section 4.5.5.12).

21.To make the protocol available in the QualNet GUI, modify the GUI settings files (see Section 4.5.6.10).

4.5.6.1 Defining Data Structures

This step is similar to the one for adding a wired MAC protocol (see Section 4.5.5.4).

Each MAC Layer protocol has its own data structures, which are defined in the protocol’s header file. The
data structures store information such as:

1. Protocol parameters (see Section 4.5.6.2.4)

2. Protocol state (see Section 4.5.6.2.4)

3. Statistics variables (see Section 4.5.5.10.1)

Define an appropriate data structure, MacDataMyprotocol, for MYPROTCOL in the protocol header file,
mac_myprotocol.h. As an example, the following data structure, defined in mac_csma.h, is used by the
CSMA protocol:
281 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
typedef struct struct_mac_csma_str
{
 MacData* myMacData;
 Int32 status; /* status of layer CSMA_STATUS_* */
 Int32 BOmin; /* minimum backoff */
 Int32 BOmax; /* maximum backoff */
 Int32 BOtimes; /* how many times has it backoff ? */
 Int32 pktsToSend;
 Int32 pktsLostOverflow;
 Int32 pktsSentUnicast;
 Int32 pktsSentBroadcast;
 Int32 pktsGotUnicast;
 Int32 pktsGotBroadcast;
 CsmaTimer timer;
 RandomSeed seed; /* for setting backoff timer */
} MacDataCsma;
QualNet 5.2 Programmer’s Guide 282

MAC Layer Chapter 4
4.5.6.2 Initialization
In this section, we describe the tasks that need to be performed as part of the initialization process of a
wireless MAC protocol.

4.5.6.2.1 Determining the Protocol Configuration Format

This step is similar to the one for adding a wired MAC protocol (see Section 4.5.5.5.1).

4.5.6.2.2 Calling the Protocol Initialization Function

The protocol stack of each node is initialized in a bottom up manner. For wireless networks, the MAC Layer
at an interface is initialized after the Physical Layer model for the interface is initialized. This process is
performed in the node initialization function PARTITION_InitializeNodes, implemented in
QUALNET_HOME/main/partition.cpp (see Section 3.4.1).

The node initialization function, PARTITION_InitializeNodes, calls the MAC Layer initialization function
MAC_Initialize. Function MAC_Initialize reads the configuration file for lines starting with the keywords
SUBNET or LINK. If the input line begins with the keyword SUBNET, MAC_Initialize calls function
ProcessSubnetLine. If the input line begins with the keyword LINK, MAC_Initialize calls function
ProcessLinkLine. Function ProcessSubnetLine assigns an IPv4 and/or IPv6 address to the subnet
interface for each node in the subnet and calls function AddNodeToSubnet or AddNodeToIpv6Network for
each node. Functions AddNodeToSubnet and AddNodeToIpv6Network initialize the interface information
for the subnet interface. Functions MAC_Initialize, ProcessSubnetLine, ProcessLinkLine,
AddNodeToSubnet, and AddNodeToIpv6Network are implemented in the file mac.cpp.

For a wireless MAC protocol, function AddNodeToSubnet (AddNodeToIpv6Network) initializes the Physical
Layer model specified for the interface. AddNodeToSubnet (AddNodeToIpv6Network) then determines the
data rate for the index by calling function PHY_GetTxDataRate and initializes the Network Layer queues
for the interface by calling function NetworkIpCreateQueues. AddNodeToSubnet
(AddNodeToIpv6Network) then calls the initialization function for the MAC protocol running at the interface.
For example, if CSMA is specified as the MAC protocol, AddNodeToSubnet (AddNodeToIpv6Network)
calls the CSMA initialization function, function MacCsmaInit (see Figure 4-143). PHY_GetTxDataRate is
implemented in QUALNET_HOME/libraries/wireless/src/phy.cpp and NetworkIpCreateQueues is
implemented in QUALNET_HOME/libraries/developer/src/network_ip.cpp. MacCsmaInit and the other
CSMA functions are implemented in mac_csma.cpp. Modify AddNodeToSubnet (AddNodeToIpv6Network)
to call the MYPROTOCOL initialization function, MacMyprotocolInit, if MYPROTOCOL is specified as the
MAC protocol for the interface, as shown in Figure 4-143 (Figure 4-144).
283 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
static void //inline//
AddNodeToSubnet(
 Node *node,
 const NodeInput *nodeInput,
 NodeAddress subnetAddress, //base address
 NodeAddress interfaceAddress, //my IP# on this interface
 int numHostBits,
 char *macProtocolName,
 PartitionSubnetMemberData* subnetList,
 int nodesInSubnet,
 int subnetListIndex,
 BOOL isNewInterface,
 short subnetIndex)
{
 int interfaceIndex;
 ...
 Address address;

 MacAddNewInterface(node, interfaceAddress, numHostBits, &interfaceIndex,
 nodeInput, macProtocolName, isNewInterface);
 ...

 // bandwidth is set to the base data rate
 // (in case it's variable)
 //
 node->macData[interfaceIndex]->bandwidth =
 (PHY_GetTxDataRate(
 node,
 node->macData[interfaceIndex]->phyNumber) / 8);

 NetworkIpCreateQueues(node, nodeInput,
 interfaceIndex);

 if (strcmp(macProtocolName, "CSMA") == 0) {
 node->macData[interfaceIndex]->macProtocol = MAC_PROTOCOL_CSMA;
 MacCsmaInit(node, interfaceIndex, nodeInput);
 }

 else if (strcmp(macProtocolName, "MYPROTOCOL") == 0) {
 node->macData[interfaceIndex]->macProtocol =
 MAC_PROTOCOL_MYPROTOCOL;
 MacMyprotocolInit(node, interfaceIndex, nodeInput);
 }

 ...
}

FIGURE 4-143. Wireless MAC Initialization: Adding a Node to an IPv4 Subnet
QualNet 5.2 Programmer’s Guide 284

MAC Layer Chapter 4
static void //inline//
AddNodeToIpv6Network(
 Node *node,
 const NodeInput *nodeInput,
 in6_addr *globalAddr,
 in6_addr *subnetAddr,
 unsigned int subnetPrefixLen,
 char* macProtocolName,
 short subnetIndex,
 SubnetMemberData* subnetList,
 int nodesInSubnet,
 int subnetListIndex,
 unsigned short siteCounter,
 BOOL isNewInterface)
{
 int interfaceIndex;
 ...
 Address address ;

 MacAddNewInterface(node, globalAddr, subnetAddr, subnetPrefixLen,
 &interfaceIndex, nodeInput, siteCounter, macProtocolName,
 isNewInterface);
 ...

 // bandwidth is set to the base data rate
 // (in case it's variable)
 //
 node->macData[interfaceIndex]->bandwidth =
 (PHY_GetTxDataRate(
 node,
 node->macData[interfaceIndex]->phyNumber) / 8);
 NetworkIpCreateQueues(node, nodeInput,
 interfaceIndex);
 if (strcmp(macProtocolName, "CSMA") == 0) {
 node->macData[interfaceIndex]->macProtocol = MAC_PROTOCOL_CSMA;
 MacCsmaInit(node, interfaceIndex, nodeInput);
 }

 else if (strcmp(macProtocolName, "MYPROTOCOL") == 0) {
 node->macData[interfaceIndex]->macProtocol =
 MAC_PROTOCOL_MYPROTOCOL;
 MacMyprotocolInit(node, interfaceIndex, nodeInput);
 }

 ...
}

FIGURE 4-144. Wireless MAC Initialization: Adding a Node to an IPv6 Subnet

4.5.6.2.3 Initializing MAC Address

This step is similar to the one for adding a wired MAC protocol (see Section 4.5.5.5.3).
285 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
4.5.6.2.4 Implementing the Protocol Initialization Function

The initialization of a wireless MAC protocol takes place in the initialization function of the protocol that is
indirectly called by the MAC Layer initialization function MAC_Initialize. The initialization function of a
wireless MAC protocol commonly performs the following tasks:

• Create an instance of the protocol data structure

• Calculate and store the protocol’s operational parameters

• Initialize the state variables

• Schedule timers, if required

Like all other functions belonging to the protocol, the prototype for the initialization function should be
included in the protocol's header file, mac_myprotocol.h.

4.5.6.2.4.1 Creating an Instance and Reading Configuration Parameters

The initialization function initializes the protocol state. Each protocol has a structure that it uses to store
state information. This may include information such as the protocol state and parameters, statistics
variables, etc. Each instance of the protocol maintains its own state variable.

To store the state, declare the structure to hold the protocol state in the header file, mac_myprotocol.h (see
Section 4.5.5.4). As an example, see the declaration of the CSMA data structure MacDataCsma in
mac_csma.h.

Create an instance of the protocol state by allocating memory to the state structure. CSMA performs this
task in its initialization function MacCsmaInit by calling the function MEM_malloc to allocate memory for
the CSMA data structure MacDataCsma, as shown in Figure 4-145. MacCsmaInit and the other CSMA
functions are implemented in mac_csma.cpp. Data structure and constant definitions for CSMA are
contained in mac_csma.h.

MacCsmaInit also sets up pointers between the newly created instance of the CSMA data structure
MacDataCsma and the data structure that stores the MAC Layer information for the interface,
macData[interfaceIndex].

The state variables for the protocol are also initialized in the initialization function. For example,
MacCsmaInit initializes the protocol status (mode), backoff parameters, etc.

The initialization function of a wireless MAC protocol may also calculate and store the values of
parameters that it requires in its operation. If the protocol has any user-specified configuration parameters,
these are read in the protocol initialization function. CSMA does not have any user-specified configuration
parameters. To understand how configuration parameters are read from an input file, refer to the IEEE
802.3 function Mac802_3GetSubnetParameters (see Section 4.5.5.5.2) or the IEEE 802.11 MAC
initialization function MacDot11Init in QUALNET_HOME/libraries/wireless/src//mac_dot11.cpp.
QualNet 5.2 Programmer’s Guide 286

MAC Layer Chapter 4
void MacCsmaInit(
 Node *node, int interfaceIndex, const NodeInput *nodeInput)
{
 MacDataCsma *csma = (MacDataCsma *) MEM_malloc(sizeof(MacDataCsma));
 assert(csma != NULL);

 memset(csma, 0, sizeof(MacDataCsma));
 csma->myMacData = node->macData[interfaceIndex];
 csma->myMacData->macVar = (void *)csma;
 csma->timer.flag = CSMA_TIMER_OFF | CSMA_TIMER_UNDEFINED;
 csma->timer.seq = 0;
 csma->status = CSMA_STATUS_PASSIVE;
 csma->BOmin = CSMA_BO_MIN;
 csma->BOmax = CSMA_BO_MAX;
 csma->BOtimes = 0;
 csma->pktsToSend = 0;
 csma->pktsLostOverflow = 0;
 csma->pktsSentUnicast = 0;
 csma->pktsSentBroadcast = 0;
 csma->pktsGotUnicast = 0;
 csma->pktsGotBroadcast = 0;
 RANDOM_SetSeed(csma->seed,
 node->globalSeed,
 node->nodeId,
 MAC_PROTOCOL_CSMA,
 interfaceIndex);
 ...
}

FIGURE 4-145. CSMA Initialization Function

4.5.6.2.4.2 Initializing Timers

A MAC protocol may need to set timers at initialization. See Section 3.3.2.2 for details on setting timers.

4.5.6.3 Implementing Address Translation Functions

This step is similar to the one for adding a wired MAC protocol (see Section 4.5.5.6).

4.5.6.4 Implementing the Event Dispatcher
In this section, we describe the steps for implementing the event dispatcher function for a wireless MAC
protocol.

As explained in Section 3.4.2, when an event occurs, it is first handled by the node level dispatcher
function NODE_ProcessEvent, defined in QUALNET_HOME/main/node.cpp. If the event is for the MAC
Layer, NODE_ProcessEvent calls the MAC Layer event dispatcher MAC_ProcessEvent, defined in
mac.cpp.

Section 4.5.6.4.1 describes how to modify the MAC Layer event dispatcher function to call the MAC
protocol’s event dispatcher. Section 4.5.6.4.2 describes how to implement the MAC protocol’s event
dispatcher.

4.5.6.4.1 Modifying the MAC Layer Event Dispatcher

This step is similar to the one for adding a wired MAC protocol (see Section 4.5.5.7.1).
287 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
4.5.6.4.2 Implementing the Protocol Event Dispatcher

A protocol's event dispatcher should include a switch on all message types that the protocol may receive.
It can then process each message type either inside the switch or by calling a function to handle the
message type received.

All event types used by QualNet protocols are enumerated in the file QUALNET_HOME/include/api.h. If
the protocol being added needs additional event types, these should be included in the enumeration in file
api.h, as shown in Figure 4-130.

The event dispatcher function for a MAC protocol may handle both packet and timer events. As an
example, Figure 4-146 shows the CSMA event dispatcher function MacCsmaLayer. Note that once a
message has been processed, it is freed by calling the API MESSAGE_Free. The event dispatcher also
includes a default case in the switch statement to handle events of an unknown type.

It is important to free the memory after the message has been processed; otherwise, the
simulator will leak memory.

See files mac_csma.h and mac_csma.cpp for definitions of data structures and functions used for
implementing CSMA.

For the CSMA protocol, there is only one type of event: a timer event of type MSG_MAC_TimerExpred.
When the event occurs, MacCsmaLayer checks if the timeout event corresponds to the latest timer set by
the protocol by checking the timer sequence number. If the sequence number does not correspond to the
latest timer set by the protocol, MacCsmaLayer ignores the event. If the timer event indicates that the
backoff timer has expired, MacCsmaLayer calls function CheckPhyStatusAndSendOrBackoff. If the timer
event indicates that the yield timer has expired, MacCsmaLayer calls function MacCsmaPassive.
QualNet 5.2 Programmer’s Guide 288

MAC Layer Chapter 4
void MacCsmaLayer(Node *node, int interfaceIndex, Message *msg)
{
 /*
 * Retrieve the pointer to the data portion which relates
 * to the CSMA protocol.
 */

 MacDataCsma *csma = (MacDataCsma *)node->macData[interfaceIndex]->macVar;
 int seq_num;
 ...
 assert(msg->eventType == MSG_MAC_TimerExpired);
 seq_num = *((int *) MESSAGE_ReturnInfo(msg);
 MESSAGE_Free(node, msg);
 if ((seq_num < csma->timer.seq) ||
 ((csma->timer.flag & CSMA_TIMER_SWITCH) == CSMA_TIMER_OFF)) {
 return;
 }
 if (seq_num > csma->timer.seq) {
 assert(FALSE);
 }
 assert(((csma->timer.flag & CSMA_TIMER_TYPE) ==
 CSMA_TIMER_BACKOFF) ||
 ((csma->timer.flag & CSMA_TIMER_TYPE) == CSMA_TIMER_YIELD));
 switch(csma->timer.flag & CSMA_TIMER_TYPE) {
 case CSMA_TIMER_BACKOFF:
 {
 csma->timer.flag = CSMA_TIMER_OFF | CSMA_TIMER_UNDEFINED;
 CheckPhyStatusAndSendOrBackoff(node, csma);
 break;
 }
 case CSMA_TIMER_YIELD:
 csma->timer.flag = CSMA_TIMER_OFF | CSMA_TIMER_UNDEFINED;
 csma->status = CSMA_STATUS_PASSIVE;
 MacCsmaPassive(node, csma);
 break;
 default:
 assert(FALSE); abort();
 break;
 }/*switch*/
}

FIGURE 4-146. CSMA Event Dispatcher
289 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
4.5.6.5 Modifying MAC Layer Functions
This step is similar to the one for adding a wired MAC protocol (see Section 4.5.5.8).

Add code to function MAC_NetworkLayerHasPacketToSend to call MYPROTOCOL’s send function when
the MAC Layer receives a packet from the Network Layer and MYPROTOCOL is running at the interface
(see Figure 4-147). Function MacMyprotocolNetworkLayerHasPacketToSend is the MYPROTOCOL
function that handles packets received from the Network Layer. MacDataMyprotocol is the data
structure for MYPROTOCOL.

void
MAC_NetworkLayerHasPacketToSend(Node *node, int interfaceIndex)
{
 /* Select the MAC protocol model, and direct it to send/buffer the
 packet. */
 ...
 switch (node->macData[interfaceIndex]->macProtocol)
 {
 ...
 case MAC_PROTOCOL_DOT11:
 {
 MacDot11NetworkLayerHasPacketToSend(
 node, (MacDataDot11 *) node->macData[interfaceIndex]->macVar);
 break;
 }
 case MAC_PROTOCOL_CSMA:
 {
 MacCsmaNetworkLayerHasPacketToSend(
 node, (MacDataCsma *) node->macData[interfaceIndex]->macVar);
 break;
 }
 case MAC_PROTOCOL_MYPROTOCOL:
 {
 MacMyprotocolNetworkLayerHasPacketToSend(
 node,
 (MacDataMyprotocol *) node->macData[interfaceIndex]->macVar);
 break;
 }
 ...
 }
}

FIGURE 4-147. Delivering Packets from Network Layer to MAC Protocols
QualNet 5.2 Programmer’s Guide 290

MAC Layer Chapter 4
The MAC Layer also implements several functions that are used by upper layer protocols to determine the
type of interface. These functions are listed in Section 4.5.5.8. To add MYPROTOCOL to QualNet, modify
functions MAC_IsWirelessNetwork and MAC_IsOneHopBroadcastNetwork so that they correctly indicate
the type of network that MYPROTCOL runs on. As an example, the modification to function
MAC_IsWirelessNetwork is shown in Figure 4-148.

BOOL
MAC_IsWirelessNetwork(Node *node, int interfaceIndex)
{
 if (node->macData[interfaceIndex]->macProtocol == MAC_PROTOCOL_802_11 ||
 node->macData[interfaceIndex]->macProtocol == MAC_PROTOCOL_CSMA ||
 node->macData[interfaceIndex]->macProtocol ==
 MAC_PROTOCOL_MYPROTOCOL ||
 ...
 node->macData[interfaceIndex]->macProtocol ==
 MAC_PROTOCOL_SATELLITE_BENTPIPE)
 {
 return TRUE;
 }
 return FALSE;
}

FIGURE 4-148. Determining MAC Protocol Type

A wireless MAC protocol also interacts with the Physical Layer. The Physical Layer calls function
MAC_ReceivePacketFromPhy to deliver a packet to the MAC Layer. MAC_ReceivePacketFromPhy calls
the receive function for the MAC protocol running at the interface to process the packet received from the
Physical Layer. For example, MAC_ReceivePacketFromPhy calls the CSMA receive function
MacCsmaReceivePacketFromPhy when CSMA is running at the interface. MAC_ReceivePacketFromPhy
is implemented in mac.cpp.

To add a new MAC protocol, MYPROTOCOL, modify MAC_ReceivePacketFromPhy so that the receive
function for MYPROTCOL is called when MYPROTOCOL is running at the interface, as shown in Figure 4-
149. Function MacMyprotocolReceivePacketFromPhy is the MYPROTCOL function to handle packets
received from the Physical Layer.
291 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
void
MAC_ReceivePacketFromPhy(
 Node *node,
 int interfaceIndex,
 Message *packet)
{
 ...
 if (!MAC_InterfaceIsEnabled(node, interfaceIndex))
 {
 if (node->macData[interfaceIndex]->macProtocol ==
 MAC_PROTOCOL_CELLULAR)
 {
 MESSAGE_FreeList(node, packet);
 }
 else
 {
 MESSAGE_Free(node, packet);
 }
 return;
 }

 switch (node->macData[interfaceIndex]->macProtocol)
 {
 case MAC_PROTOCOL_DOT11: {
 MacDot11ReceivePacketFromPhy(
 node, (MacDataDot11*)node->macData[interfaceIndex]->macVar,
 packet);
 break;
 }
 case MAC_PROTOCOL_CSMA:
 {
 MacCsmaReceivePacketFromPhy(
 node,
 (MacDataCsma*)node->macData[interfaceIndex]->macVar,
 packet);
 break;
 }
 case MAC_PROTOCOL_MYPROTOCOL:
 {
 MacMyprotocolReceivePacketFromPhy(
 node,
 (MacDataMyprotocol*)node->macData[interfaceIndex]->macVar,
 packet);
 break;
 }
 ...
 }
}

FIGURE 4-149. Delivering Packets from Physical Layer to MAC Protocols

A wireless MAC protocol also receives and processes notifications of Physical Layer status change. When
the status of the Physical Layer changes, the Physical Layer sends a notification to the MAC Layer by
using the API MAC_ReceivePhyStatusChangeNotification. MAC_ReceivePhyStatusChangeNotification
calls the Physical Layer status change handler function for the MAC protocol running at the interface. For
example, if CSMA is running at the interface, MAC_ReceiveStatusChangeNotification calls function
QualNet 5.2 Programmer’s Guide 292

MAC Layer Chapter 4
MacCsmaReceivePhyStatusChangeNotification. MAC_ReceivePhyStatusChangeNotification is
implemented in mac.cpp.

To add a new MAC protocol, MYPROTOCOL, modify MAC_ReceivePhyStatusChangeNotification so that
the Physical Layer status change handler function for MYPROTCOL is called when MYPROTOCOL is
running at the interface, as shown in Figure 4-150. Function
MacMyprotocolReceivePhyStatusChangeNotification is the MYPROTCOL function to handle Physical
Layer status changes.

void
MAC_ReceivePhyStatusChangeNotification(
 Node *node,
 int interfaceIndex,
 PhyStatusType oldPhyStatus,
 PhyStatusType newPhyStatus,
 clocktype receiveDuration,
 const Message *potentialIncomingPacket)
{
 switch (node->macData[interfaceIndex]->macProtocol)
 {
 case MAC_PROTOCOL_DOT11:{
 MacDot11ReceivePhyStatusChangeNotification(
 node,
 (MacDataDot11*)node->macData[interfaceIndex]->macVar,
 oldPhyStatus,
 newPhyStatus,
 receiveDuration,
 potentialIncomingPacket);
 break;
 }
 case MAC_PROTOCOL_CSMA:
 {
 MacCsmaReceivePhyStatusChangeNotification(
 node,
 (MacDataCsma*)node->macData[interfaceIndex]->macVar,
 oldPhyStatus,
 newPhyStatus);
 break;
 }
 case MAC_PROTOCOL_MYPROTOCOL:
 {
 MacMyprotocolReceivePhyStatusChangeNotification(
 node,
 (MacDataMyprotocol*)node->macData[interfaceIndex]->macVar,
 oldPhyStatus,
 newPhyStatus);
 break;
 }
 ...
 }
}

FIGURE 4-150. Notifying MAC Protocols of Physical Layer Status Changes
293 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
4.5.6.6 Interfacing with Network and Physical Layers
In this section we describe the interface between the Network Layer and a wireless MAC Protocol, and the
interface between a wireless MAC protocol and the Physical Layer.

A wireless MAC protocol interacts with the Network Layer in the following ways:

1. When IP has a packet to send and the output queue is empty, IP indicates to the MAC protocol that a

packet is ready for transmission. If the MAC protocol is in the appropriate state, it dequeues the packet

from the output queue. See Section 4.5.6.6.1.

2. When the state of the MAC protocol changes to one where it can transmit a packet, the MAC protocol

checks the output queue. If the queue is non-empty, the MAC protocol dequeues a packet from the

queue. See Section 4.5.6.6.1.

3. When the MAC protocol receives a packet from the Physical Layer that is meant for the Network Layer,

the MAC protocol delivers the packet to the Network Layer. See Section 4.5.6.6.2.

4. When the MAC protocol receives a packet from the Physical Layer that is not addressed to the node,

but the node is operating in promiscuous mode, the MAC protocol delivers the packet to the Network

Layer. See Section 4.5.6.6.2.

5. Some MAC protocols pass an indication to the Network Layer when certain events occur at the MAC

Layer. These events include: a packet being dropped at the MAC Layer and receiving a MAC Layer

acknowledgement for a transmitted packet. See Section 4.5.5.9.3.

A wireless MAC protocol interacts with the Physical Layer in the following ways:

1. When the MAC protocol has a packet to send, it checks the status of the Physical Layer to determine if
packet transmission can start. See Section 4.5.6.6.1.

2. When the MAC protocol is ready to transmit a packet, it adds a MAC header to the packet and sends

the packet to the Physical Layer. See Section 4.5.6.6.1.

3. When the Physical Layer receives a packet from another node, it sends it to the MAC Layer. The MAC

Layer removes the MAC header from the received packet and processes the packet. See

Section 4.5.6.6.2.

4. When the status of the Physical Layer changes, the Physical Layer notifies the MAC Layer of the status

change. The MAC protocol takes appropriate action depending upon the type of status change. See

Section 4.5.6.6.3.

4.5.6.6.1 Processing Outgoing Packets

When IP has a packet to send to the MAC Layer and the output queue is empty, IP calls function
MAC_NetworkLayerHasPacketToSend. MAC_NetworkLayerHasPacketToSend calls the appropriate
function for the MAC protocol running at the interface to process the packet from the Network Layer
(see.Section 4.5.6.5). If CSMA is running at the interface, MAC_NetworkLayerHasPacketToSend calls the
CSMA function MacCsmaNetworkLayerHasPacketToSend.

MacCsmaNetworkLayerHasPacketToSend checks the status of the node. If the node’s status is
CSMA_STATUS_PASSIVE, MacCsmaNetworkLayerHasPacketToSend calls function
CheckPhyStatusAndSendOrBackoff. Function CheckPhyStatusAndSendOrBackoff checks the status of
the Physical Layer and of the output queue, and either calls function MacCsmaXmit to transmit a packet or
function MacCsmaBackoff to enter backoff state. Functions MacCsmaNetworkLayerHasPacketToSend
and CheckPhyStatusAndSendOrBackoff are shown in Figure 4-151 and are implemented in
mac_csma.cpp.
QualNet 5.2 Programmer’s Guide 294

MAC Layer Chapter 4
void MacCsmaNetworkLayerHasPacketToSend(Node *node, MacDataCsma *csma)
{
 if (csma->status == CSMA_STATUS_PASSIVE) {
 CheckPhyStatusAndSendOrBackoff(node, csma);
 }//if//
}

static //inline//
void CheckPhyStatusAndSendOrBackoff(Node* node, MacDataCsma* csma) {
 /* Carrier sense response from phy. */

 if ((PhyStatus(node, csma) == PHY_IDLE) &&
 (csma->status != CSMA_STATUS_IN_XMITING))
 {
 csma->status = CSMA_STATUS_XMIT;
 MacCsmaXmit(node, csma);
 }
 else {
 if (!MAC_OutputQueueIsEmpty(
 node, csma->myMacData->interfaceIndex))
 {
 csma->status = CSMA_STATUS_BACKOFF;
 MacCsmaBackoff(node, csma);
 }
 }
}

FIGURE 4-151. Processing Outgoing Packets

As discussed in Section 4.5.6.4.2, CSMA enters the CSMA_STATUS_PASSIVE state when the yield timer
expires. This indicates that CSMA can transmit a new packet. In this case, MacCsmaLayer calls function
MacCsmaPassive. MacCsmaPassive calls function MacCsmaNetworkLayerHasPacketToSend if the
output queue is non-empty. As explained before, MacCsmaNetworkLayerHasPacketToSend calls function
CheckPhyStatusAndSendOrbackoff, which calls either MacCsmaXmit or MacCsmaBackoff.

Function MacCsmaXmit, shown in Figure 4-152, dequeues a packet from the output queue, adds a header
to the packet, and calls function PHY_StartTransmittingSignal to send the packet to the Physical Layer for
transmission. Function ConvertVariableHWAddressTo802Address converts the MAC address in the
structure MacHWAddress to an Ethernet type address.
295 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
static
void MacCsmaXmit(Node *node, MacDataCsma *csma)
{
 Message *msg;
 MacHWAddress destHWAddr;
 int networkType;
 TosType priority;
 CsmaHeader *hdr;

 assert(csma->status == CSMA_STATUS_XMIT);
 /*
 * Dequeue packet which was received from the
 * network layer.
 */
 MAC_OutputQueueDequeuePacket(
 node, csma->myMacData->interfaceIndex,
 &msg, &destHWAddr, &networkType, &priority);
 if (msg == NULL)
 {
 ...
 if(csma->BOtimes >0)
 {
 csma->status = CSMA_STATUS_BACKOFF;
 }
 else
 {
 csma->status = CSMA_STATUS_PASSIVE;
 }
 return;
 }
 csma->status = CSMA_STATUS_IN_XMITING;
 csma->timer.flag = CSMA_TIMER_OFF | CSMA_TIMER_UNDEFINED;

 /* Assign other fields to packet to be sent to phy layer. */
 MESSAGE_AddHeader(node, msg, sizeof(CsmaHeader), TRACE_CSMA);
 hdr = (CsmaHeader *) msg->packet;
 ConvertVariableHWAddressTo802Address(node, &destHWAddr, &hdr->destAddr);
 ConvertVariableHWAddressTo802Address(
 node,
 &node->macData[csma->myMacData->interfaceIndex]->macHWAddr,
 &hdr->sourceAddr);
 hdr->priority = priority;
 PHY_StartTransmittingSignal(node, csma->myMacData->phyNumber,
 msg, FALSE, 0);
 if (MAC_IsBroadcastMac802Address(&hdr->destAddr)) {
 csma->pktsSentBroadcast++;
 }
 else {
 csma->pktsSentUnicast++;
 }
}

FIGURE 4-152. Sending Outgoing Packet to Physical Layer
QualNet 5.2 Programmer’s Guide 296

MAC Layer Chapter 4
4.5.6.6.2 Processing Incoming Packets

When the Physical Layer has a packet to send to the MAC Layer, the Physical Layer calls function
MAC_ReceivePacketFromPhy. MAC_ReceivePacketFromPhy calls the appropriate function for the MAC
protocol running at the interface to process the packet from the Physical Layer (see.Section 4.5.6.5). If
CSMA is running at the interface, MAC_ReceivePacketFromPhy calls the CSMA function
MacCsmaReceivePacketFromPhy.

MacCsmaReceivePacketFromPhy, shown in Figure 4-153, checks the status of the node. If the node is not
in the transmitting state, MacCsmaReceivePacketFromPhy does one of the following:

• If the packet is addressed to the node or is a broadcast packet, MacCsmaReceivePacketFromPhy
removes the MAC header and delivers the packet to the Network Layer by calling function
MAC_HandoffSucessfullyReceivedPacket.

• If the packet is not addressed to the node and is not a broadcast packet, but the node is operating in
promiscuous mode, MacCsmaReceivePacketFromPhy calls function
MacCsmaHandlePromiscousMode. MacCsmaHandlePromiscousMode removes the MAC header and
sends the packet to the Network Layer by using the function MAC_SneakPeekAtMacPacket.
297 QualNet 5.2 Programmer’s Guide

Chapter 4 MAC Layer
void MacCsmaReceivePacketFromPhy(
 Node* node, MacDataCsma* csma, Message* msg)
{
 if (csma->status == CSMA_STATUS_IN_XMITING) {
 MESSAGE_Free(node, msg);
 return;
 }//if//

 switch (csma->status) {
 case CSMA_STATUS_PASSIVE:
 case CSMA_STATUS_CARRIER_SENSE:
 case CSMA_STATUS_BACKOFF:
 case CSMA_STATUS_YIELD: {
 int interfaceIndex = csma->myMacData->interfaceIndex;
 CsmaHeader *hdr = (CsmaHeader *) msg->packet;
 MacHWAddress destHWAddress;
 Convert802AddressToVariableHWAddress(node, &destHWAddress,
 &hdr->destAddr);
 if (MAC_IsMyAddress(node, &destHWAddress)) {
 csma->pktsGotUnicast++;
 }
 else if (MAC_IsBroadcastMac802Address(&hdr->destAddr))
 {
 csma->pktsGotBroadcast++;
 }
 if (MAC_IsMyAddress(node, &destHWAddress) ||
 MAC_IsBroadcastHWAddress(&destHWAddress))
 {
 MacHWAddress srcHWAddress;
 Convert802AddressToVariableHWAddress(node, &srcHWAddress,
 &hdr->sourceAddr);
 MESSAGE_RemoveHeader(node, msg, sizeof(CsmaHeader), TRACE_CSMA);
 MAC_HandOffSuccessfullyReceivedPacket(node,
 csma->myMacData->interfaceIndex, msg, &srcHWAddress);
 }
 else {
 if (node->macData[interfaceIndex]->promiscuousMode) {
 MacCsmaHandlePromiscuousMode(node, csma, msg,
 hdr->sourceAddr, hdr->destAddr);
 }
 MESSAGE_Free(node, msg);
 }
 break;
 }
 default:
 MESSAGE_Free(node, msg);
 printf("MAC_CSMA: Error with node %u, status %ld.\n",
 node->nodeId, csma->status);
 assert(FALSE); abort();
 }//switch//
}

FIGURE 4-153. Processing Incoming Packets

Note that besides transporting upper layer packets, some MAC protocols may also generate and receive
control packets. For example, IEEE 802.11 MAC uses CTS and RTS control packets. These control
packets originate at the MAC Layer at the sending node. At the receiving node, the control packets are
QualNet 5.2 Programmer’s Guide 298

MAC Layer Chapter 4
processed at the MAC Layer and are not delivered to the upper layers. If MYPROTOCOL uses control
packets, the receive function for MYPROTOCOL, MacMyprotocolReceivepacketFromPhy, should check
the destination layer of a received packet and should not deliver control packets to the Network Layer.

4.5.6.6.3 Processing Physical Layer Status Change Notification

The operation of a wireless MAC protocol depends upon the state of the Physical Layer. When the status
of the Physical Layer changes, the Physical Layer sends a notification to the MAC Layer by using the API
MAC_ReceiveStatusChangeNotification. MAC_ReceiveStatusChangeNotification calls the physical status
change handler function for the MAC protocol running at the interface (see.Section 4.5.6.5). For example,
if CSMA is running at the interface, MAC_ReceiveStatusChangeNotification calls function
MacCsmaReceivePhyStatusChangeNotification.

For CSMA, the status change of interest occurs when the Physical Layer status changes from a
transmitting state to a non-transmitting state. This status change indicates the end of transmission of a
packet by the Physical Layer. When this status change occurs, function
MacCsmaReceivePhyStatusChangeNotification, shown in Figure 4-154, resets the backoff parameters.
set the CSMA status to CSMA_STATUS_YIELD, and calls function MacCsmaYield.

void MacCsmaReceivePhyStatusChangeNotification(
 Node* node,
 MacDataCsma* csma,
 PhyStatusType oldPhyStatus,
 PhyStatusType newPhyStatus)
{
 if (oldPhyStatus == PHY_TRANSMITTING) {
 assert(newPhyStatus != PHY_TRANSMITTING);
 assert(csma->status == CSMA_STATUS_IN_XMITING);

 csma->BOmin = CSMA_BO_MIN;
 csma->BOmax = CSMA_BO_MAX;
 csma->BOtimes = 0;
 csma->status = CSMA_STATUS_YIELD;
 MacCsmaYield(node, csma, (clocktype)CSMA_TX_DATA_YIELD_TIME);
 }//if//
}

FIGURE 4-154. Processing Physical Layer Status Changes

4.5.6.7 Collecting and Reporting Statistics
This step is similar to the one for adding a wired MAC Protocol (see Section 4.5.5.10).

4.5.6.8 Finalization

This step is similar to the one for adding a wired MAC Protocol (see Section 4.5.5.10.5).

4.5.6.9 Including and Compiling Files

This step is similar to the one for adding a wired MAC Protocol (see Section 4.5.5.12).

4.5.6.10 Integrating the Protocol into the GUI
To make the new protocol available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.
299 QualNet 5.2 Programmer’s Guide

.
4.6 Physical Layer

The Physical Layer is the lowest layer in the QualNet protocol stack (see Figure 4-1). It transmits and
receives data over physical media. The Physical Layer interfaces with peer Physical Layer entities in other
nodes via the communication medium to provide services to the MAC Layer.

To model the Physical Layer in a simulation we need to incorporate characteristics of the transmitter and
the receiver. Modeling the Physical Layer requires modeling all aspects of a wireless system: modulation,
coding, noise, interference and antenna gains. In QualNet, a Physical Layer model consists of two parts: a
PHY component and an antenna component. The PHY component models signal transmission and
reception and reflects the effects of the MAC scheme, node status, physical parameters, distortions from
the channel, and interference from neighbor nodes. The antenna component models the functions and
properties of the antenna.

This section gives a detailed description of how to add a PHY model and an antenna model to QualNet.
Modeling the communication medium is covered in Section 4.7 and modeling node mobility is covered in
Section 4.8.

4.6.1 Physical Layer Models in QualNet

QualNet provides a number of PHY and antenna models. Table 4-15 lists the different PHY models.
Table 4-16 lists the different antenna models. See the corresponding model library for a detailed
description of each model and its parameters.

TABLE 4-15. PHY Models in QualNet

PHY Model Description Model Library

PHY802.11a Models the IEEE 802.11a PHY specification.

This radio operates in the 5 GHz frequency band, uses Orthogonal
Frequency Division Multiplexing (OFDM) and supports the following
data rates (in Mbits/s): 6, 9, 12, 18, 24, 36, 48, 54.

Wireless

PHY802.11b Models the IEEE 802.11b PHY specification.

This radio operates in the 2.4 GHz frequency band, uses Direct
Sequence Spread Spectrum (DSSS) and supports the following
data rates (in Mbits/s): 1, 2, 5.5, 11.

Wireless

PHY802.15.4 Models the IEEE 802.15.4 PHY specification.

This radio uses different waveforms in different frequency bands to
support different data rates.

Sensor Networks

PHY802.16 Models the IEEE 802.16 PHY specification.

This radio uses OFDM and uses the following modulation and
encoding combinations: QPSK 1/2, QPSK 3/4, 16QAM 1/2, 16QAM
3/4, 64QAM 1/2, 64QAM 2/3, and 64QAM 3/4.

Advanced Wireless

PHY-ABSTRACT Abstract PHY model.

This is a generic PHY model and can be used to simulate different
PHYs. This model simulates a PHY that is capable of carrier
sensing and is able to work with both BER-based and SNR
threshold-based reception models.

Wireless

PHY-GSM Models the GSM Physical Layer. Cellular
Chapter 4 Physical Layer
QualNet 5.2 Programmer’s Guide 300

Physical Layer Chapter 4
4.6.2 Physical Layer Organization: Files and Folders

In this section, we briefly examine the files and folders that are relevant to Physical Layer models. These
files contain detailed comments on functions and other code components.

The Physical Layer API is composed of several macros, functions, and structures. These are defined in the
following header files:

• QUALNET_HOME/include/api.h

This file defines the events and data structures needed to communicate between different layers of the
protocol stack.

• QUALNET_HOME/include/phy.h

This file contains definitions common to Physical Layer models, the Physical Layer data structure in the
node structure, and prototypes of functions defined in QUALNET_HOME/libraries/wireless/src/phy.cpp.

• QUALNET_HOME/include/antenna.h and QUALNET_HOME/libraries/wireless/srcantenna_global.h

These files contain definitions common to antenna models and prototypes of functions defined in
antenna.cpp and antenna_global.cpp in QUALNET_HOME/libraries/wireless/src, respectively.

• QUALNET_HOME/include/mac.h

This file contains definitions of API functions needed to communicate with the MAC Layer.

Additionally, the following header file is also relevant to the Physical Layer:

• QUALNET_HOME/include/fileio.h

This file contains prototypes of functions to read input files and create output files.

SATELLITE-RSV Models the Aloha satellite model with Reed-Solomon/Viterbi (RSV)
support.

This is a model for satellites in geosynchronous orbits. Both bent-
pipe and process payload modes are modeled.

Satellite

TABLE 4-16. Antenna Models in QualNet

Antenna Model Description Model Library

OMNIDIRECTIONAL Omnidirectional antenna model.

This is the model for the basic antenna, which yields the same
antenna gain irrespective of the signal direction.

Wireless

SWITCHED-BEAM Switched-beam antenna model.

The switched-beam antenna can switch among multiple antenna
patterns and uses the pattern that yields the maximum antenna
gain.

Wireless

STEERABLE Steerable antenna model.

The steerable antenna can rotate the antenna and uses the
direction that yields the maximum antenna gain.

Wireless

PATTERNED Patterned antenna model

This is a stsic antenna model that uses antenna pattern files in the
NSM and Open ASCII formats.

Wireless

TABLE 4-15. PHY Models in QualNet (Continued)

PHY Model Description Model Library
301 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
The following are the folders and source files associated with the Physical Layer:

• QUALNET_HOME/libraries/wireless/src

This folder contains the source and header files for the various Physical Layer models implemented in
QualNet. The file names are based on the name of the model that they implement, e.g., to see the
implementation for IEEE 802.11a, look at files phy_802_11.cpp and phy_802_11.h in this folder.

• QUALNET_HOME/libraries/wireless/src/phy.cpp

This file contains generic Physical Layer functions, including the initialization, message processing and
finalization functions.

• antenna.cpp and antenna_global.cpp in QUALNET_HOME/libraries/wireless/src

These files contain implementation of generic antenna functions and the implementation of the omni-
directional antenna model.

• QUALNET_HOME/libraries/wireless/src/prop_range.cpp

This file implements the radio-range program, which calculates the likely propagation range of a node,
under no interference conditions, using the parameters specified in the configuration file.

4.6.3 Physical Layer Data Structures

The Physical Layer data structures are defined in QUALNET_HOME/include/phy.h. This section describes
the main data structures. (Note that only a partial description of the data structures is provided here. Refer
to file phy.h for a complete description.)

1. PhyModel: This is an enumeration type that lists all the PHY models.

enum PhyModel{
 PHY802_11a,
 PHY802_11b,
 PHY_ABSTRACT,
 PHY_GSM,
 ...
 PHY_NONE
};

2. PhyRxModel: This is an enumeration type that lists all the reception models. A reception model

simulates the scheme used by the PHY model to determine the quality of the received signal.

enum PhyRxModel{
 RX_802_11a,
 RX_802_11b,
 RX_802_16,
 RX_UMTS,
 RX_802_15_4,
 SNR_THRESHOLD_BASED,
 BER_BASED,
 PCOM_BASED
};
QualNet 5.2 Programmer’s Guide 302

Physical Layer Chapter 4
3. AntennaModel: This structure holds information about an antenna model. Enumeration types

AntennaModelType and AntennaPatternType are declared in antenna_global.h.

struct AntennaModel {
 AntennaModelType antennaModelType;
 int numModels;
 AntennaPatternType antennaPatternType;
 void *antennaVar;
}AntennaModel;

4. PhyData: This is the main data structure used by the Physical Layer and stores information about the

Physical Layer models running at a specific interface. Some important fields of this structure are

explained below.
struct PhyData {
 int phyIndex;
 int macInterfaceIndex;
 Address* networkAddress;
 D_BOOL* channelListenable;
 D_BOOL* channelListening;
 BOOL phyStats;
 int channelIndexForTransmission;
 PhyModel phyModel;
 PhyRxModel phyRxModel;
 double phyRxSnrThreshold;
 double noise_mW_hz;
 int numBerTables;
 PhyBerTable* snrBerTables;
 RandomSeed seed;
 void* phyVar;
 double systemLoss_dB;
 AntennaModel* antennaData;
 BOOL contentionFreeProp;
 void * nodeLinkLossList;
 void* nodeLinkDelayList;
 ...
 double noiseFactor;
};

FIGURE 4-155. PhyData Data Structure

• phyIndex: This is the Physical Layer index of the interface.

• macInterfaceIndex: This is the MAC Layer index of the interface.

• networkAddress: This is the network address of the interface.

• channelListenable: This is a bit mask that indicates which channels the node can potentially
listen to.

• channelListening: This is a bit mask that indicates which channels the node is currently
listening to.

• phyStats: This variable indicates whether statistics collection is enabled for the Physical Layer.

• channelIndexForTransmission: This is the index of the channel on which the node is currently
transmitting.

• phyModel: This variable indicates the PHY model in use at the interface.
303 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
• phyRxModel: This variable indicates the reception model in use at the interface.

• phyRxSnrThreshold: This is the SNR threshold for the interface.

• noise_mW_hz: This variable stores the noise floor at the interface.

• numBerTables: This variable stores the number of BER tables to be used.

• snrBerTables: This is a pointer to the BER tables to be used for determining quality of received
signals.

• seed: This variable is used to store the seed for the PHY model in use at the interface.

• phyVar: This is a pointer to the data structure for the PHY model in use at the interface.

• systemLoss_db: This variable stores the total loss in dB which is the sum of connection loss,
mismatch loss, cable loss and the loss caused in antenna energy conversion.

• antennaData: This is a pointer to the data structure for the antenna model in use at the interface.

• contentionFreeProp: This variable indicates whether contention free propagation is enabled.

• noiseFactor: This variable stores the noise factor of the interface for the PHY 802.16 model.

4.6.4 Physical Layer APIs and Inter-layer Communication

This section describes the APIs used by the MAC Layer to communicate with the Physical Layer (see
Section 4.6.4.1), the APIs used by the Physical Layer to communicate with the MAC Layer (see
Section 4.6.4.2), the APIs used by PHY models to communicate with the communication medium (see
Section 4.6.4.3), and the APIs used by the communication medium to communicate with PHY models (see
Section 4.6.4.4). This section also describes the APIs used by PHY Models to communicate with antenna
models (see Section 4.6.4.5) and lists some of the Physical Layer utility APIs (see Section 4.6.4.6).

The complete list of APIs, with their parameters and description, can be found in API Reference Guide.

4.6.4.1 MAC Layer to Physical Layer Communication
MAC Layer protocols use several APIs to communicate with the Physical Layer. The prototypes for these
API functions are contained in the file phy.h.

Some of the functions used for communication from the MAC Layer to the Physical Layer are listed below.

• PHY_StartTransmittingSignal: This function is used by the MAC Layer to send a packet to the Physical
Layer.

• PHY_StartListeningToChannel: This function is used by the MAC Layer to direct the Physical Layer to
start listening to the specified channel.

• PHY_StopListeningToChannel: This function is used by the MAC Layer to direct the Physical Layer to
stop listening to the specified channel.

• PHY_SetTransmissionChannel: This function is used by the MAC Layer to set the channel for
transmission.

4.6.4.2 Physical Layer to MAC Layer Communication
Physical Layer protocols use several APIs to communicate with the MAC Layer. The prototypes for these
API functions are contained in the file QUALNET_HOME/include/mac.h. The file QUALNET_HOME/main/
mac.cpp contains the implementation of these functions.

Some of the functions used for communication from the Physical Layer to the MAC Layer are listed below.

• MAC_ReceivePacketFromPhy: This function delivers a packet from the Physical Layer to the MAC
Layer.
QualNet 5.2 Programmer’s Guide 304

Physical Layer Chapter 4
• MAC_ReceivePhyStatusChangeNotification: This function notifies the MAC Layer of a status change at
the Physical Layer.

4.6.4.3 PHY Models to Communication Medium Communication

The communication medium provides the API PROP_ReleaseSignal to enable PHY entities to
communicate with the communication medium. A PHY model calls the API PROP_ReleaseSignal to
transmit a signal.

The prototype for PROP_ReleaseSignal is contained in the file QUALNET_HOME/include/propagation.h.

4.6.4.4 Communication Medium to PHY Models Communication
The communication medium uses the APIs listed below to communicate with PHY models. The prototypes
for these functions are contained in phy.h. The file phy.cpp contains the implementation of these functions.

• PHY_SignalArrivalFromChannel: This function indicates the start of a signal.

• PHY_SignalEndFromChannel: This function indicates the end of a signal.

4.6.4.5 PHY Model to Antenna Models Communication

PHY models use several APIs to communicate with antenna models. The prototypes for these functions
are contained in the file phy.h. The file phy.cpp contains the implementation of these functions.

Some of the APIs used for communication from PHY models to antenna models are listed below.

• PHY_LockAntennaDirection: This function locks the direction of the antenna.

• PHY_UnlockAntennaDirection: This function unlocks the direction of the antenna.

4.6.4.6 Physical Layer Utility APIs

Several APIs are available at the Physical Layer that perform tasks internal to the Physical Layer. Some of
these functions can be used by other layers, as well. Some of the Physical Layer utility APIs are listed
below.

The prototypes for the following utility API functions are contained in the file phy.h. The file phy.cpp
contains the implementation of these functions.

• PHY_GetTxDataRate: This function returns the transmission data rate.

• PHY_GetRxDataRate: This function returns the reception data rate.

• PHY_SetLowestTxDataRateType: This function sets the lowest transmission data rate type.

• PHY_SetHighestTxDataRateType: This function sets the highest transmission data rate type.

• PHY_GetTransmissionDuration: This function returns the transmission duration of a signal.

The prototypes for the following utility API functions are contained in the file QUALNET_HOME/include/
antenna.h. The file QUALNET_HOME/libraries/wireless/src/antenna.cpp contains the implementation of
these functions.

• ANTENNA_IsInOmnidirectionalMode: This function indicates whether the antenna is operating in the
omni-directional mode.

• ANTENNA_GainForThisDirection: This function returns the antenna gain for the specified direction.

• ANTENNA_GainForThisSignal: This function returns the antenna gain for the specified signal.
305 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
4.6.5 Adding a PHY Model

Although the working of each PHY model is different, there are certain functions that are performed by
most PHY models. This section provides an outline for developing and adding a PHY model to QualNet.
We illustrate the process of adding a PHY model by using as an example the implementation code for the
IEEE 802.11a PHY specification. The header file for the IEEE 802.11a implementation is phy_802_11.h
and the source file is phy_802_11.cpp in the folder QUALNET_HOME/libraries/wireless/src. We use code
snippets from these two files throughout this section to illustrate different steps in developing a PHY model.
After understanding the discussed snippets, look at the complete code for IEEE 802.11a to understand
how a PHY model is implemented in QualNet.

The following list summarizes the actions that need to be performed for adding a PHY model,
PHY_MYPHY, to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.6.6.2).

2. Modify the file phy.cpp to include the model’s header file (see Section 4.6.6.2).

3. Include the PHY model in the list of PHY models and the reception model, MYRXMODEL, in the list of

reception models (see Section 4.6.6.3).

4. Define data structures for the PHY model (see Section 4.6.6.5).

5. Decide on the format for the PHY model-specific configuration parameters (see Section 4.6.6.6.1).

6. Call the PHY model’s initialization function from the Physical Layer initialization function,

PHY_CreateAPhyForMac (see Section 4.6.6.6.2).

7. Write the initialization function for the PHY model (see Section 4.6.5.5.3). The initialization function

should include the following tasks:

a. Declare and initialize the state variables.

b. Read and store the configuration parameters for the PHY model.

c. Initialize the antenna model.

d. Set the transmission channel.

8. Call the PHY model’s event handler from the Physical Layer event dispatcher, PHY_ProcessEvent (see

Section 4.6.5.6).

9. Modify Physical Layer functions to integrate the new PHY model (see Section 4.6.5.7).

10.Write a function to handle outgoing packets (see Section 4.6.5.8.1).

11.Write functions to process the start and end of an incoming packet (see Section 4.6.5.8.2).

12.Include code in various functions to collect statistics.

a. Declare statistics variables (see Section 4.6.5.9.1).

b. Initialize the statistics variables in the PHY model’s initialization function (see Section 4.6.5.9.2).

c. Update the statistics as appropriate (see Section 4.6.5.9.3).

d. Write a function to print the statistics (see Section 4.6.5.9.4).

e. Add dynamic statistics to the protocol, if desired (see Section 4.6.5.9.5) .

13.Call the PHY model finalization function from the Physical Layer finalization function, PHY_Finalize

(see Section 4.6.5.10.1).

14.Write the PHY model finalization function (see Section 4.6.5.10.2). Call the function to print statistics

from the PHY model finalization function.

15.Modify the file prop_range.cpp to enable the radio-range utility function to calculate the propagation

range of a node using the new PHY model (see Section 4.6.5.11).
QualNet 5.2 Programmer’s Guide 306

Physical Layer Chapter 4
16.Include the PHY model header and source files in the QualNet tree and compile (see Section 4.6.5.12).

17.To make the model available in the QualNet GUI, modify the GUI settings files (see Section 4.6.5.13).

4.6.5.1 Naming Guidelines
In QualNet, each component (file, data structure, function, etc.) is given a name that indicates the name of
the protocol or model, the layer in which the protocol resides, and the functionality of the component, as
appropriate. We recommend that when adding a new PHY model, the programmer name the different
components of the new model in a similar manner. It will be helpful to examine the implementation of the
IEEE 802.11a PHY model in QualNet for hints for naming and coding different components of the new PHY
model.

In this section, we describe the steps for developing a PHY model called “PHY_MYPHY”. We will use the
string “PhyMyphy” in the names of the different components of this model, just as the string “Phy802_11”
appears in the names of the components of the IEEE 802.11a implementation.

4.6.5.2 Creating Files

The first step towards adding a PHY model is creating files. Most models comprise two files: the header file
and the source file. These files can be placed in any library, e.g., in the folder QUALNET_HOME/libraries/
wireless/src. However, it is recommended that all user-developed models be made part of a library. In our
example, we will place the PHY model in a library called user_models. See Section 4.10 for instructions for
creating and activating a library.

If it doesn’t already exist, create a directory in QUALNET_HOME/libraries called user_models and a
subdirectory in QUALNET_HOME/libraries/user_models called src. Create the files for the PHY model and
place them in the folder QUALNET_HOME/libraries/user_models/src. Name these files in a way that
clearly indicates the model that they implement. Prefix the file names with phy_ to designate the files as
PHY model files.

Examples:

• phy_802_11.h, phy_802_11.cpp: These files, in the folder QUALNET_HOME/libraries/wireless/src,
implement the IEEE 802.11a and IEEE 802.11b PHY models.

• phy_abstract.h, phy_abstract.cpp: These files, in the folder QUALNET_HOME/libraries/wireless/src,
implement the abstract PHY model.

In keeping with the naming guidelines of Section 4.6.5.1, the header file for the example PHY model is
called phy_myphy.h, and the source file is called phy_myphy.cpp.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file, phy_myphy.h, should contain the following:

• Constant definitions

• Data structure definitions

• Prototypes for interface functions in the source file, phy_myphy.cpp

The source file, phy_myphy.cpp, should contain the following:

• Statement to include the PHY model’s header file:

#include “phy_myphy.h”
307 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
• Statements to include standard library functions and other header files needed by the PHY model’s
source file. A typical PHY model source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "api.h"
#include "antenna.h"
#include "antenna_global.h"
#include “antenna_switched.h” //For switched beam antenna model
#include “antenna_steerable.h” //For steerable antenna model
#include “antenna_patterned.h” //For patterned antenna model

• Initialization function for the PHY model, PhyMyphyInit

• Finalization function for the PHY model, PhyMyphyFinalize

• PHY model implementation functions

The file QUALNET_HOME/libraries/wireless/src/phy.cpp contains the layer level initialization function and
functions to implement the PHY model functionality. These layer level functions in turn call the PHY
model’s initialization, event handler and finalization functions. Therefore, to make these PHY model
functions available to the layer level functions, insert the following include statement in the file phy.cpp:

#include “phy_myphy.h”

4.6.5.3 Including PHY_MYPHY in List of PHY Models

Each node in QualNet hosts an operating protocol stack. For each layer in the stack, a list of protocols/
models running at that layer is maintained. When a new PHY model is added to QualNet, it needs to be
included in the list of PHY models. To do this, add the PHY model’s name to the enumeration PhyModel
defined in phy.h (see Section 4.6.3).

For our example PHY model, add the entry PHY_MYPHY to PhyModel, as shown in Figure 4-156.

enum PhyModel{
 PHY802_11a,
 PHY802_11b,
 PHY_ABSTRACT,
 PHY_GSM,
 ...
 PHY_NONE,
 PHY_MYPHY
};

FIGURE 4-156. Adding PHY_MYPHY to List of PHY Models

Always add to the end of lists in header files.
QualNet 5.2 Programmer’s Guide 308

Physical Layer Chapter 4
To add a new reception model, add the entry RX_MYRXMODEL to the enumeration PhyRxModel defined in
phy.h (see Section 4.6.3), as shown in Figure 4-157.

enum PhyRxModel{
 RX_802_11a,
 RX_802_11b,
 RX_802_16,
 RX_UMTS,
 RX_802_15_4,
 SNR_THRESHOLD_BASED,
 BER_BASED,
 PCOM_BASED,
 RX_MYRXMODEL
};

FIGURE 4-157. Adding MYRXMODEL to List of Reception Models

4.6.5.4 Defining Data Structures

Each PHY model has its own data structures, which are defined in the model’s header file. The data
structures store information such as:

1. PHY parameters (see Section 4.6.6.6.2)

2. Statistics variables (see Section 4.6.5.9.1)

Define an appropriate data structure, PhyDataMyphy, for PHY_MYPHY in the model’s header file,
phy_myphy.h. As an example, the following data structure, defined in phy_802_11.h, is used by the IEEE
802.11a PHY model:
309 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
typedef struct struct_phy_802_11_str {
 PhyData* thisPhy;
 int txDataRateTypeForBC;
 int txDataRateType;
 D_Float32 txPower_dBm;
 float txDefaultPower_dBm[PHY802_11_NUM_DATA_RATES];
 int rxDataRateType;
 double rxSensitivity_mW[PHY802_11_NUM_DATA_RATES];
 int numDataRates;
 int dataRate[PHY802_11_NUM_DATA_RATES];
 double numDataBitsPerSymbol[PHY802_11_NUM_DATA_RATES];
 int lowestDataRateType;
 int highestDataRateType;
 double directionalAntennaGain_dB;
 Message* rxMsg;
 double rxMsgPower_mW;
 clocktype rxTimeEvaluated;
 BOOL rxMsgError;
 clocktype rxEndTime;
 Orientation rxDOA;
 Message *txEndTimer;
 D_Int32 channelBandwidth;
 clocktype rxTxTurnaroundTime;
 double noisePower_mW;
 double interferencePower_mW;
 PhyStatusType mode;
 PhyStatusType previousMode;
 Phy802_11Stats stats;
} PhyData802_11;

In the above declaration, Phy802_11Stats is the statistics data structure for the IEEE 802.11a PHY
model. See the declaration of PhyData802_11 in phy_802_11.h for a description of the fields of the data
structure.

4.6.5.5 Initialization

In this section, we describe the tasks that need to be performed as part of the initialization process of a
PHY model.

4.6.5.5.1 Determining the PHY Configuration Format

A PHY model may use model-specific configuration parameters for its operation. The configuration
parameters are specified in the QualNet configuration file. The format for specifying a PHY model’s
configuration parameters is:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.

<Parameter-name> : Name of the parameter.
QualNet 5.2 Programmer’s Guide 310

Physical Layer Chapter 4
 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.

Generally, a PHY model requires the transmission power and receiver sensitivity at different transmission
rates to be specified. As an example, the following parameters specify a transmission power of 20dBm and
a receiver sensitivity of -85.0 dBm for the IEEE 802.11a PHY model when operating at 6Mbps:

PHY-MODEL PHY802.11a
PHY802.11a-TX-POWER--6MBPS 20.0
PHY802.11a-RX-SENSITIVITY--6MBPS -85.0

Decide on the format for specifying the new PHY model’s configuration parameters. For our example PHY
model, specify the configuration parameters in the QualNet configuration file using the following format
(<Identifier> and <Index> can also be used to qualify the parameter declarations, as described
above):

 PHY-MODEL PHY_MYPHY
 <param1> <value1>
 ...
 <paramN> <valueN>

 where:

<param1>, ..., <paramN> : Names of parameters for PHY_MYPHY.

<value1>, ..., <valueN> : Values of the PHY parameters.

Section 4.6.5.5.3 explains how to read user input specified in this format to initialize the model.

4.6.5.5.2 Calling the PHY Model Initialization Function

The protocol stack of each node is initialized in a bottom up manner. For a wireless network, the MAC
Layer and Physical Layer at an interface are initialized together, with the Physical Layer initialization taking
place before the MAC Layer initialization. This process is performed in the node initialization function
PARTITION_InitializeNodes, implemented in QUALNET_HOME/main/partition.cpp (see Section 3.4.1).

The node initialization function, PARTITION_InitializeNodes, calls the MAC Layer initialization function
MAC_Initialize. Function MAC_Initialize reads the configuration file for lines starting with the keywords
SUBNET or LINK. If the input line begins with the keyword SUBNET, MAC_Initialize calls the function
ProcessInputFileSubnetLine. If the input line begins with the keyword LINK, MAC_Initialize calls the
function ProcessInputFileLinkLine. Function ProcessInputFileSubnetLine assigns an IP address to the
subnet interface for each node in the subnet and calls function AddNodeToSubnet for each node. Function
AddNodeToSubnet initializes the interface information for the subnet interface. Functions MAC_Initialize,
ProcessInputFileSubnetLine, ProcessInputFileLinkLine, and AddNodeToSubnet are implemented in the
file QUALNET_HOME/main/mac.cpp.

For a wireless MAC protocol, function AddNodeToSubnet initializes the Physical Layer model specified for
the interface by calling the function PHY_CreateAPhyForMac. For example, if IEEE 802.11a is specified as
the PHY model running at the interface, AddNodeToSubnet calls PHY_CreateAPhyForMac with
PHY802_11a as the PhyModel parameter. Modify AddNodeToSubnet to call PHY_CreateAPhyForMac
with PHY_MYPHY as the PhyModel parameter if PHY_MYPHY is specified as the PHY model for the
interface, as shown in Figure 4-158. Function PHY_CreateAPhyForMac is implemented in phy.cpp.
311 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
static void //inline//
AddNodeToSubnet(
 Node *node,
 const NodeInput *nodeInput,
 ...
 int subnetListIndex)
{
 int interfaceIndex;
 ...
 IO_ReadString(
 node,
 node->nodeId,
 interfaceIndex,
 nodeInput,
 "PHY-MODEL",
 &phyModelFound,
 phyModelName);
 ...
 if (strncmp(macProtocolName, "FCSC-", 5) == 0) {
 ...
 }
 else {
 PhyModel phyModel = PHY802_11b;
 ...
 if (strncmp(phyModelName, "FCSC-", 5) == 0) {
 ...
 }
 else if (strcmp(phyModelName, "PHY802.11a") == 0) {
 PHY_CreateAPhyForMac(
 node,
 nodeInput,
 interfaceIndex,
 &address,
 PHY802_11a,
 &node->macData[interfaceIndex]->phyNumber);
 phyModel = PHY802_11a;
 }
 else if (strcmp(phyModelName, "PHY_MYPHY") == 0) {
 PHY_CreateAPhyForMac(
 node,
 nodeInput,
 interfaceIndex,
 &address,
 PHY_MYPHY,
 &node->macData[interfaceIndex]->phyNumber);
 phyModel = PHY_MYPHY;
 }
 ...
}

FIGURE 4-158. Calling the Physical Layer Initialization Function
QualNet 5.2 Programmer’s Guide 312

Physical Layer Chapter 4
Function PHY_CreateAPhyForMac, shown in Figure 4-159, performs the following tasks:

• Reads and stores the listenable and listening channel masks from the configuration file.

• Reads and stores the generic Physical Layer parameters from the configuration file.

• Reads the reception model to be used for the interface and sets the receiver parameters (SNR
threshold or BER tables) accordingly. For example, if the reception model is specified to be IEEE
802.11a, PHY_CreateAPhyForMac calls the IEEE 802.11a function Phy802_11aSetBerTable to set up
the BER tables.

• Calls the initialization function for the PHY model running at the interface. For example, if IEEE 802.11a
is specified as the PHY model running at the interface, PHY_CreateAPhyForMac calls the IEEE
802.11a initialization function Phy802_11Init, which is implemented in phy_802_11.cpp.

To add your PHY model to QualNet, make the following modifications to PHY_CreateAPhyForMac, as
shown in Figure 4-159:

• Call the function MyrxmodelSetBerTable to set up the BER tables according to the desired reception
scheme, if MYRXMODEL is specified as the reception model to be used at the interface.

• Call the PHY_MYPHY initialization function, PhyMyphyInit, if PHY_MYPHY is specified as the PHY
model for the interface.

The prototypes for the functions MyrxmodelSetBerTable and PhyMyphyInit should be included in the
header file, phy_myphy.h.

void PHY_CreateAPhyForMac(Node *node, const NodeInput *nodeInput,
 int interfaceIndex, Address *networkAddress,
 PhyModel phyModel, int* phyNumber)
{
 char buf[10*MAX_STRING_LENGTH];
 ...
 int phyIndex = node->numberPhys;
 PhyData *thisPhy;
 ...
 thisPhy = (PhyData *)MEM_malloc(sizeof(PhyData));
 memset(thisPhy, 0, sizeof(PhyData));
 node->phyData[phyIndex] = thisPhy;
 ...
 thisPhy->phyModel = phyModel;
 assert(phyModel == PHY802_11a ||
 phyModel == PHY802_11b ||
 phyModel == PHY_MYPHY ||
 ...
 phyModel == PHY802_15_4);
 ...
 // Set PHY-RX-MODEL
 IO_ReadString(node, node->nodeId, interfaceIndex, nodeInput,
 "PHY-RX-MODEL", &wasFound, buf);
 if (wasFound) {
 if (strcmp(buf, "PHY802.11a") == 0) {
 thisPhy->phyRxModel = RX_802_11a;
 Phy802_11aSetBerTable(thisPhy);
 }
 else if (strcmp(buf, "MYRXMODEL") == 0) {
 thisPhy->phyRxModel = RX_MYRXMODEL;
 MyrxmodelSetBerTable(thisPhy);
 }
313 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
 else
 ...
 }
 else {
 ...
 }
 ...
 switch(thisPhy->phyModel) {
 case PHY802_11b:
 case PHY802_11a: {
 Phy802_11Init(node, phyIndex, nodeInput);
 break;
 }
 case PHY_MYPHY: {
 PhyMyphyInit(node, phyIndex, nodeInput);
 break;
 }
 ...
 }/*switch*/
} //PHY_CreateAPhyForMacLayer//

FIGURE 4-159. Calling the PHY Model Initialization Function

4.6.5.5.3 Implementing the PHY Model Initialization Function

The initialization of a PHY model takes place in the initialization function of the model that is called by the
Physical Layer initialization function PHY_CreateAPhyForMac. The initialization function of a PHY model
commonly performs the following tasks:

• Create an instance of the PHY model data structure

• Read and store the PHY model’s parameters

• Initialize the state variables of the PHY model

• Initialize the antenna model

• Set the transmission channel

The initialization function initializes the PHY model state. Each PHY model has a structure that it uses to
store state information. This may include information such as the model state and parameters, statistics
variables, etc. Each instance of the PHY model maintains its own state variable.

To store the state, declare the structure to hold the PHY model’s state in the header file, phy_myphy.h (see
Section 4.6.5.4). As an example, see the declaration of the IEEE 802.11a data structure PhyData802_11
in phy_802_11.h.

Create an instance of the PHY model state by allocating memory to the state structure. IEEE 802.11a
performs this task in its initialization function Phy802_11Init by calling the function MEM_malloc to allocate
memory for the IEEE 802.11a data structure PhyData802_11, as shown in Figure 4-160. Phy802_11Init
and the other IEEE 802.11a functions are implemented in phy_802_11.cpp. Data structure and constant
definitions for IEEE 802.11a are contained in phy_802_11.h.

Phy802_11Init also sets up pointers between the newly created instance of the IEEE 802.11a data
structure PhyData802_11 and the data structure that stores the Physical Layer information for the
interface, phyData[phyIndex].

Next, Phy802_11Init initializes the antenna model by calling function ANTENNA_Init. Function
ANTENNA_Init is implemented in QUALNET_HOME/libraries/wireless/src/antenna.cpp.
QualNet 5.2 Programmer’s Guide 314

Physical Layer Chapter 4
The initialization function of a PHY model also stores the values of parameters that it requires in its
operation. These parameters may be default parameters or user-specified configuration parameters.
Phy802_11Init sets the default parameters for IEEE 802.11a by calling function
Phy802_11aInitializeDefaultParameters. Some configurable parameters are read within Phy802_11Init
and the others are read by calling function Phy802_11aSetUserConfigurableParameters.

The configurable parameters are read using IO functions such as IO_ReadBool, IO_ReadInt and
IO_ReadDouble to read parameter values from the input file and set the appropriate fields of the PHY
model data structure PhyData802_11. IO_ReadBool, IO_ReadInt, IO_ReadDouble and other IO
functions are defined in QUALNET_HOME/include/fileio.h.

The state variables for the PHY model are also initialized in the initialization function. For example,
Phy802_11Init initializes the PHY model status, message buffer, etc.

The initialization function also initializes the channels on which the PHY model can transmit by calling
function PHY_SetTransmissionChannel, which is defined in phy.h.
315 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
void Phy802_11Init(
 Node *node,
 const int phyIndex,
 const NodeInput *nodeInput)
{
 BOOL wasFound;
 ...
 PhyData802_11 *phy802_11 =
 (PhyData802_11 *)MEM_malloc(sizeof(PhyData802_11));
 memset(phy802_11, 0, sizeof (PhyData802_11));
 node->phyData[phyIndex]->phyVar = (void*)phy802_11;
 phy802_11->thisPhy = node->phyData[phyIndex];
 ...
 // Antenna model initialization
 //
 ANTENNA_Init(node, phyIndex, nodeInput);
 ...
 if (node->phyData[phyIndex]->phyModel == PHY802_11a) {
 Phy802_11aInitializeDefaultParameters(node, phyIndex);
 Phy802_11aSetUserConfigurableParameters(node, phyIndex, nodeInput);
 }
 else if (node->phyData[phyIndex]->phyModel == PHY802_11b) {
 ...
 }
 ...
 IO_ReadBool(
 node->nodeId,
 node->phyData[phyIndex]->networkAddress,
 nodeInput,
 "PHY802.11-AUTO-RATE-FALLBACK",
 &wasFound,
 &yes);
 ...
 // Initialize status of phy
 //
 phy802_11->rxMsg = NULL;
 ...
 phy802_11->mode = PHY_IDLE;
 Phy802_11ChangeState(node, phyIndex, PHY_IDLE);
 //
 // Setting up the channel to use for both TX and RX
 //
 for (i = 0; i < numChannels; i++) {
 if (phy802_11->thisPhy->channelListening[i] == TRUE) {
 break;
 }
 }
 assert(i != numChannels);
 PHY_SetTransmissionChannel(node, phyIndex, i);
 return;
}

FIGURE 4-160. IEEE 802.11a Initialization Function
QualNet 5.2 Programmer’s Guide 316

Physical Layer Chapter 4
4.6.5.6 Implementing the Event Handler
In this section, we describe the steps for implementing the event handler function for a PHY model.

As explained in Section 3.4.2, when an event occurs, it is first handled by the node level dispatcher
function NODE_ProcessEvent, defined in QUALNET_HOME/main/node.cpp. If the event is for the
Physical Layer, NODE_ProcessEvent calls the Physical Layer event dispatcher PHY_ProcessEvent,
defined in phy.cpp.

Function PHY_ProcessEvent implements the Physical Layer event dispatcher that informs the appropriate
PHY model of received events. Messages contain the index of the interface for which the event has
occurred. The API function MESSAGE_GetInstanceId returns the interface index. PHY_ProcessEvent
implements a switch statement on the PHY model that is running at the interface read from the message
and calls the appropriate model-specific event handler. For example, if IEEE 802.11a is running at the
interface, PHY_ProcessEvent calls the IEEE 802.11a event handler function,
Phy802_11TransmissionEnd, which is implemented in phy_802_11.cpp.

For the Physical Layer, there is only one event of interest, MSG_PHY_TransmissionEnd, which is a timer
event. MSG_PHY_TransmissionEnd indicates the end of transmission of a packet by a node. To enable
the PHY model PHY_MYPHY to process events, add code to PHY_ProcessEvent to call PHY_MYPHY's
event handler function when messages for PHY_MYPHY are received. Figure 4-161 shows a code
fragment from PHY_ProcessEvent with sample code for calling PHY_MYPHY’s event handler function
PhyMyphyTransmissionEnd.

Write the event handler function PhyMyphyTransmissionEnd to take appropriate actions when the event
MSG_PHY_TransmissionEnd occurs. Include the prototype for PhyMyphyTransmissionEnd in the
header file, phy_myphy.h.

void PHY_ProcessEvent(Node *node, Message *msg) {
 int phyIndex = MESSAGE_GetInstanceId(msg);

 ...
 switch(node->phyData[phyIndex]->phyModel) {
 case PHY802_11b:
 case PHY802_11a: {
 switch (msg->eventType) {
 case MSG_PHY_TransmissionEnd: {
 Phy802_11TransmissionEnd(node, phyIndex);
 MESSAGE_Free(node, msg);
 break;
 }
 default: abort();
 }
 break;
 }
 case PHY_MYPHY: {
 switch (msg->eventType) {
 case MSG_PHY_TransmissionEnd: {
 PhyMyphyTransmissionEnd(node, phyIndex);
 MESSAGE_Free(node, msg);
 break;
 }
 default: abort();
 }
 break;
 }
317 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
 ...
 }
}

FIGURE 4-161. Physical Layer Event Dispatcher

4.6.5.7 Modifying Generic Physical Layer Functions

The Physical Layer implements several generic functions that are called by MAC protocols or by
communication media models. These generic functions, in turn, call the function for the PHY model that is
running at the interface. For example, a MAC protocol sends a packet to the Physical Layer by calling
function PHY_StartTransmittingSignal. PHY_StartTransmittingSignal, in turn, calls the function for the PHY
model running at the interface. If IEEE 802.11a is running at the interface, PHY_StartTransmittingSignal
calls function Phy802_11StartTransmittingSignal.

To add the new PHY model, PHY_MYPHY, to QualNet, these generic Physical Layer functions should be
modified so that the appropriate PHY_MYPHY function is called when PHY_MYPHY is running at the
interface. As an example, Figure 4-162 shows the modifications required for function
PHY_StartTransmitingSignal, where PhyMyphyStartTransmittingSignal is the MYPHY function that
transmits a packet received from the MAC Layer.

void PHY_StartTransmittingSignal(
 Node *node,
 int phyNum,
 Message *msg,
 BOOL useMacLayerSpecifiedDelay,
 clocktype delayUntilAirborne,
 NodeAddress destAddr)
{
 ...
 switch(node->phyData[phyNum]->phyModel) {
 case PHY802_11b:
 case PHY802_11a: {
 Phy802_11StartTransmittingSignal(
 node, phyNum, msg,
 useMacLayerSpecifiedDelay, delayUntilAirborne);
 break;
 }
 case PHY_MYPHY: {
 PhyMyphyStartTransmittingSignal(
 node, phyNum, msg,
 useMacLayerSpecifiedDelay, delayUntilAirborne);
 break;
 }
 ...
 }
}

FIGURE 4-162. Modifying a Generic Physical Layer Function

The generic Physical Layer functions that need to be modified are listed below. Depending upon the
functionality of the new PHY model being added, not all these functions may need to be modified, or
additional functions may need to be written.

1. PHY_StartTransmittingSignal
QualNet 5.2 Programmer’s Guide 318

Physical Layer Chapter 4
2. PHY_GetStatus

3. PHY_SignalArrivalFromChannel

4. PHY_SignalEndFromChannel

5. PHY_GetTxDataRate

6. PHY_GetRxDataRate

7. PHY_SetTxDataRateType

8. PHY_GetRxDataRateType

9. PHY_GetTxDataRateType

10.PHY_SetLowestTxDataRateType

11.PHY_GetLowestTxDataRateType

12.PHY_SetHighestTxDataRateType

13.PHY_GetHighestTxDataRateType

14.PHY_SetHighestTxDataRateTypeForBC

15.PHY_GetHighestTxDataRateTypeForBC

16.PHY_GetTransmissionDuration

17.PHY_SetTransmitPower

18.PHY_GetTransmitPower

19.PHY_GetLastSignalsAngleOfArrival

20.PHY_TerminateCurrentReceive

21.PHY_StartTransmittingSignalDirectionally

22.PHY_LockAntennaDirection

23.PHY_UnlockAntennaDirection

24.PHY_MediumIsIdle

25.PHY_MediumIsIdleInDirection

26.PHY_SetSensingDirection

27.PHY_PropagationRange

The modifications to these functions are similar to the modifications shown in Figure 4-162.

4.6.5.8 Interfacing with MAC Layer and Communication Medium
A PHY model interacts with a wireless MAC protocol in the following ways:

1. When the MAC protocol is ready to transmit a packet, it sends the packet to the Physical Layer. See

Section 4.6.5.8.1.

2. When the Physical Layer receives a packet from another node, it sends it to the MAC Layer. See

Section 4.6.5.8.2.

3. When the status of the Physical Layer changes, the Physical Layer notifies the MAC Layer of the status

change. See Section 4.6.5.8.2.

4. The Physical Layer implements several utility functions for use by MAC protocols to perform various

tasks, such as locking or unlocking the antenna, setting and retrieving data rates, getting the

transmission duration, etc. See Section 4.6.5.7.
319 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
A PHY model interacts with a communication medium model in the following ways:

1. When the PHY model has a packet to send, it adds a Physical Layer header and sends the packet to
the communication medium. See Section 4.6.5.8.1.

2. The communication medium indicates to the PHY model the beginning and end of a transmission from

another node. See Section 4.6.5.8.2.
QualNet 5.2 Programmer’s Guide 320

Physical Layer Chapter 4
4.6.5.8.1 Processing Outgoing Packets

When a MAC protocol has a packet to send to the Physical Layer, the MAC protocol calls function
PHY_StartTransmittingSignal. PHY_StartTransmittingSignal calls the transmit function of the PHY model
running at the interface to process the packet from the MAC Layer. For example, if IEEE 802.11a is running
at the interface, PHY_StartTransmittingSignal calls the IEEE 802.11a function
Phy802_11StartTransmittingSignal (see.Section 4.6.5.7).

Phy802_11StartTransmittingSignal calls the IEEE 802.11a function StartTransmittingSignal to transmit a
packet. StartTransmittingSignal and the other IEEE 802.11a functions are implemented in
phy_802_11.cpp. StartTransmittingSignal performs the following tasks (see Figure 4-163 and Figure 4-
164):

• StartTransmittingSignal calls function PHY_GetTransmissionChannel to get the index of the channel on
which to transmit the signal. PHY_GetTransmissionChannel is defined in phy.h.

• If PHY is currently receiving a signal, i.e., the status of PHY is PHY_RECEIVING, the PHY model
updates the interference power, and resets the receive parameters by calling Phy802_11UnlockSignal.

• StartTransmittingSignal changes the status of PHY to PHY_TRANSMITTING.

• StartTransmittingSignal calculates the transmission duration of the packet by calling
Phy802_11GetFrameDuration, and adds a Physical Layer header to the packet by calling
MESSAGE_AddHeader.

• StartTransmittingSignal calls function PHY_StopListeningToChannel to stop receiving on the channel.

• StartTransmittingSignal calls the communication medium function PROP_ReleaseSignal to transmit the
packet. PROP_ReleaseSignal is defined in QUALNET_HOME/include/propagation.h.

• StartTransmittingSignal schedules a self-timer of type MSG_PHY_TransmissionEnd to indicate the
end of transmission of the packet.
321 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
static
void StartTransmittingSignal(
 Node* node,
 int phyIndex,
 Message* packet,
 BOOL useMacLayerSpecifiedDelay,
 clocktype initDelayUntilAirborne,
 BOOL sendDirectionally,
 double azimuthAngle)
{
 ...
 clocktype delayUntilAirborne = initDelayUntilAirborne;
 PhyData* thisPhy = node->phyData[phyIndex];
 PhyData802_11* phy802_11 = (PhyData802_11 *)thisPhy->phyVar;
 int channelIndex;
 Message *endMsg;
 int packetsize = MESSAGE_ReturnPacketSize(packet);
 clocktype duration;

 PHY_GetTransmissionChannel(node, phyIndex, &channelIndex);
 ...
 if (phy802_11->mode == PHY_RECEIVING) {
 if (thisPhy->antennaModel == ANTENNA_OMNIDIRECTIONAL) {
 phy802_11->interferencePower_mW += phy802_11->rxMsgPower_mW;
 }
 else {
 if (!sendDirectionally) {
 ANTENNA_SetToDefaultMode(node, phyIndex);
 }//if//
 ...
 PHY_SignalInterference(
 node,
 phyIndex,
 channelIndex,
 NULL,
 NULL,
 &(phy802_11->interferencePower_mW));
 }
 Phy802_11UnlockSignal(phy802_11);
 }
 Phy802_11ChangeState(node, phyIndex, PHY_TRANSMITTING);
 ...
}

FIGURE 4-163. Processing Outgoing Packets: Calculating Interference Power
QualNet 5.2 Programmer’s Guide 322

Physical Layer Chapter 4
static
void StartTransmittingSignal(
 Node* node,
 ...
 BOOL sendDirectionally,
 double azimuthAngle)
{
 ...
 Phy802_11ChangeState(node, phyIndex, PHY_TRANSMITTING);
 duration =
 Phy802_11GetFrameDuration(
 thisPhy, phy802_11->txDataRateType, packetsize);
 MESSAGE_AddHeader(node, packet, sizeof(Phy802_11PlcpHeader),
 TRACE_802_11);
 char* plcpl = MESSAGE_ReturnPacket(packet);
 memcpy(plcpl, &phy802_11->txDataRateType, sizeof(int));
 ...
 PHY_StopListeningToChannel(node, phyIndex, channelIndex);
 ...
 if (AntennaIsInOmnidirectionalMode(node, phyIndex)) {
 PROP_ReleaseSignal(
 node,
 packet,
 phyIndex,
 channelIndex,
 phy802_11->txPower_dBm,
 duration,
 delayUntilAirborne);
 } else {
 PROP_ReleaseSignal(
 node,
 packet,
 phyIndex,
 channelIndex,
 (float)(phy802_11->txPower_dBm -
 phy802_11->directionalAntennaGain_dB),
 duration,
 delayUntilAirborne);
 }//if//
 ...
 endMsg = MESSAGE_Alloc(node,
 PHY_LAYER,
 0,
 MSG_PHY_TransmissionEnd);
 MESSAGE_SetInstanceId(endMsg, (short) phyIndex);
 MESSAGE_Send(node, endMsg, delayUntilAirborne + duration + 1);
 ...
}

FIGURE 4-164. Processing Outgoing Packets: Sending Packet to Communication Medium
323 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
4.6.5.8.2 Processing Incoming Packets

When the PHY model at a node transmits a packet, it calls the communication medium function
PROP_ReleaseSignal (see Section 4.6.5.8.1). Based on the relative positions of the nodes and the
transmission parameters, such as transmit power, antenna gain, and data rate, the communication
medium determines which nodes can receive the signal. For each of the neighbor nodes that can receive
the signal transmitted by a node, the communication medium makes two function calls: function
PHY_SignalArrivalFromChannel to indicate the start of a packet, and function
PHY_SignalEndFromChannel to indicate the end of a packet.

PHY_SignalArrivalFromChannel and PHY_SignalEndFromChannel call the functions for the PHY model
running at the interface (see Section 4.6.5.7). For example, if IEEE 802.11a is running at the interface,
PHY_SignalArrivalFromChannel calls the function Phy802_11SignalArrivalFromChannel, and
PHY_SignalEndFromChannel calls the function Phy802_11SignalEndFromChannel.

Phy802_11SignalArrivalFromChannel, shown in Figure 4-165 and Figure 4-166, performs the following
tasks:

• If the PHY model status is PHY_RECEIVING, i.e., the node is already receiving another signal,
Phy802_11SignalArrivalFromChannel calculates the receive power and determines if there are any
errors in the portion of the packet received so far by calling function Phy802_11CheckRxPacketError.
Phy802_11SignalArrivalFromChannel then adds the receive power to the interference power.

• If the PHY model status is PHY_IDLE or PHY_SENSING, Phy802_11SignalArrivalFromChannel
calculates the interference power and received power.

• If the received power is greater than the receiver sensitivity, Phy802_11SignalArrivalFromChannel
locks on to the signal by calling Phy802_11LockSignal, changes status to PHY_RECEIVING, and
informs the MAC Layer of the status change by calling Phy802_11ReportExtendedStatusToMac.

• If the received power is less than the receiver sensitivity, Phy802_11SignalArrivalFromChannel calls
function Phy802_11CarrierSensing to determine if the signal strength is high enough to trigger a status
change. If a status change is triggered, Phy802_11SignalArrivalFromChannel updates the status and
informs the MAC Layer of the status change by calling Phy802_11ReportStatusToMac.
QualNet 5.2 Programmer’s Guide 324

Physical Layer Chapter 4
void Phy802_11SignalArrivalFromChannel(
 Node* node,
 int phyIndex,
 int channelIndex,
 PropRxInfo *propRxInfo)
{
 PhyData *thisPhy = node->phyData[phyIndex];
 PhyData802_11* phy802_11 = (PhyData802_11*) thisPhy->phyVar;
 assert(phy802_11->mode != PHY_TRANSMITTING);
 ...
 switch (phy802_11->mode) {
 case PHY_RECEIVING: {
 double rxPower_mW =
 NON_DB(ANTENNA_GainForThisSignal(node, phyIndex, propRxInfo) +
 propRxInfo->rxPower_dBm);

 if (!phy802_11->rxMsgError) {
 phy802_11->rxMsgError =
 Phy802_11CheckRxPacketError(node, phy802_11, NULL);
 }//if//

 phy802_11->rxTimeEvaluated = getSimTime(node);
 phy802_11->interferencePower_mW += rxPower_mW;

 break;
 }
 case PHY_IDLE:
 case PHY_SENSING:
 {
 ...
 }
 default:
 abort();
 }//switch (phy802_11->mode)//
}

FIGURE 4-165. Processing Start of Incoming Signal in PHY_RECEIVING Mode
325 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
void Phy802_11SignalArrivalFromChannel(...)
{
 ...
 switch (phy802_11->mode) {
 ...
 case PHY_IDLE:
 case PHY_SENSING:
 {
 double rxInterferencePower_mW = NON_DB(
 ANTENNA_GainForThisSignal(node, phyIndex, propRxInfo) +
 propRxInfo->rxPower_dBm);
 double rxPowerInOmni_mW = NON_DB(
 ANTENNA_DefaultGainForThisSignal(node, phyIndex, propRxInfo) +
 propRxInfo->rxPower_dBm);

 if (rxPowerInOmni_mW >= phy802_11->rxSensitivity_mW[0]) {
 PropTxInfo *propTxInfo
 = (PropTxInfo *)MESSAGE_ReturnInfo(propRxInfo->txMsg);
 ...
 if (!AntennaIsLocked(node, phyIndex)) {
 ANTENNA_SetToBestGainConfigurationForThisSignal(
 node, phyIndex, propRxInfo);
 PHY_SignalInterference(...);
 }
 else {
 rxPower_mW = rxInterferencePower_mW;
 }
 Phy802_11LockSignal(...);
 Phy802_11ChangeState(node, phyIndex, PHY_RECEIVING);
 Phy802_11ReportExtendedStatusToMac(...);
 }
 else {
 PhyStatusType newMode;
 phy802_11->interferencePower_mW += rxInterferencePower_mW;
 if (Phy802_11CarrierSensing(node, phy802_11)) {
 newMode = PHY_SENSING;
 } else {
 newMode = PHY_IDLE;
 }//if//
 if (newMode != phy802_11->mode) {
 Phy802_11ChangeState(node, phyIndex, newMode);
 Phy802_11ReportStatusToMac(node, phyIndex, newMode);
 }//if//
 }//if//
 break;
 }
 ...
 }//switch (phy802_11->mode)//
}

FIGURE 4-166. Processing Start of Incoming Signal in PHY_IDLE and PHY_SENSING Modes
QualNet 5.2 Programmer’s Guide 326

Physical Layer Chapter 4
Phy802_11SignalEndFromChannel, shown in Figure 4-167 and Figure 4-168, performs the following
tasks:

• Phy802_11SignalEndFromChannel checks if there are any errors in the received packet by calling
Phy802_11CheckRxPacketError.

• If the PHY model status is PHY_RECEIVING and the received signal is the one that the PHY model had
locked on to, Phy802_11SignalEndFromChannel stops receiving the signal and calls
Phy802_11UnlockSignal.

• Phy802_11SignalEndFromChannel calls Phy802_11CarrierSensing and changes the PHY model
status to PHY_SENSING or PHY_IDLE depending on the interference power.

• If the packet was received without any errors, Phy802_11SignalEndFromChannel removes the
Physical Layer header and sends the packet to the MAC Layer by calling
MAC_ReceicePacketFromPhy. MAC_ReceicePacketFromPhy is implemented in QUALNET_HOME/
main/mac.cpp.

• If the packet was received with errors, Phy802_11SignalEndFromChannel reports the status change to
the MAC Layer by calling Phy802_11ReportStatusToMac and drops the packet.

• If the PHY model status is not PHY_RECEIVING or the received signal is not the one that the PHY
model had locked on to, Phy802_11SignalEndFromChannel updates the interference power. If the PHY
model status is not PHY_RECEIVING, Phy802_11SignalEndFromChannel calls
Phy802_11CarrierSensing and changes the PHY model status to PHY_SENSING or PHY_IDLE
depending on the interference power.

• If the PHY model status changes, Phy802_11SignalEndFromChannel reports the status change to the
MAC Layer by calling Phy802_11ReportStatusToMac.
327 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
void Phy802_11SignalEndFromChannel(
 Node* node,
 int phyIndex,
 int channelIndex,
 PropRxInfo *propRxInfo)
{
 PhyData *thisPhy = node->phyData[phyIndex];
 PhyData802_11* phy802_11 = (PhyData802_11*) thisPhy->phyVar;
 double sinr = -1.0;
 BOOL receiveErrorOccurred = FALSE;
 ...
 assert(phy802_11->mode != PHY_TRANSMITTING);
 if (phy802_11->mode == PHY_RECEIVING) {
 if (phy802_11->rxMsgError == FALSE) {
 phy802_11->rxMsgError =
 Phy802_11CheckRxPacketError(node, phy802_11, &sinr);
 phy802_11->rxTimeEvaluated = getSimTime(node);
 }//if
 }//if//
 receiveErrorOccurred = phy802_11->rxMsgError;
 // If the phy is still receiving this signal, forward the frame
 // to the MAC layer.
 if ((phy802_11->mode == PHY_RECEIVING) &&
 (phy802_11->rxMsg == propRxInfo->txMsg))
 {
 ...
 }
 else {
 PhyStatusType newMode;
 double rxPower_mW =
 NON_DB(ANTENNA_GainForThisSignal(node, phyIndex, propRxInfo) +
 propRxInfo->rxPower_dBm);
 phy802_11->interferencePower_mW -= rxPower_mW;
 if (phy802_11->interferencePower_mW < 0.0) {
 phy802_11->interferencePower_mW = 0.0;
 }
 if (phy802_11->mode != PHY_RECEIVING) {
 if (Phy802_11CarrierSensing(node, phy802_11) == TRUE) {
 newMode = PHY_SENSING;
 } else {
 newMode = PHY_IDLE;
 }//if//
 if (newMode != phy802_11->mode) {
 Phy802_11ChangeState(node, phyIndex, newMode);
 Phy802_11ReportStatusToMac(
 node,
 phyIndex,
 newMode);
 }//if//
 }//if//
 }//if//
}

FIGURE 4-167. Processing End of Incoming Signal in Non-receiving Mode
QualNet 5.2 Programmer’s Guide 328

Physical Layer Chapter 4
void Phy802_11SignalEndFromChannel(...)
{
 ...
 assert(phy802_11->mode != PHY_TRANSMITTING);
 if (phy802_11->mode == PHY_RECEIVING) {
 if (phy802_11->rxMsgError == FALSE) {
 phy802_11->rxMsgError =
 Phy802_11CheckRxPacketError(node, phy802_11, &sinr);
 phy802_11->rxTimeEvaluated = getSimTime(node);
 }//if
 }//if//
 receiveErrorOccurred = phy802_11->rxMsgError;
 if ((phy802_11->mode == PHY_RECEIVING) &&
 (phy802_11->rxMsg == propRxInfo->txMsg))
 {
 Message *newMsg;
 if (!ANTENNA_IsLocked(node, phyIndex)) {
 ANTENNA_SetToDefaultMode(node, phyIndex);
 ...
 PHY_SignalInterference(node, phyIndex, channelIndex, NULL,
 NULL, &(phy802_11->interferencePower_mW));
 }//if//
 ...
 Phy802_11UnlockSignal(phy802_11);
 if (Phy802_11CarrierSensing(node, phy802_11) == TRUE) {
 Phy802_11ChangeState(node, phyIndex, PHY_SENSING);
 }
 else {
 Phy802_11ChangeState(node, phyIndex, PHY_IDLE);
 }
 if (!receiveErrorOccurred) {
 newMsg = MESSAGE_Duplicate(node, propRxInfo->txMsg);
 MESSAGE_RemoveHeader(
 node, newMsg, sizeof(Phy802_11PlcpHeader), TRACE_802_11);
 ...
 MESSAGE_SetInstanceId(newMsg, (short) phyIndex);
 MAC_ReceivePacketFromPhy(node,
 node->phyData[phyIndex]->macInterfaceIndex,
 newMsg);
 phy802_11->stats.totalRxSignalsToMac++;
 }
 else {
 Phy802_11ReportStatusToMac(node, phyIndex, phy802_11->mode);
 phy802_11->stats.totalSignalsWithErrors++;
 }//if//
 }
 else {
 ...
 }//if//
}

FIGURE 4-168. Processing End of Incoming Signal in PHY_RECEIVING Mode
329 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
4.6.5.9 Collecting and Reporting Statistics
In this section, we describe how to collect and report statistics for a PHY model.

4.6.5.9.1 Declaring Statistics Variables

A PHY model can be configured to record statistics specified by the programmer, such as:

• Number of signals transmitted

• Number of signals received with errors

• Number of signals received without errors

To enable statistics collection for the PHY model, include the statistic collection variables in the structure
used to hold the PHY model state (see Section 4.6.5.4). The statistics related variables can also be
defined in a structure and then that structure is included in the state variable. For example, the data
structure for IEEE 802.11a, PhyData802_11, contains the IEEE 802.11a statistics variable,
Phy802_3Stats, shown below:

typedef struct phy_802_11_stats_str {
 D_Int32 totalTxSignals;
 D_Int32 totalRxSignalsToMac;
 D_Int32 totalSignalsLocked;
 D_Int32 totalSignalsWithErrors;
 D_Float64 energyConsumed;
 D_Clocktype turnOnTime;
} Phy802_11Stats;

PhyData802_11 and Phy802_11Stats are defined in phy_802_11.h.

4.6.5.9.2 Initializing Statistics

Initialize statistics variables in the PHY model’s initialization function. For example, the IEEE 802.11a
initialization function Phy802_11Init, shown in Figure 4-169, initializes all fields of the statistics variable
Phy802_11Stats to 0.

void Phy802_11Init(
 Node *node,
 const int phyIndex,
 const NodeInput *nodeInput)
{
 BOOL wasFound;
 ...
 //
 // Initialize phy statistics variables
 //
 phy802_11->stats.totalRxSignalsToMac = 0;
 phy802_11->stats.totalSignalsLocked = 0;
 phy802_11->stats.totalSignalsWithErrors = 0;
 phy802_11->stats.totalTxSignals = 0;
 phy802_11->stats.energyConsumed = 0.0;
 phy802_11->stats.turnOnTime = getSimTime(node);
 ...
}

FIGURE 4-169. Initializing Statistics Variables for IEEE 802.11a
QualNet 5.2 Programmer’s Guide 330

Physical Layer Chapter 4
4.6.5.9.3 Updating Statistics

After declaring and initializing the statistics variables, update their value during the execution of the PHY
model, as required. For example, IEEE 802.11a increments the value of totalRxSignalsToMac in
function Phy802_11SignalEndFromChannel (implemented in phy_802_11.cpp) every time IEEE 802.11a
sends a received packet to the MAC Layer, as shown in Figure 4-168.

4.6.5.9.4 Printing Statistics

As a final step towards statistics collection, create a function to print statistics. Call this function from the
finalization function of the PHY model, which is discussed in Section 4.6.5.10.2. Alternatively, the statistics
can be printed from the finalization function directly.

4.6.5.9.5 Adding Dynamic Statistics

Dynamic statistics are statistic variables whose values can be observed in the QualNet GUI during the
simulation. See Section 5.2.3 for adding dynamic statistics to a protocol. Refer to QualNet User’s Guide for
details of viewing dynamic statistics during the simulation.
331 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
4.6.5.10 Finalization
The finalization function of the PHY model is called by the simulator at the end of simulation. It is the last
code that executes during the simulation. This function is responsible for printing statistics to the statistics
file.

At the end of simulation, the finalization function for each model is called to print the model statistics. As
discussed in Section 3.4.3, the finalization function is called hierarchically. The node finalization function,
PARTITION_Finalize, which is defined in QUALNET_HOME/main/partition.cpp, calls the finalization
function for the Physical Layer, PHY_Finalize, defined in phy.cpp. PHY_Finalize calls the finalization
function of the PHY model running at each interface.

4.6.5.10.1 Modifying the Physical Layer Finalization Function

Call the finalization function of the PHY model from the Physical Layer finalization function, PHY_Finalize,
defined in phy.cpp. Figure 4-170 shows the outline of code that needs to be added to PHY_Finalize.
Function PhyMyphyFinalize is the finalization function of the PHY model PHY_MYPHY (see
Section 4.6.5.10.2).

void PHY_Finalize(Node *node) {
 int phyNum;

 for (phyNum = 0; (phyNum < node->numberPhys); phyNum++) {
 ...
 switch(node->phyData[phyNum]->phyModel) {
 case PHY802_11b:
 case PHY802_11a: {
 Phy802_11Finalize(node, phyNum);

 break;
 }
 case PHY_MYPHY:
 {
 PhyMyphyFinalize(node, phyNum);
 break;
 }
 ...
 }
 }
}

FIGURE 4-170. Physical Layer Finalization Function
QualNet 5.2 Programmer’s Guide 332

Physical Layer Chapter 4
4.6.5.10.2 Implementing the PHY Model Finalization Function

Write the finalization function for the PHY model PHY_MYPHY, PhyMyphyFinalize. If statistics collection is
enabled for the Physical Layer, call the function to print the PHY model’s statistics (see Section 4.6.5.9.4)
from the finalization function, or add code directly to PhyMyphyFinalize to print statistics. Use the IEEE
802.11a finalization function, Phy802_11Finalize, shown in Figure 4-171, as a template.
Phy802_11Finalize is implemented in phy_802_11.cpp.

Function Phy802_11Finalize calls the C function sprintf to create a single string containing the statistic
name and statistic value, and then calls function IO_PrintStat to print that string to a file. Function
IO_PrintStat function, defined in QUALNET_HOME/include/fileio.h, requires the following parameters:

• Node pointer: Pointer to the node reporting the statistics.

• Layer: String indicating the layer. Set this to "Physical" for the Physical Layer.

• Protocol: String indicating the model name.

• Interface address: Interface address. Set this to ANY_DEST for PHY models.

• Instance identifier: Physical channel index.

• Buffer: String containing the statistics.

void Phy802_11Finalize(Node *node, const int phyIndex) {
 PhyData* thisPhy = node->phyData[phyIndex];
 PhyData802_11* phy802_11 = (PhyData802_11*) thisPhy->phyVar;
 char buf[MAX_STRING_LENGTH];

 if (thisPhy->phyStats == FALSE) {
 return;
 }
 assert(thisPhy->phyStats == TRUE);
 sprintf(buf, "Signals transmitted = %d",
 (int) phy802_11->stats.totalTxSignals);
 IO_PrintStat(node, "Physical", "802.11", ANY_DEST, phyIndex, buf);
 sprintf(buf, "Signals received and forwarded to MAC = %d",
 (int) phy802_11->stats.totalRxSignalsToMac);
 IO_PrintStat(node, "Physical", "802.11", ANY_DEST, phyIndex, buf);
...
}

FIGURE 4-171. Finalization Function for IEEE 802.11a

As for all other functions, specify the prototype of the finalization function in the PHY model's header file,
phy_myphy.h.

4.6.5.11 Modifying Radio-range Utility Function
The file QUALNET_HOME/libraries/wireless/src/prop_range.cpp implements the radio-range program,
which calculates the likely propagation range of a node, under no interference conditions, using the
parameters specified in the configuration file. Modify this file, as shown in Figure 4-172, to incorporate
PHY_MYPHY.

/*
 * Calculates prop range
 */
...
#include "phy_abstract.h"
#include "phy_myphy.h"
333 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
#include "propagation.h"
...

int main(int argc, char **argv) {
 NodeInput nodeInput;
 int numNodes = 0;
 ...
 PHY_Init(node, &nodeInput);
 PHY_GlobalBerInit(&nodeInput);

 {
 int interfaceIndex;
 ...
 IO_ReadString(node->nodeId, &networkAddress, &nodeInput,
 "PHY-MODEL", &found, phyModelName);

 assert(found == TRUE);

 if (strcmp(phyModelName, "PHY802.11a") == 0) {
 PHY_CreateAPhyForMac(node, &nodeInput, interfaceIndex,
 &networkAddress, PHY802_11a,
 &node->macData[interfaceIndex]->phyNumber);

 phyModel = PHY802_11a;
 }
 else
 if (strcmp(phyModelName, "PHY_MYPHY") == 0) {
 PHY_CreateAPhyForMac(node, &nodeInput, interfaceIndex,
 &networkAddress, PHY_MYPHY,
 &node->macData[interfaceIndex]->phyNumber);

 phyModel = PHY_MYPHY;
 }
 else
 ...
 else {
 ERROR_ReportError("Unknown PHY-MODEL");
 }
 }
 PROP_Init(node, 0, &nodeInput);
 propProfile = node->partitionData->propChannel[0].profile;
 thisRadio = node->phyData[radioNumber];
 distance = PHY_PropagationRange(node, radioNumber, TRUE);
 return 0;
}

FIGURE 4-172. Modifying Radio-range Utility Function

4.6.5.12 Including and Compiling Files

The final step in integrating your PHY model into QualNet is to add the source file to the QualNet source
tree and compile.

If you have created the files for the PHY model in an existing library or addon, then add the source file to
the Makefile-common for that library or addon. For example, if you have created your model files in the
Wireless library, then modify QUALNET_HOME/libraries/wireless/Makefile-common as shown in Figure 4-
173. Recompile QualNet after making the changes.
QualNet 5.2 Programmer’s Guide 334

Physical Layer Chapter 4
...
common sources
#
WIRELESS_SRCS = \
$(WIRELESS_DIR)/antenna.cpp \
$(WIRELESS_DIR)/antenna_global.cpp \
...
$(WIRELESS_DIR)/phy_802_11.cpp \
$(WIRELESS_DIR)/phy_abstract.cpp \
$(WIRELESS_DIR)/phy_cellular.cpp \
$(WIRELESS_DIR)/phy_myphy.cpp \
$(WIRELESS_DIR)/propagation.cpp \
$(WIRELESS_DIR)/prop_itm.cpp \
$(WIRELESS_DIR)/prop_plmatrix.cpp \
$(WIRELESS_DIR)/routing_aodv.cpp \
...

FIGURE 4-173. Adding Model to Makefile-common

If you have created a new library called user_models, then follow the instructions given in Section 4.10.5 to
integrate the user_models library into QualNet.

4.6.5.13 Integrating the Model into the GUI
To make the new model available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.

4.6.6 Adding an Antenna Model

Although the working of each antenna is different, there are certain functions that are performed by most
antenna models. This section provides an overview of the flow of an antenna model and provides an
outline for developing and adding an antenna model, MYANTENNA, to QualNet. The new antenna model
may use a new antenna pattern type, MYPATTERN.

The following list summarizes the actions that need to be performed for adding an antenna model,
MYANTENNA, to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.6.6.2).

2. Modify the files antenna.cpp and antenna_global.cpp to include the antenna model’s header file (see

Section 4.6.6.2).

3. Modify the file phy.cpp and the source files for any PHY models that use the new antenna model to

include the antenna model’s header file (see Section 4.6.6.2).

4. Include the antenna model in the list of antennas (see Section 4.6.6.3).

5. If the antenna model uses a new antenna pattern type, include it in the list of antenna pattern types (see

Section 4.6.6.4).

6. Define data structures for the antenna model (see Section 4.6.6.5).

7. Decide on the format for the antenna model-specific configuration parameters (see Section 4.6.6.6.1).

8. Call the antenna model’s initialization function from the antenna initialization function, ANTENNA_Init

(see Section 4.6.6.6.2).
335 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
9. Modify function ANTENNA_GlobalAntennaModelInit to read the antenna model’s configuration

parameters (see Section 4.6.6.6.3).

10.If the antenna model uses antenna pattern files of a new type, then modify function

ANTENNA_GlobalAntennaPatternInit to read pattern files of the new type (see Section 4.6.6.6.4).

11.Write the initialization function for the antenna model (see Section 4.6.6.6.5).

12.Modify the generic antenna functions to integrate the new antenna model (see Section 4.6.6.7).

13.Write functions to implement the antenna model functionality (see Section 4.6.6.8).

14.Modify Physical Layer and PHY model functions to integrate the new antenna model (see

Section 4.6.6.9).

15.Include the antenna model header and source files in the QualNet tree and compile (see

Section 4.6.6.10).

16.To make the model available in the QualNet GUI, modify the GUI settings files (see Section 4.6.6.11).

4.6.6.1 Naming Guidelines

In QualNet, each component (file, data structure, function, etc.) is given a name that indicates the name of
the model, the layer in which the model resides, and the functionality of the component, as appropriate. We
recommend that when adding a new antenna model, the programmer name the different components of
the new model in a similar manner. It will be helpful to examine the implementation of the patterned
antenna model in QualNet for hints for naming and coding different components of the new antenna model.

In this section, we describe the steps for developing an antenna model called “MYANTENNA”. We will use
the string “Myantenna” in the names of the different components of this model, just as the string
“AntennaPatterned” appears in the names of the components of the patterned antenna implementation.

4.6.6.2 Creating Files
This step is similar to the one for PHY models (see Figure 4.6.5.2). Create the header and source files for
the antenna model. Name these files in a way that clearly indicates the model that they implement. For
antenna models, prefix the file names with antenna_.

Examples:

• antenna_steerable.h, antenna_steerable.cpp: These files, in the directory QUALNET_HOME/libraries/
wireless/src, implement the steerable antenna model.

• antenna_patterened.h, antenna_patterened.cpp: These files, in the directory QUALNET_HOME/
libraries/wireless/src, implement the patterned antenna model.

In keeping with the naming guidelines of Section 4.6.6.1, the header file for the example antenna model is
called antenna_myantenna.h, and the source file is called antenna_myantenna.cpp.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file, antenna_myantenna.h, should contain the following:

• Prototypes for interface functions in the source file, antenna_myantenna.cpp

• Constant definitions

• Data structure definitions

The source file, antenna_myantenna.cpp, should contain the following:
QualNet 5.2 Programmer’s Guide 336

Physical Layer Chapter 4
• Statement to include the antenna model’s header file:

#include “antenna_myantenna.h”

• Statements to include standard library functions and other header files needed by the antenna model’s
source file. A typical antenna source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "partition.h" // QUALNET_HOME/main/partition.h
#include "api.h" // QUALNET_HOME/include/api.h
#include "antenna.h"
 // QUALNET_HOME/libraries/wireless/src/antenna.h
#include "antenna_global.h"
 // QUALNET_HOME/libraries/wireless/src/antenna_global.h

• Initialization function for the antenna model, MyantennaInit

• Antenna model implementation functions

The files antenna.cpp and antenna_global.cpp in the folder QUALNET_HOME/libraries/wireless/src
contain the layer level initialization function and functions to implement the antenna functionality. These
layer level functions in turn call the antenna model’s initialization and implementation functions. Therefore,
to make these antenna model functions available to the layer level functions, insert the following include
statement in the files antenna.cpp and antenna_global.cpp:

#include “antenna_myantenna.h”

This include statement should also be included in the file QUALNET_HOME/libraries/wireless/src/phy.cpp
and the source files for any PHY models that use the antenna model.
337 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
4.6.6.3 Including MYANTENNA in List of Antenna Models
When a new antenna model is added to QualNet, it needs to be included in the list of antenna models. To
do this, add the antenna model’s name to the enumeration AntennaModelType defined in
QUALNET_HOME/libraries/wireless/src/antenna_global.h.

For our example model, add the entry ANTENNA_MYANTENNA to AntennaModelType, as shown in
Figure 4-174.

enum AntennaModelType {
 ANTENNA_OMNIDIRECTIONAL,
 ANTENNA_SWITCHED_BEAM,
 ANTENNA_STEERABLE,
 ANTENNA_PATTERNED,
 ANTENNA_MYANTENNA
};

FIGURE 4-174. Adding MYANTENNA to List of Antenna Models

Always add to the end of lists in header files.

4.6.6.4 Including MYPATTERN in List of Antenna Pattern Types
If the new antenna model uses a new antenna pattern type, it needs to be included in the list of antenna
pattern types. To do this, add the antenna pattern type’s name to the enumeration AntennaPatternType
defined in antenna_global.h.

For our example model, the pattern type used is called MYPATTERN. Add the entry
ANTENNA_MYPATTERN to AntennaPatternType, as shown in Figure 4-175.

enum AntennaPatternType {
 ANTENNA_PATTERN_TRADITIONAL,
 ANTENNA_PATTERN_ASCII2D,
 ANTENNA_PATTERN_ASCII3D,
 ANTENNA_PATTERN_NSMA,
 ANTENNA_PATTERN_EBE,
 ANTENNA_PATTERN_ASAPS,
 ANTENNA_MYPATTERN
};

FIGURE 4-175. Adding MYPATTERN to List of Antenna Pattern Types
QualNet 5.2 Programmer’s Guide 338

Physical Layer Chapter 4
4.6.6.5 Defining Data Structures
Each antenna model has its own data structure, which is defined in the antenna model’s header file. The
data structure stores antenna model-specific information.

Define an appropriate data structure, AntennaMyantenna, for MYANTENNA in the antenna model’s
header file, antenna_myantenna.h. As an example, the following data structure, defined in
QUALNET_HOME/libraries/wireless/src/antenna_patterned.h, is used by the patterned antenna:

typedef struct struct_Antenna_Patterned {
 int modelIndex;
 int numPatterns;
 int patternIndex;
 float antennaHeight;
 float antennaGain_dB;
 AntennaPattern *pattern;
} AntennaPatterned;

4.6.6.6 Initialization
In this section, we describe the tasks that need to be performed as part of the initialization process of an
antenna model.

4.6.6.6.1 Determining the Configuration Format for Input Parameters

An antenna model may use model-specific configuration parameters for its operation. Configuration
parameters for antenna models can be specified in the configuration file, e.g., default.config, or in an
antenna models configuration file, e.g., default.antenna-models. It is recommended that the configuration
parameters for the new antenna model, MYANTENNA, be specified in the antenna models configuration
file. The format for specifying an antenna model’s configuration parameters in the antenna models
configuration file is:

<Parameter-name> [<Index>] <Parameter-value>

where:

<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.

For example, the following lines from the file default.antenna-models show a part of the specification of an
antenna model, DEFAULT1-STEERABLE, which is a steerable antenna with the specified parameters:

ANTENNA-MODEL-NAME DEFAULT1-STEERABLE
ANTENNA-MODEL-TYPE STEERABLE
ANTENNA-MODEL-CLASS DYNAMIC
ANTENNA-GAIN 0.0
ANTENNA-HEIGHT 1.5
ANTENNA-EFFICIENCY 0.8
...
339 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
The following line from the configuration file, defualt.config, specifies that DEFAULT1-STEERABLE is the
antenna model to be used for node 18:

[18] ANTENNA-MODEL DEFAULT1-STEERABLE

Decide on the format for specifying the new antenna model’s configuration parameters. Section 4.6.6.6.3
explains how to read user input specified in this format. As an example, the following specification defines
an antenna model, DEFAULT1-MYANTENNA, which is an antenna of type MYANTENNA, and has the
parameter values listed. This antenna model uses an antenna pattern of type MYPATTERN (see
Section 4.6.6.4).

ANTENNA-MODEL-NAME DEFAULT1-MYANTENNA
ANTENNA-MODEL-TYPE MYANTENNA
ANTENNA-MODEL-CLASS DYNAMIC
ANTENNA-GAIN 0.0
ANTENNA-HEIGHT 1.5
ANTENNA-EFFICIENCY 0.8
ANTENNA-MISMATCH-LOSS 0.3
ANTENNA-CABLE-LOSS 0.0
ANTENNA-CONNECTION-LOSS 0.2
ANTENNA-PATTERN-NAME PATTERN-MYPATTERN
ANTENNA-PATTERN-NUM-PATTERNS 1
ANTENNA-PATTERN-TYPE MYPATTERN
ANTENNA-PATTERN-PATTERN-FILE default.mypattern

4.6.6.6.2 Calling the Antenna Model Initialization Function

The initialization function of an antenna model is called from the layer level antenna initialization function,
ANTENNA_Init, implemented in QUALNET_HOME/libraries/wireless/src/antenna.cpp. ANTENNA_Init is
called by the initialization function of the PHY model running at the interface. For example, if IEEE 802.11a
is running at an interface, the PHY model is initialized by calling the IEEE 802.11a initialization function
Phy802_11Init (see Section 4.6.5.5.3), which in turn calls function ANTENNA_Init.

Function ANTENNA_Init reads the name of the antenna model specified for the interface, and calls the
function ANTENNA_InitFromConfigFile if an omni-directional, steerable, or switched-beam antenna model
is specified for the interface. (Configuration parameters for these three antenna models can be specified in
the main configuration file as well as the antenna models configuration file.) If a different name is specified
for the antenna model, ANTENNA_Init calls function ANTENNA_GlobalAntennaModelGet. If the antenna
model has already been encountered before and has an entry in the global antenna structure,
ANTENNA_GlobalAntennaModelGet returns a pointer to the structure for the antenna model. If the
antenna model has not been encountered before, i.e., ANTENNA_GlobalAntennaModelGet returns a null
pointer, ANTENNA_Init calls functions ANTENNA_MakeAntennaModelInput and
ANTENNA_GlobalAntennaModelInit to create and initialize an entry for the antenna model in the global
antenna structure. ANTENNA_GlobalAntennaModelInit also reads and stores the configuration
parameters for the antenna model.

Function ANTENNA_MakeAntennaModelInput is implemented in antenna.cpp. Functions
ANTENNA_GlobalAntennaModelGet and ANTENNA_GlobalAntennaModelInit are implemented in
QUALNET_HOME/libraries/wireless/src/antenna_global.cpp. Function IO_ReadString reads the name of
the antenna model from the configuration file. The prototype for IO_ReadString is defined in
QUALNET_HOME/include/fileio.h
QualNet 5.2 Programmer’s Guide 340

Physical Layer Chapter 4
ANTENNA_Init then calls the initialization function for the antenna model. Figure 4-176 shows the
modifications that need to be made to ANTENNA_Init to incorporate MYANTENNA in QualNet.
ANTENNA_MyantennaInit is the initialization function for MYANTENNA.

void ANTENNA_Init(Node* node, int phyIndex, const NodeInput* nodeInput)
 {
 PhyData* phyData = node->phyData[phyIndex];
 ...

 IO_ReadString(node->nodeId, phyData->networkAddress, nodeInput,
 "ANTENNA-MODEL", &wasFound, buf);
 if (!wasFound || (strcmp(buf, "OMNIDIRECTIONAL") == 0)
 || (strcmp(buf, "SWITCHED-BEAM") == 0)
 || (strcmp(buf, "STEERABLE") == 0))
 {
 ANTENNA_InitFromConfigFile(node, phyIndex,nodeInput);
 }
 else
 {
 antennaModel
 = ANTENNA_GlobalAntennaModelGet(node->partitionData, buf);
 // Create a new global antenna structure
 if (antennaModel == NULL)
 {
 NodeInput* antennaModelInput
 = ANTENNA_MakeAntennaModelInput(nodeInput, buf);
 ...
 ANTENNA_GlobalAntennaModelInit(node,
 phyIndex ,antennaModelInput, buf);

 antennaModel
 = ANTENNA_GlobalAntennaModelGet(node->partitionData, buf);
 ...
 }
 ...
 if (antennaModel->antennaModelType == ANTENNA_OMNIDIRECTIONAL)
 {
 ANTENNA_OmniDirectionalInit(node, phyIndex, antennaModel);
 return;
 }
 ...
 else if (antennaModel->antennaModelType == ANTENNA_PATTERNED)
 {
 ANTENNA_PatternedInit(node, phyIndex, antennaModel);
 return;
 }
 else if (antennaModel->antennaModelType == ANTENNA_MYANTENNA)
 {
 ANTENNA_MyantennaInit(node, phyIndex, antennaModel);
 return;
 }
 else
 ...
 }//end of else
}

FIGURE 4-176. Calling Antenna Model Initialization Function from ANTENNA_Init
341 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
4.6.6.6.3 Reading Configuration Parameters

Function ANTENNA_GlobalAntennaModelInit reads the configuration parameters associated with an
antenna model from the antenna models configuration file and stores them in the global antenna data
structure. Parameters for each antenna model are stored in a data structure of type
AntennaModelGlobal, which is defined in antenna_global.h.

In addition to ANTENNA_Init, function ANTENNA_GlobalAntennaModelInit also needs to be modified to
incorporate MYANTENNA in QualNet. ANTENNA_GlobalAntennaModelInit is implemented in
antennna_global.cpp. Figure 4-177 shows the modifications needed to add the antenna model,
MYANTENNA. If MYANTENNA uses any additional configuration parameters (see Section 4.6.6.6.1), then
add appropriate fields to the data structure AntennaModelGlobal and modify
ANTENNA_GlobalAntennaModelInit to read those parameters and store them in AntennaModelGlobal.

void ANTENNA_GlobalAntennaModelInit(
 Node* node, int phyIndex, const NodeInput* antennaModelInput,
 const char* antennaModelName)
{
 char buf[MAX_STRING_LENGTH];
 BOOL wasFound;
 ...
 // Get new model
 AntennaModelGlobal* antennaModel =
 &node->partitionData->antennaModels[
 node->partitionData->numAntennaModels];

 // Read in antenna model
 // Model name initialization with
 // ANTENNA-MODEL (required)

 strcpy(antennaModel->antennaModelName, antennaModelName);
 IO_ReadString(node->nodeId, phyData->networkAddress, antennaModelInput,
 "ANTENNA-MODEL-TYPE", &wasFound, buf);
 ...
 if (strcmp(buf, "OMNIDIRECTIONAL") == 0)
 {
 antennaModel->antennaModelType = ANTENNA_OMNIDIRECTIONAL;
 }
 else if (strcmp(buf, "MYANTENNA") == 0)
 {
 antennaModel->antennaModelType = ANTENNA_MYANTENNA;
 }
QualNet 5.2 Programmer’s Guide 342

Physical Layer Chapter 4
 ...
 IO_ReadFloat(node->nodeId, phyData->networkAddress, antennaModelInput,
 "ANTENNA-HEIGHT", &wasFound, &height);
 if (wasFound)
 {
 ERROR_Assert(height >= 0 , "Illegal height given in the file.\n");
 antennaModel->height = (float) height;
 }
 else
 {
 antennaModel->height = ANTENNA_DEFAULT_HEIGHT;
 }
 ...
 if (antennaModel->antennaModelType != ANTENNA_OMNIDIRECTIONAL)
 {
 antennaModel->antennaPatterns =
 ANTENNA_GlobalModelAssignPattern(node, phyIndex,
 antennaModelInput, antennaModel);
 }
 node->partitionData->numAntennaModels++;
 return;
}

FIGURE 4-177. Modifications to Function ANTENNA_GlobalAntennaModelInit
343 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
4.6.6.6.4 Reading Antenna Pattern Files

If the antenna model is a directional antenna, ANTENNA_GlobalAntennaModelInit calls function
ANTENNA_GlobalModelAssignPattern (see Figure 4-177) to associate the proper antenna pattern type
with the antenna model. ANTENNA_GlobalModelAssignPattern reads the antenna pattern name
associated with the antenna model. If the antenna pattern name has not been encountered before,
ANTENNA_GlobalModelAssignPattern calls function ANTENNA_GlobalAntennaPatternInit to initialize the
structure associated with the antenna pattern type. ANTENNA_GlobalModelAssignPattern and
ANTENNA_GlobalAntennaPatternInit are implemented in antenna_global.cpp.

If the new antenna model uses a new antenna pattern type, then ANTENNA_GlobalAntennaPatternInit
should be modified to read pattern files of the new type. Figure 4-178 shows the modification required to
ANTENNA_GlobalAntennaPatternInit to read an antenna pattern file of type MYPATTERN where
ANTENNA_ReturnMypatternPatternFile is the function to read a pattern file of type MYPATTERN and
store the pattern data in the antenna data structure.

If the antenna model uses a new antenna pattern type, write the function
ANTENNA_ReturnMypatternPatternFile. Like all other functions belonging to the antenna model, the
prototype for ANTENNA_ReturnMypatternPatternFile should be included in the antenna’s header file,
antenna_myantenna.h.

void ANTENNA_GlobalAntennaPatternInit(
 Node* node,
 int phyIndex,
 const NodeInput* antennaModelInput,
 AntennaModelGlobal* antennaModel,
 const char* antennaPatternName)
{
 char buf[MAX_STRING_LENGTH];
 BOOL wasFound;

 PhyData *phyData = node->phyData[phyIndex];

 ...
 AntennaPattern* antennaPatterns =
 &node->partitionData->antennaPatterns[
 node->partitionData->numAntennaPatterns];
 strcpy(antennaPatterns->antennaPatternName , antennaPatternName);

 IO_ReadString(
 node->nodeId,
 phyData->networkAddress,
 antennaModelInput,
 "ANTENNA-PATTERN-TYPE",
 &wasFound,
 buf);
 ...
 // Assign pattern
 if (strcmp(buf, "ASCII2D") == 0)
 {
 antennaPatterns->antennaPatternType = ANTENNA_PATTERN_ASCII2D;
 ANTENNA_ReturnAsciiPatternFile(node, phyIndex,antennaModelInput,
 antennaPatterns);
 }

 else if (strcmp(buf, "MYPATTERN") == 0)
 {
QualNet 5.2 Programmer’s Guide 344

Physical Layer Chapter 4
 antennaPatterns->antennaPatternType = ANTENNA_MYPATTERN;
 ANTENNA_ReturnMypatternPatternFile(node, phyIndex,antennaModelInput,
 antennaPatterns);
 }
 ...

 node->partitionData->numAntennaPatterns++;
 return;
}

FIGURE 4-178. Reading Antenna Pattern Files
345 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
4.6.6.6.5 Implementing the Antenna Model Initialization Function

The initialization of an antenna model takes place in the initialization function of the antenna that is called
by the layer-level antenna initialization function ANTENNA_Init (see Figure 4-176). The initialization
function of an antenna model commonly performs the following tasks:

• Create an instance of the antenna model data structure

• Copies the antenna parameters in the antenna model data structure from the global antenna structure

As an example, Figure 4-179 shows the initialization function for the patterned antenna model,
ANTENNA_PatternedInit. ANTENNA_PatternedInit performs the following tasks:

• ANTENNA_PatternedInit creates an instance of the patterned antenna data structure,
AntennaPatterned, by calling function AntennaPatternedAlloc.

• ANTENNA_PatternedInit initializes the fields of the patterned antenna data structure with the values
read into the global antenna structure (see Section 4.6.6.6.3).

• ANTENNA_PatternedInit creates an instance of the generic antenna data structure, AntennaModel,
and initializes the antennaData field of the Physical Layer data structure for that interface to point to
the newly created generic antenna data structure.

• ANTENNA_PatternedInit initializes the fields of the generic antenna data structure with the appropriate
antenna model type and antenna pattern type, and makes the antennaVar field of the generic
antenna data structure point to the newly created instance of the patterned antenna data structure,
AntennaPatterned.

ANTENNA_PatternedInit and AntennaPatternedAlloc are implemented in antenna_patterned.cpp
QualNet 5.2 Programmer’s Guide 346

Physical Layer Chapter 4
Write the initialization function for MYANTENNA, ANTENNA_MyantennaInit, to perform similar tasks for
MYANTENNA. Like all other functions belonging to the antenna model, the prototype for the initialization
function, ANTENNA_MyantennaInit, should be included in the antenna’s header file,
antenna_myantenna.h.

void ANTENNA_PatternedInit(
 Node* node,
 int phyIndex,
 const AntennaModelGlobal* antennaModel)

{
 PhyData* phyData = node->phyData[phyIndex];

 phyData->antennaData =
 (AntennaModel*) MEM_malloc(sizeof(AntennaModel));

 ERROR_Assert(phyData->antennaData ,
 "memory allocation problem for phyData->antennaData.\n");
 memset(phyData->antennaData, 0,sizeof(AntennaModel));

 AntennaPatterned *antennaVars = AntennaPatternedAlloc();

 antennaVars->patternIndex = ANTENNA_PATTERN_NOT_SET;

 // init structure
 antennaVars->modelIndex = 0;
 antennaVars->numPatterns = antennaModel->antennaPatterns->numOfPatterns;
 antennaVars->antennaHeight = antennaModel->height;
 antennaVars->antennaGain_dB = antennaModel->antennaGain_dB;
 antennaVars->patternIndex = ANTENNA_DEFAULT_PATTERN;
 antennaVars->pattern = antennaModel->antennaPatterns;

 // Assign antenna model based on Node's model type

 phyData->antennaData->antennaVar = antennaVars;
 phyData->antennaData->antennaModelType = antennaModel->antennaModelType;
 phyData->antennaData->numModels++;
 phyData->antennaData->antennaPatternType =
 antennaModel->antennaPatterns->antennaPatternType;
 phyData->systemLoss_dB = antennaModel->systemLoss_dB;
}

FIGURE 4-179. Antenna Model Initialization Function

4.6.6.7 Modifying Generic Antenna Functions

An antenna model implements several functions that are used by PHY models. These antenna model
functions are called indirectly by PHY models. For example, if IEEE 802.11a is used as the PHY model,
and the PHY needs to lock the antenna in the direction of maximum gain, the IEEE 802.11a function
Phy802_11LockAntennaDirection calls the generic antenna function ANTENNA_LockAntennaDirection.
ANTENNA_LockAntennaDirection calls the antenna locking function for the antenna model that is in use.
For example, if the patterned antenna is in use, ANTENNA_LockAntennaDirection calls function
AntennaPatternedLockAntennaDirection. Phy802_11LockAntennaDirection is implemented in
QUALNET_HOME/libraries/wireless/src/phy_802_11.cpp. ANTENNA_LockAntennaDirection and the
other generic antenna functions are implemented in antenna.cpp. AntennaPatternedLockAntennaDirection
and the other functions for the patterned antenna are implemented in antenna_patterned.cpp.
347 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
Figure 4-180 shows the modifications that need to be made to ANTENNA_LockAntennaDirection to
incorporate MYANTENNA in QualNet. AntennaMyantennaLockAntennaDirection is the MYANTENNA
function to lock the antenna direction.

void ANTENNA_LockAntennaDirection(Node* node, int phyIndex)
{
 PhyData* phyData = node->phyData[phyIndex];

 switch (phyData->antennaData->antennaModelType)
 {

 case ANTENNA_OMNIDIRECTIONAL:
 {
 break;
 }

 case ANTENNA_SWITCHED_BEAM:
 {
 AntennaSwitchedBeamLockAntennaDirection(node, phyIndex);
 break;
 }
 case ANTENNA_STEERABLE:
 {
 AntennaSteerableLockAntennaDirection(node, phyIndex);
 break;
 }

 case ANTENNA_PATTERNED:
 {
 AntennaPatternedLockAntennaDirection(node, phyIndex);
 break;
 }

 case ANTENNA_MYANTENNA:
 AntennaMyantennaLockAntennaDirection(node, phyIndex);
 break;

 default:
 {
 char err[MAX_STRING_LENGTH];
 sprintf(err, "Unknown ANTENNA-MODEL %s for phy %d.\n",
 phyData->antennaData->antennaModelType, phyIndex);
 ERROR_ReportError(err);
 break;
 }

 }//switch//
}

FIGURE 4-180. Modifying a Generic Antenna Function
QualNet 5.2 Programmer’s Guide 348

Physical Layer Chapter 4
Table 4-17 lists the generic antenna functions which should be modified to incorporate a new antenna
model. Depending on the antenna's characteristics not all of the functions may need to be modified. The
modifications to these functions are similar to the modification to ANTENNA_LockAntennaDirection,
shown in Figure 4-180. These generic functions are implemented in antenna.cpp.

4.6.6.8 Implementing Antenna Functions

The functionality of an antenna model is implemented by means of several functions which are called by
the PHY model and the propagation model. Write functions to implement the functionality of MYANTENNA.
Include these functions in the antenna source file, antenna_myantenna.cpp, and define the prototypes of
interface functions in the antenna header file, antenna_myantenna.h.

4.6.6.9 Integrating with PHY Models
Several Physical Layer and PHY model functions refer to antenna model functions and data structures
directly. These functions should be modified to integrate MYANTENNA into QualNet. Modifications
required for these functions are shown in this section. Note that additional modifications to Physical Layer
and PHY model functions may be necessary, depending upon the functionality of the antenna model and
PHY models.

Figure 4-181 shows the modifications for function PHY_PropagationRange. It assumes that the
MYANTENNA data structure, AntennaMyantenna (see Section 4.6.6.5), contains the fields
antennaGain_dB and antennaHeight. PHY_PropagationRange is implemented in QUALNET_HOME/
libraries/wireless/src/phy.cpp.

TABLE 4-17. Generic Antenna Functions

Function Explanation

ANTENNA_IsInOmnidirectionalMode Indicates if the antenna is operating in omni-
directional mode.

ANTENNA_ReturnHeight Returns the antenna height.

ANTENNA_ReturnPatternIndex Returns the antenna pattern index.

ANTENNA_GainForThisDirection Returns the antenna gain value for a specified
direction.

ANTENNA_GainForThisDirectionWithPatternIndex Returns the antenna gain value for a specified
direction and pattern index.

ANTENNA_DefaultGainForThisSignal Returns the default antenna gain value for a
specified signal.

ANTENNA_LockAntennaDirection For directional antennas, locks the direction in
which maximum gain was observed.

ANTENNA_UnlockAntennaDirection Unlocks the antenna's direction.

ANTENNA_IsLocked Checks if the antenna's direction is locked.

ANTENNA_SetToDefaultMode Sets the antenna to use the default mode.

ANTENNA_SetToBestGainConfigurationForThisSignal If the antenna's direction is not locked, identifies the
radiation pattern that provides the best gain for a
given signal and uses it for further reception.

ANTENNA_SetBestConfigurationForAzimuth Sets the antenna to the best configuration for a
specified azimuth.
349 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
double PHY_PropagationRange(Node* node,
 int interfaceIndex,
 BOOL printAllDataRates)
{
 ...
 AntennaOmnidirectional* omniDirectional;
 AntennaSwitchedBeam* switchedBeam;
 AntennaSteerable* steerable;
 AntennaPatterned* patterned;
 AntennaMyantenna* myantenna;
 ...
 switch (thisRadio->antennaData->antennaModelType)
 {
 case ANTENNA_OMNIDIRECTIONAL:
 {
 ...
 }
 ...
 case ANTENNA_PATTERNED:
 {
 patterned =
 (AntennaPatterned*)thisRadio->antennaData->antennaVar;
 txAntennaGain_dB = patterned->antennaGain_dB;
 txAntennaHeight = patterned->antennaHeight;
 break;
 }
 case ANTENNA_MYANTENNA:
 {
 myantenna =
 (AntennaMyantenna*)thisRadio->antennaData->antennaVar;
 txAntennaGain_dB = myantenna->antennaGain_dB;
 txAntennaHeight = myantenna->antennaHeight;
 break;
 }
 default:
 {
 ...
 }

 }
 ...
}

FIGURE 4-181. Modifications to Function PHY_PropagationRange
QualNet 5.2 Programmer’s Guide 350

Physical Layer Chapter 4
Figure 4-182 shows the modifications for function Phy802_11Init, which is implemented in
phy_802_11.cpp.

void Phy802_11Init(
 Node *node,
 const int phyIndex,
 const NodeInput *nodeInput)
{
 BOOL wasFound;
 BOOL yes;
 int dataRateForBroadcast;
 int i;
 int numChannels = PROP_NumberChannels(node);
 ...
 // Antenna model initialization
 //
 ANTENNA_Init(node, phyIndex, nodeInput);

 ERROR_Assert(((phy802_11->thisPhy->antennaData->antennaModelType
 == ANTENNA_OMNIDIRECTIONAL) ||
 (phy802_11->thisPhy->antennaData->antennaModelType
 == ANTENNA_SWITCHED_BEAM) ||
 (phy802_11->thisPhy->antennaData->antennaModelType
 == ANTENNA_STEERABLE) ||
 (phy802_11->thisPhy->antennaData->antennaModelType
 == ANTENNA_MYANTENNA) ||
 (phy802_11->thisPhy->antennaData->antennaModelType
 == ANTENNA_PATTERNED)) ,
 "Illegal antennaModelType.\n");
 ...
 // Set PHY802_11-ESTIMATED-DIRECTIONAL-ANTENNA-GAIN
 //
 IO_ReadDouble(
 node->nodeId,
 node->phyData[phyIndex]->networkAddress,
 nodeInput,
 "PHY802.11-ESTIMATED-DIRECTIONAL-ANTENNA-GAIN",
 &wasFound,
 &(phy802_11->directionalAntennaGain_dB));

 if (!wasFound &&
 (phy802_11->thisPhy->antennaData->antennaModelType
 != ANTENNA_OMNIDIRECTIONAL &&
 (phy802_11->thisPhy->antennaData->antennaModelType
 != ANTENNA_MYANTENNA &&
 phy802_11->thisPhy->antennaData->antennaModelType
 != ANTENNA_PATTERNED))
 {
 ERROR_ReportError(
 "PHY802.11-ESTIMATED-DIRECTIONAL-ANTENNA-GAIN is missing\n");
 }
 ...
}

FIGURE 4-182. Modifications to Function Phy802_11Init
351 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
Figure 4-183 shows the modifications for function Phy802_11ITermintaeCurrentReceive, which is
implemented in phy_802_11.cpp.

void Phy802_11TerminateCurrentReceive(
 Node* node, int phyIndex, const BOOL terminateOnlyOnReceiveError,
 BOOL* frameError,
 clocktype* endSignalTime)
{
 PhyData* thisPhy = node->phyData[phyIndex];
 PhyData802_11* phy802_11 = (PhyData802_11*)thisPhy->phyVar;
 ...
 *frameError = phy802_11->rxMsgError;

 if ((terminateOnlyOnReceiveError) && (!phy802_11->rxMsgError)) {
 return;
 }//if//
 if (thisPhy->antennaData->antennaModelType == ANTENNA_OMNIDIRECTIONAL) {
 phy802_11->interferencePower_mW += phy802_11->rxMsgPower_mW;
 }
 else {
 int channelIndex;
 PHY_GetTransmissionChannel(node, phyIndex, &channelIndex);
 ERROR_Assert(((thisPhy->antennaData->antennaModelType
 == ANTENNA_SWITCHED_BEAM) ||
 (thisPhy->antennaData->antennaModelType
 == ANTENNA_STEERABLE) ||
 (thisPhy->antennaData->antennaModelType
 == ANTENNA_MYANTENNA) ||
 (thisPhy->antennaData->antennaModelType
 == ANTENNA_PATTERNED)) ,
 "Illegal antennaModelType");
 ...
 }
 ...
}

FIGURE 4-183. Modifications to Function Phy802_11TerminateCurrentReceive
QualNet 5.2 Programmer’s Guide 352

Physical Layer Chapter 4
Figure 4-184 shows the modifications for function Phy802_11IGetLastAngleOfArrival, which is
implemented in phy_802_11.cpp. AntennaMyantennaGetLastBoresightAzimuth is the MYANTENNA
function to return the last boresight azimuth angle.

double Phy802_11GetLastAngleOfArrival(Node* node, int phyIndex) {
 PhyData* thisPhy = node->phyData[phyIndex];

 switch (thisPhy->antennaData->antennaModelType) {

 case ANTENNA_SWITCHED_BEAM:
 {
 return AntennaSwitchedBeamGetLastBoresightAzimuth(node,
 phyIndex);
 break;
 }

 case ANTENNA_STEERABLE:
 {
 return AntennaSteerableGetLastBoresightAzimuth(node, phyIndex);
 break;
 }

 case ANTENNA_PATTERNED:
 {
 return AntennaPatternedGetLastBoresightAzimuth(node, phyIndex);
 break;
 }

 case ANTENNA_MYANTENNA:
 {
 return AntennaMyantennaGetLastBoresightAzimuth(node, phyIndex);
 break;
 }

 default:
 {
 ERROR_ReportError("AOA not supported for this Antenna Model\n");
 break;
 }
 }//switch//

 abort();
 return 0.0;
}

FIGURE 4-184. Modifications to Function Phy802_11GetLastAngleOfArrival
353 QualNet 5.2 Programmer’s Guide

Chapter 4 Physical Layer
Figure 4-185 shows the modifications for function PhyAbstractInit, which is implemented in
QUALNET_HOME/libraries/wireless/src/phy_abstract.cpp.

void PhyAbstractInit(
 Node *node,
 const int phyIndex,
 const NodeInput *nodeInput)
{
 double rxSensitivity_dBm;
 double rxThreshold_dBm;
 ...
 //
 // Antenna model initialization
 //
 ANTENNA_Init(node, phyIndex, nodeInput);

 ERROR_Assert(((phy_abstract->thisPhy->antennaData->antennaModelType
 == ANTENNA_OMNIDIRECTIONAL) ||
 (phy_abstract->thisPhy->antennaData->antennaModelType
 == ANTENNA_MYANTENNA)) ||
 (phy_abstract->thisPhy->antennaData->antennaModelType
 == ANTENNA_PATTERNED)) ,
 "Illegal antennaModelType.\n");
 ...
}

FIGURE 4-185. Modifications to Function PhyAbstractInit

4.6.6.10 Including and Compiling Files
This step is similar to the one for adding a PHY model (see Section 4.6.5.12).

4.6.6.11 Integrating the Model into the GUI
To make the new model available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.
QualNet 5.2 Programmer’s Guide 354

.
4.7 Communication Medium

The communication medium transmits signals between nodes. It interfaces with the Physical Layer entities
at the nodes. A wireless communication medium model in QualNet simulates the propagation of signals
between nodes, taking into account both propagation delays and signal attenuation due to path loss,
fading, and shadowing.

In QualNet, a communication medium model has three components: a path loss model, a fading model,
and a shadowing model. This section gives a detailed description of how to add each of these components
to QualNet.

4.7.1 Communication Medium Models in QualNet

QualNet provides several models for path loss, fading and shadowing.

Path Loss Models

Path loss refers to the attenuation of a signal in transit between a transmitter and receiver. Path loss may
be due to many effects, such as free-space loss, refraction, reflection, aperture-medium coupling loss, and
absorption. Table 4-18 lists the different pathloss models in QualNet. See the corresponding model library
for the description of each model and its parameters.

TABLE 4-18. Pathloss Models in QualNet

Pathloss Model Description Model Library

ASAPS Advanced Stand Alone Prediction System.

This model allows the prediction of Sky Wave communication
conditions in the High Frequency (HF) and low Very High Frequency
(VHF) radio spectrum or Short Wave Band (1 to 45MHz).

ALE/ASAPS
Advanced
Propagation

COST231-HATA COST 231-Hata pathloss model.

This model can be used for urban, suburban, or open areas. It is a
refinement of the Okumura-Hata pathloss model.

Urban Propagation

COST231-
WALFISH-
IKEGAMI

COST 231-Walfish-Ikegami pathloss model.

This model can be used for urban or metropolitan areas.

Urban Propagation

FREE-SPACE Friis free-space pathloss model.

The model assumes an omni-directional line-of-sight propagation
path. The signal strength decays with the square of the distance
between the transmitter and receiver.

Wireless

ITM Irregular Terrain Model, also known as the Longley-Rice model.

This model uses the information from a terrain data file to calculate
line-of-sight between nodes, ground reflection characteristics, and
pathloss.

Wireless

OKUMURA-HATA Okumura-Hata pathloss model for macro-cellular systems.

This model can be used for urban, suburban, or open areas.

Urban Propagation

PATHLOSS-
MATRIX

Matrix-based pathloss model.

This model uses a four-dimensional matrix of pathloss values
indexed by source node, destination node, simulation time, and
channel number.

Wireless
Communication Medium Chapter 4
355 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
Fading Models

A fading model calculates the effect of changes in characteristics of the propagation path on the signal
strength. Table 4-19 lists the different fading models in QualNet. See the corresponding model library for
the description of each model and its parameters.

STREET-M-TO-
M

Street mobile-to-mobile pathloss model.

This model calculates pathloss between a
source and a destination in an urban
canyon communicating across several
building obstacles.

Urban Propagation

STREET-
MICROCELL

Street micro-cell pathloss model.

This model calculates the path-loss
between transmitter-receiver pairs that
are located in adjacent streets in an
urban canyon.

Urban Propagation

SUBURBAN Suburban pathloss model.

This model characterizes propagation in a
suburban environment and takes into
account the effects of terrain and
foliage on signals.

Urban Propagation

TIREM Terrain Integrated Rough Earth Model.

This model considers terrain effects, transmitter and receiver
attributes such as antenna height and frequency, and atmospheric
and ground constants. This model is distributed by the Joint
Spectrum Center of the Department of Defense and is interfaced
with QualNet. This model requires a terrain data file.

TIREM Advanced
Propagation

TWO-RAY Two-ray pathloss model.

The two-ray pathloss model considers a line-of-sight path and a
reflection from flat earth in pathloss calculation.

Wireless

TABLE 4-19. Fading Models in QualNet

Fading Model Description Model Library

FAST-RAYLEIGH Fast Rayleigh fading model.

The fast Rayleigh fading model is a statistical model to represent
the fast variation of signal amplitude at the receiver due to the
motion of the transmitter/receiver pair.

Wireless

RAYLEIGH Rayleigh fading model.

Rayleigh fading model is a statistical model to represent the fast
variation of signal amplitude at the receiver. In wireless propagation,
Rayleigh fading occurs when there is no line of sight between the
transmitter and receiver.

Wireless

TABLE 4-18. Pathloss Models in QualNet (Continued)

Pathloss Model Description Model Library
QualNet 5.2 Programmer’s Guide 356

Communication Medium Chapter 4
Shadowing Models

A shadowing model calculates the attenuation caused to a signal by obstruction in the propagation path.
Table 4-20 lists the different shadowing models in QualNet. See the corresponding model library for the
description of each model and its parameters.

4.7.2 Communication Medium Organization: Files and Folders

In this section, we briefly examine the files and folders that are relevant to communication medium models.
These files contain detailed comments on functions and other code components.

Definitions of macros, functions, and structures relevant to communication medium models are contained
in the following header files:

• QUALNET_HOME/include/api.h

This file defines the events and data structures needed to communicate between different layers of the
protocol stack.

• QUALNET_HOME/include/propagation.h

This file contains definitions common to communication medium models and prototypes of functions
defined in QUALNET_HOME/libraries/wireless/src/propagation.cpp.

• QUALNET_HOME/include/phy.h

This file contains definitions of API functions needed to communicate with the Physical Layer.

Additionally, the following header file is also relevant to the communication medium:

• QUALNET_HOME/include/fileio.h

This file contains prototypes of functions to read input files and create output files.

The following are the folders and source files associated with the communication medium:

• QUALNET_HOME/libraries/wireless/src

This folder contains the source and header files for the various communication medium models
implemented in QualNet. The file names are based on the name of the model that they implement, e.g.,
to see the implementation for ITM path loss model, look at files prop_itm.cpp and prop_itm.h in this
folder.

RICEAN Ricean fading model.

This model can be used for scenarios where there is line of sight
communication and the line of sight signal is the dominant signal
seen at the receiver.

Wireless

TABLE 4-20. Shadowing Models in QualNet

Shading Model Description Model Library

CONSTANT Constant shadowing model.

This model uses a constant shadowing offset.

Wireless

LOGNORMAL Lognormal shadowing model.

This model uses a lognormal distribution for the shadowing value.

Wireless

TABLE 4-19. Fading Models in QualNet (Continued)

Fading Model Description Model Library
357 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
• QUALNET_HOME/libraries/wireless/src/propagation.cpp

This file contains the implementation of different communication medium models as well as generic
communication medium functions.

4.7.3 Communication Medium Data Structures

The communication medium data structures are defined in QUALNET_HOME/include/propagation.h. This
section describes the main data structures. (Note that only a partial description of the data structures is
provided here. Refer to file propagation.h for a complete description.)

1. PathlossModel: This is an enumeration type that lists all the path loss models.

enum PathlossModel {
 FREE_SPACE = 0,
 TWO_RAY,
 PL_MATRIX,
 ...
 FLAT_BINNING
};

2. FadingModel: This is an enumeration type that lists all the fading models.

enum FadingModel {
 NONE = 0,
 RICEAN
};

3. ShadowingModel: This is an enumeration type that lists all the shadowing models.

enum ShadowingModel {
 CONSTANT = 0,
 LOGNORMAL
};

4. PropData: This is the main data structure used by the communication medium and stores information

about the propagation model used for each channel. Each node maintains an instance of this data

structure for each channel. Some important fields of this structure are explained below.
QualNet 5.2 Programmer’s Guide 358

Communication Medium Chapter 4
struct PropData {
 int numPhysListenable;
 int numPhysListening;
 BOOL* phyListening;
 BOOL limitedInterference;
 RandomDistribution<double> shadowingDistribution;
 int nodeListId;
 int numSignals;
 PropRxInfo* rxSignalList;
 double fadingStretchingFactor;
 PropPathProfile* pathProfile;
 void *propVar;
 int numPathLossCalculation;
};

• numPhysListenable: This is the number of wireless interfaces of the node that can potentially
listen to this channel.

• numPhysListening: This is the number of wireless interfaces of the node that are currently
listening to this channel.

• phyListening: This Boolean array indicates which of the node’s wireless interfaces are currently
listening to the channel.

• shadowingDistribution: This variable implements a random number distribution for use by the
shadowing model.

• nodeListId: This is the list of nodes that can potentially listen to this channel.

• numSignals: This is the number of signals on this channel that the node is currently receiving, i.e.,
the number of other nodes that are currently transmitting on this channel and within whose
propagation limit this node is located.

• rxSignalList: This list contains information on transmissions the node is currently receiving on
this channel.

• fadingStretchinFactor: This variable determines the sampling interval used to read the fading
trace.

• pathProfile: This data structure stores the characteristics of the path of the signal that the node
is currently locked on to.

4.7.4 Communication Medium APIs and Communication with Physical Layer

This section describes the APIs used by the Physical Layer to communicate with the communication
medium (see Section 4.7.4.1), the APIs used by the communication medium to communicate with the
Physical Layer (see Section 4.7.4.2). This section also lists some of communication medium utility APIs
(see Section 4.7.4.3).

The complete list of APIs, with their parameters and description, can be found in API Reference Guide.

4.7.4.1 Physical Layer to Communication Medium Communication
The communication medium provides the API PROP_ReleaseSignal to enable PHY entities to
communicate with the communication medium. To transmit a signal, a PHY model calls the API
PROP_ReleaseSignal.

The prototype for PROP_ReleaseSignal is contained in the file propagation.h.
359 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
4.7.4.2 Communication Medium to Physical Layer Communication
The communication medium uses the APIs listed below to communicate with PHY models. The prototypes
for these functions are contained in QUALNET_HOME/include/phy.h. The file QUALNET_HOME/main/
phy.cpp contains the implementation of these functions.

• PHY_SignalArrivalFromChannel: This function indicates the start of a signal.

• PHY_SignalEndFromChannel: This function indicates the end of a signal.

4.7.4.3 Communication Medium Utility APIs
Several APIs are available at the communication medium that perform tasks internal to the communication
medium. Some of these functions can be used by other layers as well. The prototypes for these API
functions are contained in the file propagation.h.

Some of the communication medium utility APIs are listed below.

• PROP_NumberChannels: This function return the number of channels.

• PROP_ChannelWavelength: This function returns the wavelength of the specified channel.

4.7.5 Adding a Path Loss Model

Although the working of each path loss model is different, there are certain functions that are performed by
most path loss models. This section provides an outline for developing and adding a path loss model to
QualNet. We illustrate the process of adding a path loss model by using as an example the implementation
code for the ITM path loss model. The header file for the ITM implementation is prop_itm.h and the source
file is prop_itm.cpp in the folder QUALNET_HOME/libraries/wireless/src. We use code snippets from these
two files throughout this section to illustrate different steps in developing a path loss model. After
understanding the discussed snippets, look at the complete code for ITM to understand how a path loss
model is implemented in QualNet.

The following list summarizes the actions that need to be performed for adding a path loss model,
MYPATHLOSS, to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.7.5.2).

2. Modify the file propagation.cpp to include the model’s header file (see Section 4.7.5.2).

3. Include the path loss model in the list of path loss models (see Section 4.7.5.3).

4. Decide on the format for the path loss model-specific configuration parameters (see Section 4.7.5.4.1).

5. Call the path loss model’s initialization function from the propagation initialization function,

PROP_GlobalInit (see Section 4.7.5.4.2).

6. Write the initialization function for the path loss model (see Section 4.7.5.4.3). The initialization function

should read and store the configuration parameters for the path loss model.

7. Modify the propagation function PROP_CalculatePathloss to call the MYPATHLOSS’s function to return

the path loss value (see Section 4.7.5.5).

8. Implement the path loss calculation function for MYPATHLOSS (see Section 4.7.5.5).

9. Include the path loss model header and source files in the QualNet tree and compile (see

Section 4.7.5.6).

10.To make the model available in the QualNet GUI, modify the GUI settings files (see Section 4.7.5.7).
QualNet 5.2 Programmer’s Guide 360

Communication Medium Chapter 4
4.7.5.1 Naming Guidelines
In QualNet, each component (file, data structure, function, etc.) is given a name that indicates the name of
the protocol or model, the layer in which the protocol resides, and the functionality of the component, as
appropriate. We recommend that when adding a new path loss model, the programmer name the different
components of the new model in a similar manner. It will be helpful to examine the implementation of the
ITM model in QualNet for hints for naming and coding different components of the new path loss model.

In this section, we describe the steps for developing a path loss model called “MYPATHLOSS”. We will use
the string “Mypathloss” in the names of the different components of this model, just as the string “Itm”
appears in the names of the components of the ITM implementation.
361 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
4.7.5.2 Creating Files
The first step towards adding a path loss model is creating files. Most models comprise two files: the
header file and the source file. These files can be placed in any library, e.g., in the folder
QUALNET_HOME/libraries/wireless/src. However, it is recommended that all user-developed models be
made part of an a library. In our example, we will place the path loss model in a library called user_models.
See Section 4.10 for instructions for creating and activating a library.

(If the model being developed is simple, then it may not be necessary to create separate files for it. In that
case, code can be added directly to the files QUALNET_HOME/include/propagation.h and
QUALNET_HOME/libraries/wireless/src/propagation.cpp. The rest of this section assumes that separate
files for the path loss model will be created.)

If it doesn’t already exist, create a directory in QUALNET_HOME/libraries called user_models and a
subdirectory in QUALNET_HOME/libraries/user_models called src. Create the files for the path loss model
and place them in the folder QUALNET_HOME/libraries/user_models/src. Name these files in a way that
clearly indicates the model that they implement. Prefix the file names with prop_ to designate the files as
propagation model files.

Examples:

• prop_itm.h, prop_itm.cpp: These files, in the folder QUALNET_HOME/libraries/wireless/src, implement
the ITM path loss model.

• prop_plmatrix.h, prop_plmatrix.cpp: These files, in the folder QUALNET_HOME/libraries/wireless/src,
implement the path loss matrix model.

In keeping with the naming guidelines of Section 4.7.5.1, the header file for the example path loss model is
called prop_mypathloss.h, and the source file is called prop_mypathloss.cpp.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file, prop_mypathloss.h, should contain the following:

• Prototypes for interface functions in the source file, prop_mypathloss.cpp

• Constant definitions

The source file, prop_mypathloss.cpp, should contain the following:

• Statement to include the path loss model’s header file:

#include “prop_mypathloss.h”

• Statements to include standard library functions and other header files needed by the path loss model’s
source file. A typical path loss model source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "api.h"

• Initialization function for the path loss model, MypathlossInitialize

• Path loss calculation function for the path loss model, PathlossMypathloss
QualNet 5.2 Programmer’s Guide 362

Communication Medium Chapter 4
The file QUALNET_HOME/libraries/wireless/src/propagation.cpp contains the generic initialization function
and function to calculate the path loss value. These generic functions in turn call the path loss model’s
initialization and path loss calculation functions. Therefore, to make these path loss model functions
available to the generic functions, insert the following include statement in the file propagation.cpp, if
separate files are created for the model:

#include “prop_mypathloss.h”

4.7.5.3 Including MYPATHLOSS in List of Path Loss Models

When a new path loss model is added to QualNet, it needs to be included in the list of path loss models. To
do this, add the path loss model’s name to the enumeration PathlossModel defined in propagation.h
(see Section 4.7.3).

For our example path loss model, add the entry MYPATHLOSS to PathlossModel, as shown in Figure 4-
186.

typedef enum {
 FREE_SPACE = 0,
 TWO_RAY,
 PL_MATRIX,
 OPAR,
 ...
 FLAT_BINNING,
 MYPATHLOSS
} PathlossModel;

FIGURE 4-186. Adding MYPATHLOSS to List of Path Loss Models

Always add to the end of lists in header files.

4.7.5.4 Initialization

In this section, we describe the tasks that need to be performed as part of the initialization process of a
path loss model.

4.7.5.4.1 Determining the Path Loss Model Configuration Format

A path loss model may use model-specific configuration parameters. The configuration parameters are
specified in the QualNet configuration file. The format for specifying a path loss model’s configuration
parameters is:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.

<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.
363 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
As an example, the following parameters are used to specify the sampling distance and humidity for the
ITM path loss model:

PROPAGATION-PATHLOSS-MODEL ITM
PROPAGATION-SAMPLING-DISTANCE 100.0
PROPAGATION-HUMIDITY 10

Decide on the format for specifying the new path loss model’s configuration parameters. For our example
path loss model, specify the configuration parameters in the QualNet configuration file using the following
format (<Identifier> and <Index> can also be used to qualify the parameter declarations, as
described above):

 PROPAGATION-PATHLOSS-MODEL MYPATHLOSS
 <param1> <value1>
 ...
 <paramN> <valueN>

where:

<param1>, ..., <paramN> : Names of parameters for MYPATHLOSS.

<value1>, ..., <valueN : Values of the path loss parameters.

Section 4.7.5.4.3 explains how to read user input specified in this format to initialize the model.

4.7.5.4.2 Calling the Path Loss Model Initialization Function

The communication medium models are initialized before the protocol stack of each node is initialized. At
the start of simulation, the initialization function PROP_GlobalInit is called, which calls the initialization
function for the path loss models that are used in the simulation. PROP_GlobalInit is implemented in
propagation.cpp.

To add your path loss model to QualNet, make modifications to PROP_GlobalInit, as shown in Figure 4-
187. MypathlossInitialize is the initialization function for MYPATHLOSS. Include the prototype of
MypathlossInitialize in the header file, prop_mypathloss.h.
QualNet 5.2 Programmer’s Guide 364

Communication Medium Chapter 4
void PROP_GlobalInit(PartitionData *partitionData, NodeInput *nodeInput) {
 BOOL wasFound;
 char buf[MAX_STRING_LENGTH];
 PropChannel* propChannel;
 PropProfile* propProfile;
 ...
 for (i = 0; i < numChannels; i++) {
 ...
 //
 // Set pathlossModel
 //
 IO_ReadStringInstance(
 ANY_NODEID,
 ANY_ADDRESS,
 nodeInput,
 "PROPAGATION-PATHLOSS-MODEL",
 channelIndex,
 TRUE,
 &wasFound,
 buf);

 if (wasFound) {
 if (strcmp(buf, "FREE-SPACE") == 0) {
 propProfile->pathlossModel = FREE_SPACE;
 }
 ...
 else if (strcmp(buf, "ITM") == 0) {
 propProfile->pathlossModel = ITM;
 if (partitionData->terrainData.dataType == NO_TERRAIN_DATA) {
 ERROR_ReportError("ITM requires terrain data\n");
 }
 ItmInitialize(
 &(propChannel[channelIndex]), channelIndex, nodeInput);
 }
 else if (strcmp(buf, "MYPATHLOSS") == 0) {
 propProfile->pathlossModel = MYPATHLOSS;
 MypathlossInitialize(
 &(propChannel[channelIndex]), channelIndex, nodeInput);
 }
 ...
 }
 else {
 ...
 }
 ...
 } //for//
 ...
}

FIGURE 4-187. Calling the Path Loss Model Initialization Function
365 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
4.7.5.4.3 Implementing the Path Loss Model Initialization Function

The initialization of a path loss model takes place in the initialization function of the model that is called by
the function PROP_GlobalInit. The initialization function of a path loss model reads the user-specified
parameters, if any, and sets the model parameters accordingly.

If your path loss model uses user-specified parameters, write an initialization function to read the values of
these parameters. As an example, Figure 4-188 shows the initialization function for the ITM path loss
model, ItmInitialize. ItmInitialize reads the values of user-specified parameters from the input file. If a
parameter is not specified in the input file, ItmInitialize stores the default value for that parameter.
ItmInitialize is implemented in QUALNET_HOME/libraries/wireless/src/prop_itm.cpp.

The configurable parameters are read using IO functions such as IO_ReadDoubleInstance,
IO_ReadIntInstance and IO_ReadStringInstance to read parameter values from the input file.
IO_ReadDoubleInstance, IO_ReadIntInstance, IO_ReadStringInstance and other IO functions are defined
in QUALNET_HOME/include/fileio.h.
QualNet 5.2 Programmer’s Guide 366

Communication Medium Chapter 4
void ItmInitialize(
 PropChannel *propChannel,
 int channelIndex,
 const NodeInput *nodeInput)
{
 PropProfile* propProfile = propChannel->profile;
 BOOL wasFound;
 double elevationSamplingDistance;
 int climate;
 double refractivity;
 ...

 IO_ReadDoubleInstance(
 ANY_NODEID,
 ANY_ADDRESS,
 nodeInput,
 "PROPAGATION-SAMPLING-DISTANCE",
 channelIndex,
 (channelIndex == 0),
 &wasFound,
 &elevationSamplingDistance);

 if (wasFound) {
 propProfile->elevationSamplingDistance =
 (float)elevationSamplingDistance;
 }
 else {
 propProfile->elevationSamplingDistance =
 DEFAULT_SAMPLING_DISTANCE;
 }

 IO_ReadDoubleInstance(
 ANY_NODEID,
 ANY_ADDRESS,
 nodeInput,
 "PROPAGATION-REFRACTIVITY",
 channelIndex,
 (channelIndex == 0),
 &wasFound,
 &refractivity);

 if (wasFound) {
 propProfile->refractivity = refractivity;
 }
 else {
 propProfile->refractivity = DEFAULT_REFRACTIVITY;
 }
 ...
 return;
}

FIGURE 4-188. ITM Initialization Function
367 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
4.7.5.5 Path Loss Calculation
Function PROP_CalculatePathloss, implemented in propagation.cpp, is called by the communication
medium to calculate the signal attenuation due to path loss between a pair of nodes.

To add a path loss model to QualNet, modify function PROP_CalculatePathloss to call the model’s path
loss calculation function. Figure 4-189 shows the changes that need to be made to
PROP_CalculatePathloss to add MYPATHLOSSMOEL to QualNet. PathlossMypathloss is the
MYPATHLOSS function that calculates the path loss. Include the prototype of PathlossMypathloss in the
header file, prop_mypathloss.h.

Implement the path loss calculation function PathlossMypathloss and include it in the source file,
prop_mypathloss.cpp.

void PROP_CalculatePathloss(
 Node* node,
 int channelIndex,
 double wavelength,
 float txAntennaHeight,
 float rxAntennaHeight,
 PropPathProfile *pathProfile,
 double* pathloss_dB)
{
 ...
 PropProfile *propProfile = node->propChannel[channelIndex].profile;
 ...
 switch (propProfile->pathlossModel) {
 case FREE_SPACE:
 case TWO_RAY:
 {
 ...
 }
 ...
 case ITM: {
 int numSamples;
 ...
 *pathloss_dB =
 PathlossItm(
 numSamples + 1,
 pathProfile->distance / (double)numSamples,
 elevationArray,
 txPlatformHeight,
 rxPlatformHeight,
 propProfile->polarization,
 propProfile->climate,
 propProfile->permittivity,
 propProfile->conductivity,
 propProfile->frequency / 1.0e6,
 propProfile->refractivity);
 ...
 return;
 }
 case MYPATHLOSS: {
 ...
 *pathloss_dB = PathlossMypathloss(...);
 return;
 }
QualNet 5.2 Programmer’s Guide 368

Communication Medium Chapter 4
 ...
 default: {
 abort();
 }
 }
 return;
}

FIGURE 4-189. Calling Path Loss Calculation Function

4.7.5.6 Including and Compiling Files

The final step in integrating your path loss model into QualNet is to add the source file to the QualNet
source tree and compile.

If you have created the files for the path loss model in an existing library or addon, then add the source file
to the Makefile-common for that library or addon. For example, if you have created your model files in the
Wireless library, then modify QUALNET_HOME/libraries/wireless/Makefile-common as shown in Figure 4-
190. Recompile QualNet after making the changes.

...
common sources
#
WIRELESS_SRCS = \
$(WIRELESS_DIR)/antenna.cpp \
$(WIRELESS_DIR)/antenna_global.cpp \
...
$(WIRELESS_DIR)/phy_802_11.cpp \
$(WIRELESS_DIR)/phy_abstract.cpp \
$(WIRELESS_DIR)/phy_cellular.cpp \
$(WIRELESS_DIR)/propagation.cpp \
$(WIRELESS_DIR)/prop_itm.cpp \
$(WIRELESS_DIR)/phy_mypathloss.cpp \
$(WIRELESS_DIR)/prop_plmatrix.cpp \
$(WIRELESS_DIR)/routing_aodv.cpp \
$(WIRELESS_DIR)/manet_packet.cpp \
...

FIGURE 4-190. Adding Model to Makefile-common

If you have created a new library called user_models, then follow the instructions given in Section 4.10.5 to
integrate the user_models library into QualNet.

4.7.5.7 Integrating the Model into the GUI

To make the new model available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.

4.7.6 Adding a Fading Model

This section describes how to add a fading model to QualNet.

The following list summarizes the actions that need to be performed for adding a fading model,
MYFADING, to QualNet. Each of these steps is described in detail in subsequent sections.

1. Include the fading model in the list of fading models (see Section 4.7.6.1).
369 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
2. Decide on the format for the fading model-specific configuration parameters (see Section 4.7.6.2).

3. Modify function PROP_GlobalInit to include MYFADING and read its associated parameters, if any (see

Section 4.7.6.3).

4. Modify function PROP_CalculateFading to calculate the fading value according to MYFADING (see

Section 4.7.6.4).

5. To make the model available in the QualNet GUI, modify the GUI settings files (see Section 4.7.6.5).

4.7.6.1 Including MYFADING in List of Fading Models

When a new fading model is added to QualNet, it needs to be included in the list of fading models. To do
this, add the fading model’s name to the enumeration FadingModel defined in QUALNET_HOME/
include/propagation.h (see Section 4.7.3).

For our example fading model, add the entry MYFADING to FadingModel, as shown in Figure 4-191.

enum FadingModel {
 NONE = 0,
 RICEAN,
 MYFADING
};

FIGURE 4-191. Adding MYFADING to List of Fading Models

Always add to the end of lists in header files.

4.7.6.2 Determining the Fading Model Configuration Format

This step is similar to the one for adding a path loss model. See Section 4.7.5.4.1.

4.7.6.3 Initialization
The communication medium models are initialized before the protocol stack of each node is initialized. At
the start of simulation, the initialization function PROP_GlobalInit is called, which reads the names of
fading models and any associated parameters from the input file. PROP_GlobalInit is implemented in
QUALNET_HOME/libraries/wireless/src/propagation.cpp.

To add your fading model to QualNet, make modifications to PROP_GlobalInit, as shown in Figure 4-192.
Read any parameters used by MYFADING in PROP_GlobalInit. For example, if the Ricean fading model is
specified, PROP_GlobalInit reads the K factor, which is specified as a configuration parameter, using the
IO function IO_ReadDoubleInstance. IO_ReadDoubleInstance and other IO functions are defined in
QUALNET_HOME/include/fileio.h.
QualNet 5.2 Programmer’s Guide 370

Communication Medium Chapter 4
void PROP_GlobalInit(PartitionData *partitionData, NodeInput *nodeInput) {
 BOOL wasFound;
 char buf[MAX_STRING_LENGTH];
 PropChannel* propChannel;
 PropProfile* propProfile;
 ...
 for (i = 0; i < numChannels; i++) {
 ...
 //
 // Set fadingModel
 //
 IO_ReadStringInstance(
 ANY_NODEID, ANY_ADDRESS, nodeInput, "PROPAGATION-FADING-MODEL",
 channelIndex, TRUE, &wasFound, buf);
 if (wasFound) {
 if (strcmp(buf, "NONE") == 0) {
 propProfile->fadingModel = NONE;
 }
 else if (strcmp(buf, "RAYLEIGH") == 0) {
 ...
 }
 else if (strcmp(buf, "RICEAN") == 0) {
 propProfile->fadingModel = RICEAN;
 //
 // Set K factor
 //
 IO_ReadDoubleInstance(
 ANY_NODEID, ANY_ADDRESS, nodeInput,
 "PROPAGATION-RICEAN-K-FACTOR",
 channelIndex, TRUE, &wasFound, &kFactor);
 if (wasFound) {
 propProfile->kFactor = kFactor;
 }
 else {
 ...
 }
 }
 else if (strcmp(buf, "FAST-RAYLEIGH") == 0) {
 ...
 }
 else if (strcmp(buf, "MYFADING") == 0) {
 propProfile->fadingModel = MYFADING;
 //
 // Read any configuration parameters used by MYFADING
 }
 ...
 }
 ...
 } //for//
 ...
}

FIGURE 4-192. Initializing Fading Models
371 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
4.7.6.4 Fading Calculation
Function PROP_CalculateFading, implemented in propagation.cpp, is called by the communication
medium to calculate the signal attenuation due to fading between a pair of nodes.

To add a fading model to QualNet, modify function PROP_CalculateFading to call the model’s fading loss
calculation function. Figure 4-193 shows the changes that need to be made to PROP_CalculateFading to
add MYFADINGMOEL to QualNet. FadingMyfading is the MYFADING function that calculates the fading
loss.

Implement the fading calculation function FadingMyfading and include it in the source file,
propagation.cpp.

void PROP_CalculateFading(
 Message* signalMsg,
 PropTxInfo* propTxInfo,
 Node* node2,
 int channelIndex,
 clocktype currentTime,
 float* fading_dB,
 double* channelReal,
 double* channelImag)
{
 PropChannel* propChannel = node2->partitionData->propChannel;
 PropProfile* propProfile = propChannel[channelIndex].profile;
 PropProfile* propProfile0 = propChannel[0].profile;

 if (propProfile->fadingModel == RICEAN) {
 int arrayIndex;
 double arrayIndexInDouble;
 double value1, value2;
 ...
 }
 else if (propProfile->fadingModel == MYFADING) {
 //
 // Calculating fading value.
 *fading_dB = FadingMyfading (...);
 }
 else {
 *fading_dB = 0.0;
 }
}

FIGURE 4-193. Fading Calculation Function

4.7.6.5 Integrating the Model into the GUI
To make the new model available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.
QualNet 5.2 Programmer’s Guide 372

Communication Medium Chapter 4
4.7.7 Adding a Shadowing Model

This section describes how to add a shadowing model to QualNet.

In QualNet, the shadowing loss is computed together with the path loss. The following list summarizes the
actions that need to be performed for adding a shadowing model, MYSHADOWING, to QualNet. Each of
these steps is described in detail in subsequent sections.

1. Include the shadowing model in the list of shadowing models (see Section 4.7.7.1).

2. Modify function PROP_GlobalInit to include MYSHADOWING (see Section 4.7.7.2).

3. Modify function PROP_CalculatePathloss to calculate the shadowing loss according to

MYSHADOWING (see Section 4.7.7.3).

4. To make the model available in the QualNet GUI, modify the GUI settings files (see Section 4.7.7.4).

4.7.7.1 Including MYSHADOWING in List of Shadowing Models

When a new shadowing model is added to QualNet, it needs to be included in the list of shadowing
models. To do this, add the shadowing model’s name to the enumeration ShadowingModel defined in
QUALNET_HOME/include/propagation.h (see Section 4.7.3).

For our example shadowing model, add the entry MYSHADOWING to ShadowingModel, as shown in
Figure 4-194.

enum ShadowingModel {
 CONSTANT = 0,
 LOGNORMAL,
 MYSHADOWING
};

FIGURE 4-194. Adding MYSHADOWING to List of Shadowing Models

Always add to the end of lists in header files.

4.7.7.2 Initialization
The communication medium models are initialized before the protocol stack of each node is initialized. At
the start of simulation, the initialization function PROP_GlobalInit is called, which reads the names of
shadowing models from the input file. PROP_GlobalInit is implemented in QUALNET_HOME/libraries/
wireless/src/propagation.cpp.

To add your shadowing model to QualNet, make modifications to PROP_GlobalInit, as shown in Figure 4-
195.
373 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
void PROP_GlobalInit(PartitionData *partitionData, NodeInput *nodeInput) {
 BOOL wasFound;
 char buf[MAX_STRING_LENGTH];
 PropChannel* propChannel;
 PropProfile* propProfile;
 ...
 for (i = 0; i < numChannels; i++) {
 ...
 //
 // Set shadowingModel
 //
 IO_ReadStringInstance(
 ANY_NODEID, ANY_ADDRESS, nodeInput, "PROPAGATION-SHADOWING-MODEL",
 channelIndex, TRUE, &wasFound, buf);

 if (wasFound) {
 if (strcmp(buf, "NONE") == 0) {
 propProfile->shadowingModel = CONSTANT;
 propProfile->shadowingMean_dB = 0.0;
 }
 else {
 if (strcmp(buf, "LOGNORMAL") == 0) {
 propProfile->shadowingModel = LOGNORMAL;
 }
 else if (strcmp(buf, "CONSTANT") == 0) {
 propProfile->shadowingModel = CONSTANT;
 }
 else if (strcmp(buf, "MYSHADOWING") == 0) {
 propProfile->shadowingModel = MYSHADOWING;
 }
 else {
 char errorMessage[MAX_STRING_LENGTH];
 sprintf(errorMessage,
 "Error: unknown PROPAGATION-SHADOWING-MODEL '%s'.\n",
 buf);
 ERROR_ReportError(errorMessage);
 }
 ...
 }
 }
 else {
 propProfile->shadowingModel = CONSTANT;
 propProfile->shadowingMean_dB = PROP_DEFAULT_SHADOWING_MEAN_dB;
 }
 ...
 } //for//
 ...
}

FIGURE 4-195. Initializing Shadowing Models
QualNet 5.2 Programmer’s Guide 374

Communication Medium Chapter 4
4.7.7.3 Shadowing Loss Calculation
In QualNet, the signal attenuation due to shadowing is calculated along with the path loss. This is done in
function PROP_CalculatePathloss, implemented in propagation.cpp.

To add a shadowing model to QualNet, modify function PROP_CalculatePathloss to call the model’s
shadowing loss calculation function. Figure 4-196 shows the changes that need to be made to
PROP_CalculatePathloss to add MYSHADOWING to QualNet. ShadowingMyshadowing is the
MYSHADOWING function that calculates the shadowing loss.

Implement the shadowing loss calculation function ShadowingMyshadowing and include it in the source
file, propagation.cpp.

void PROP_CalculatePathloss(
 Node* node,
 int channelIndex,
 double wavelength,
 float txAntennaHeight,
 float rxAntennaHeight,
 PropPathProfile *pathProfile,
 double* pathloss_dB)
{
 ...
 PropProfile *propProfile = node->propChannel[channelIndex].profile;
 ...
 switch (propProfile->pathlossModel) {
 case FREE_SPACE:
 case TWO_RAY:
 {
 double shadowing_dB = 0.0;
 if (propProfile->shadowingMean_dB != 0.0) {
 if (propProfile->shadowingModel == CONSTANT) {
 shadowing_dB = propProfile->shadowingMean_dB;
 }
 else if (propProfile->shadowingModel == MYSHADOWING) {
 //
 // Calculate shadowing value
 shadowing_dB = ShadowingMyshadowing(...);
 }
375 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Medium
 else {
 shadowing_dB =
 propData->shadowingDistribution.getRandomNumber();
 }
 }
 if (propProfile->pathlossModel == FREE_SPACE) {
 *pathloss_dB = PROP_PathlossFreeSpace(pathProfile->distance,
 wavelength);
 }
 else {
 assert(propProfile->pathlossModel == TWO_RAY);
 txPlatformHeight = pathProfile->fromPosition.common.c3 +
 txAntennaHeight;
 rxPlatformHeight = pathProfile->toPosition.common.c3 +
 rxAntennaHeight;
 *pathloss_dB = PROP_PathlossTwoRay(pathProfile->distance,
 wavelength,
 (float)txPlatformHeight,
 (float)rxPlatformHeight);
 }
 *pathloss_dB += shadowing_dB;
 return;
 }
 ...
 }
 }
 return;
}

FIGURE 4-196. Calling Shadowing Loss Calculation Function

4.7.7.4 Integrating the Model into the GUI

To make the new model available in QualNet GUI, modify the GUI settings files, as described in
Section 5.1.4.
QualNet 5.2 Programmer’s Guide 376

.
4.8 Node Mobility

In QualNet, mobility models work together with node placement models and terrain models to simulate the
mobility behavior of nodes. This section gives a detailed description of how to add a mobility model to
QualNet.

4.8.1 Mobility and Related Models in QualNet

QualNet provides several models for mobility, node placement, and terrain.

Mobility Models

A mobility model simulates the movement of a node or a group of nodes. Table 4-21 lists the different
mobility models in QualNet. See the corresponding model library for the description of each model and its
parameters.

Node Placement Models

A node placement model determines the initial positions of nodes in a simulation. Table 4-22 describes the
different node-placement models in QualNet. See the corresponding model library for the description of
each model and its parameters.

TABLE 4-21. Mobility Models in QualNet

Mobility Model Description Model Library

FILE File-based mobility model

The node positions at different simulation times are read from a file.
The node moves from one position to the next in a straight line at a
constant speed.

Wireless

GROUP Group-based mobility model.

In this model, groups of nodes move together. The entire group
moves following the Random Waypoint model, and each node
moves within the group area, also following the Random Waypoint
model.

Wireless

PEDESTRIAN-
MOBILITY

Pedestrian mobility model.

In this model, nodes representing pedestrians move along streets
and towards and within designated areas such as parks and
stations.

Wireless

RANDOM-WAYPOINT Random Waypoint mobility model.

The node selects a random position, moves towards it in a straight
line at a constant speed that is randomly selected from a range, and
pauses at that destination. The node repeats this process.
throughout the simulation.

Wireless

TABLE 4-22. Node Placement Models in QualNet

Node Placement
Model Description Model Library

FILE File-based node placement policy.

The initial node positions are read from a file.

Wireless
Node Mobility Chapter 4
377 QualNet 5.2 Programmer’s Guide

Chapter 4 Node Mobility
In QualNet mobility models, the Cartesian coordinate system is used for small areas where the curvature
of the earth can be ignored, and the spherical coordinate system (latitude-longitude-altitude) is used for
larger areas terrain where the curvature of the earth cannot be ignored.

 The mobility behavior is defined by the following rules:

• The mobility model (except for the pedestrian mobility model) specifies an array of destinations and
arrival times for each node.

• Each node moves from its current position towards the next destination along a straight line. QualNet
determines the intermediate positions at user specified distances.

• Elevation of each node with ground mobility models is determined by the terrain data, if available and if
requested by the user.

• Mobility includes node orientation (both horizontal and vertical).

4.8.2 Mobility Models Organization: Files and Folders

In this section, we briefly examine the files and folders that are relevant to mobility models. These files
contain detailed comments on functions and other code components.

Definitions of macros, functions, and structures relevant to mobility models are contained in the following
header files:

• QUALNET_HOME/include/api.h

This file defines the events and data structures needed to communicate between different layers of the
protocol stack.

• QUALNET_HOME/include/mobility.h

This file contains definitions common to mobility models and prototypes of functions defined in
QUALNET_HOME/main/mobility.cpp.

GRID Grid node placement policy.

The terrain is divided into a number of squares. One node is placed
at each grid point.

Note: This model can be used only if the number of nodes in the
scenario is a square of an integer (4, 9, 16, ...).

Wireless

GROUP Group-based node placement policy.

This node placement model is used with the group mobility model.

Wireless

PEDESTRIAN Pedestrian node placement policy.

This node placement model is used with the pedestrian mobility
model.

Wireless

RANDOM Random node placement policy.

Nodes are placed on the terrain randomly.

Wireless

UNIFORM Uniform node placement policy.

The terrain is divided into a number of equal-sized square cells.
One node is placed in each cell randomly.

Wireless

TABLE 4-22. Node Placement Models in QualNet (Continued)

Node Placement
Model Description Model Library
QualNet 5.2 Programmer’s Guide 378

Node Mobility Chapter 4
Additionally, the following header file is also relevant to mobility models:

• QUALNET_HOME/include/fileio.h

This file contains prototypes of functions to read input files and create output files.

The following are the folders and source files associated with mobility models:

• QUALNET_HOME/libraries/wireless/src and QUALNET_HOME/libraries/developer/src

These folders contain the source and header files for the various mobility models implemented in
QualNet. The file names are based on the name of the model that they implement, e.g., to see the
implementation for the random waypoint mobility model, look at files mobility_waypoint.cpp and
mobility_waypoint.h in the folder QUALNET_HOME/libraries/wireless/src.

• QUALNET_HOME/main/mobility.cpp

This file contains the implementation of the generic mobility functions.

• QUALNET_HOME/libraries/developer/src/mobility_placement.cpp

This file contains the implementation of the generic node placement functions.

4.8.3 Mobility-related Data Structures

The mobility-related data structures are defined in QUALNET_HOME/include/mobility.h. This section
describes the main data structures. (Note that only a partial description of the data structures is provided
here. Refer to file mobility.h for a complete description.)

1. MobilityType: This is an enumeration type that lists all the mobility models.

typedef enum {
 NO_MOBILITY = 0,
 RANDOM_WAYPOINT_MOBILITY,
 FILE_BASED_MOBILITY,
 GROUP_MOBILITY,
 PEDESTRIAN_MOBILITY
} MobilityType;

2. MobilityElement: This data structure stores the coordinates and time of arrival at a point in a node’s

path.

struct MobilityElement {
 int sequenceNum;
 clocktype time;
 Coordinates position;
 Orientation orientation;
 double speed;
};
379 QualNet 5.2 Programmer’s Guide

Chapter 4 Node Mobility
3. MobilityRemainder: This data structure stores information needed to compute the coordinates and

times of arrival at intermediate points in a node’s path.

struct MobilityRemainder {
 clocktype nextMoveTime;
 Coordinates nextPosition;
 Orientation nextOrientation;
 double speed;
 int numMovesToNextDest;
 int destCounter;
 clocktype moveInterval;
 Coordinates delta;
};

4. MobilityData: This is the main data structure that stores mobility information for a node. Some

important fields of this structure are explained below.

struct MobilityData {
 MobilityType mobilityType;
 D_Float32 distanceGranularity;
 D_BOOL groundNode;
 BOOL mobilityStats;
 RandomSeed seed;
 int sequenceNum;
 MobilityElement* next;
 MobilityElement* current;
 MobilityElement* past[NUM_PAST_MOBILITY_EVENTS];
 int numDests;
 MobilityElement* destArray;
 MobilityRemainder remainder;
 clocktype lastExternalTrueMobilityTime;
 clocktype lastExternalMobilityTime;
 Velocity lastExternalVelocity;
 double lastExternalSpeed;
 bool indoors;
 PedestrianData* pedestrianData;
 void *mobilityVar;
};

• mobilityType: This indicates the mobility model used by the node.

• distanceGranularity: This variable determines how frequently a node’s position is updated by
the simulator.

• groundNode: This variable indicates whether the node is on the ground.

• mobilityStats: This flag indicates whether mobility statistics collection is enabled.

• seed: The variable stores the seed to be used by the mobility model.

• sequenceNum: This variable stores the sequence number of mobility events.

• next, current: These variables store the next and current positions of the node, respectively.

• past: This an array of the most recent NUM_PAST_MOBILITY_EVENTS positions of the node.

• numDests: This variable stores the number of destinations.
QualNet 5.2 Programmer’s Guide 380

Node Mobility Chapter 4
• destArray: This array stores the coordinates and time of arrival for the node positions as
calculated by the mobility model.

• remainder: This structure stores information to determine the coordinates and time of arrival at
intermediate points along the current segment of the node’s trajectory.

• lastExternalTrueMobilityTime: This variable stores the last external true mobility time.

• lastExternalMobilityTime: This variable stores the last external mobility time.

• last External Velocity: This variable stores the last external moving velocity.

• lastExternalSpeed: This variable stores the last external moving speed.

• pedestrianData: The is a pointer to the data structure for the pedestrian mobility model.

• mobilityVar: The is a pointer to the data structure for the mobility variable.

4.8.4 Mobility APIs

Several API functions are available for different mobility models to perform common mobility-related tasks.
The prototypes for these functions are contained in the file mobility.h. The file QUALNET_HOME/main/
mobility.cpp contains the implementation of these functions.

The complete list of APIs, with their parameters and description, can also be found in API Reference
Guide. Some of the mobility-related APIs are listed below.

• MOBILITY_AddANewDestination: This function adds a new destination for a node.

• MOBILITY_NextMoveTime: This function returns the time of the next move by a node.

• MOBILITY_ReturnCoordinates: This function returns the coordinates of a node.

4.8.5 Adding a Mobility Model

Although the working of each mobility model is different, there are certain functions that are performed by
most mobility models. This section provides an outline for developing and adding a mobility model to
QualNet. We illustrate the process of adding a mobility model by using as an example the implementation
code for the random waypoint mobility model. The implementation files for the random waypoint are
mobility_waypoint.h and mobility_waypoint.cpp in the folder QUALNET_HOME/libraries/wireless/src. We
use code snippets from these two files throughout this section to illustrate different steps in developing a
mobility model. After understanding the discussed snippets, look at the complete code for the random
waypoint mobility model to understand how a mobility model is implemented in QualNet.

The following list summarizes the actions that need to be performed for adding a mobility model,
MYMOBILITY, to QualNet. Each of these steps is described in detail in subsequent sections.

1. Create header and source files (see Section 4.8.5.2).

2. Modify the files mobility.cpp and mobility_placement.cpp to include the model’s header file (see

Section 4.8.5.2).

3. Include the mobility model in the list of mobility models (see Section 4.8.5.3).

4. Decide on the format for the mobility model-specific configuration parameters (see Section 4.8.5.4).

5. Modify the mobility initialization function MOBILITY_PreInitialize to read the mobility model’s name from

the input file (see Section 4.8.5.5).

6. Modify the generic mobility function SetRandomMobility to call MYMOBILITY’s position calculation

function (see Section 4.8.5.5).
381 QualNet 5.2 Programmer’s Guide

Chapter 4 Node Mobility
7. Implement the mobility model function (see Section 4.8.5.6). In general, the mobility model function

should perform the following tasks:

a. Read and store the user-specified configuration parameters for the mobility model.

b. Calculate and store the node positions using the mobility model’s algorithm.

8. Include the mobility model header and source files in the QualNet tree and compile (see

Section 4.8.5.7).

4.8.5.1 Naming Guidelines

In QualNet, each component (file, data structure, function, etc.) is given a name that indicates the name of
the protocol or model, the layer in which the protocol resides, and the functionality of the component, as
appropriate. We recommend that when adding a mobility model, the programmer name the different
components of the new model in a similar manner. It will be helpful to examine the implementation of the
random waypoint model in QualNet for hints for naming and coding different components of the new
mobility model.

In this section, we describe the steps for developing a mobility model called “MYMOBILITY”. We will use
the string “Mymobility” in the names of the different components of this model, just as the string “Waypoint”
appears in the names of the components of the random waypoint implementation.

4.8.5.2 Creating Files

The first step towards adding a mobility model is creating files. Most models comprise two files: the header
file and the source file. These files can be placed in any library, e.g., in the folder QUALNET_HOME/
libraries/wireless/src. However, it is recommended that all user-developed models be made part of a
library. In our example, we will place the mobility model in a library called user_models. See Section 4.10
for instructions for creating and activating a library.

If it doesn’t already exist, create a directory in QUALNET_HOME/libraries called user_models and a
subdirectory in QUALNET_HOME/libraries/user_models called src. Create the files for the mobility model
and place them in the folder QUALNET_HOME/libraries/user_models/src. Name these files in a way that
clearly indicates the model that they implement. Prefix the file names with mobility_ to designate the files
as mobility model files.

Examples:

• mobility_waypoint.h, mobility_waypoint.cpp: Implement the random waypoint mobility model

• mobility_group.h, mobility_group.cpp: Implement the group mobility model

In keeping with the naming guidelines of Section 4.8.5.1, the header file for the example mobility model is
called mobility_mymobility.h, and the source file is called mobility_mymobility.cpp.

It is strongly recommended to have separate header and source files. Not having a header file
may lead to unexpected problems even if the compilation process does not indicate any error.

While adding code to the files, it is important to organize the code well between the files. Generally, the
header file, mobility_mymobility.h, should contain the following:

• Prototypes for interface functions in the source file, mobility_mymobility.cpp

• Constant definitions

The source file, mobility_mymobility.cpp, should contain the following:

• Statement to include the mobility model’s header file:

#include “mobility_mymobility.h”
QualNet 5.2 Programmer’s Guide 382

Node Mobility Chapter 4
• Statements to include standard library functions and other header files needed by the mobility model’s
source file. A typical mobility model source file includes the following statements:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "api.h"
#include "partition.h"

• Function to calculate node positions over time, MOBILITY_MymobilityInit

The files QUALNET_HOME/main/mobility.cpp and QUALNET_HOME/libraries/developer/src/
mobility_placement.cpp contain the generic functions that in turn call the specific mobility models’
functions. Therefore, to make the mobility model functions available to the generic functions, insert the
following include statement in the files mobility.cpp and mobility_placement.cpp:

#include “mobility_mymobility.h”

4.8.5.3 Including MYMOBILITY in List of Mobility Models

When a mobility model is added to QualNet, it needs to be included in the list of mobility models. To do
this, add the mobility model’s name to the enumeration MobilityType defined in mobility.h (see
Section 4.8.3).

For our example mobility model, add the entry MYMOBILITY to MobilityType, as shown in Figure 4-
197.

typedef enum {
 NO_MOBILITY = 0,
 RANDOM_WAYPOINT_MOBILITY,
 FILE_BASED_MOBILITY,
 GROUP_MOBILITY,
 PEDESTRIAN_MOBILITY,
 MYMOBILITY
} MobilityType;

FIGURE 4-197. Adding MYMOBILITY to List of Mobility Models

Always add to the end of lists in header files.

4.8.5.4 Determining the Mobility Model Configuration Format

A mobility model may use model-specific configuration parameters. The configuration parameters are
specified in the QualNet configuration file. The format for specifying a mobility model’s configuration
parameters is:

[<Identifier>] <Parameter-name> [<Index>] <Parameter-value>

where:

 <Identifier> : Node identifier, subnet identifier, or IP address to which this parameter
declaration is applicable, enclosed in square brackets. This specification
is optional, and if it is not included, the parameter declaration applies to
all nodes.
383 QualNet 5.2 Programmer’s Guide

Chapter 4 Node Mobility
<Parameter-name> : Name of the parameter.

 <Index> : Instance to which this parameter declaration is applicable, enclosed in
square brackets. This is used when there are multiple instances of the
parameter. This specification is optional, and if it is not included, the
parameter declaration applies to all instances.

<Parameter-value> : Value to be used for the parameter.

As an example, the following parameters specify the pause time, minimum speed and maximum speed for
the random waypoint mobility model:

 MOBILITY RANDOM_WAYPOINT
 MOBILITY-WP-PAUSE 30S
 MOBILITY-WP-MIN-SPEED 0
 MOBILITY-WP-MAX-SPEED 10

Decide on the format for specifying the new mobility model’s configuration parameters. For our example
mobility model, specify the configuration parameters in the QualNet configuration file using the following
format (<Identifier> and <Index> can also be used to qualify the parameter declarations, as
described above):

 MOBILITY MYMOBILITY
 <param1> <value1>
 ...
 <paramN> <valueN>

where:

<param1>, ..., <paramN> : Names of parameters for MYMOBILITY.

<value1>, ..., <valueN : Values of the mobility parameters.

Section 4.8.5.6 explains how to read user input specified in this format to initialize the model.

4.8.5.5 Modifying Generic Mobility Functions

To add a new mobility model to QualNet, two generic mobility functions need to be modified:
MOBILITY_PreInitialize and SetRandomMobility.

Function MOBILITY_PreInitialize, implemented in mobility.cpp, is called for each node at the start of
simulation. MOBILITY_PreInitialize reads the name of the mobility model specified for a node in the
configuration file, and stores it in the mobilityType field of the mobilityData data structure
associated with the node (see Section 4.8.3). To add MYMOBILITY to QualNet, modify
MOBILITY_PreInitialize as shown in Figure 4-198.
QualNet 5.2 Programmer’s Guide 384

Node Mobility Chapter 4
void MOBILITY_PreInitialize(
 NodeAddress nodeId,
 MobilityData* mobilityData,
 NodeInput* nodeInput,
 int seedVal)
{
 int i;
 BOOL wasFound;
 char buf[MAX_STRING_LENGTH];
 // Set mobilityType.
 IO_ReadString(
 nodeId,
 ANY_ADDRESS,
 nodeInput,
 "MOBILITY",
 &wasFound,
 buf);
 if (wasFound) {
 if (strcmp(buf, "NONE") == 0) {
 mobilityData->mobilityType = NO_MOBILITY;
 }
 else if (strcmp(buf, "RANDOM-WAYPOINT") == 0) {
 mobilityData->mobilityType = RANDOM_WAYPOINT_MOBILITY;
 }
 else if (strcmp(buf, "GROUP-MOBILITY") == 0) {
 mobilityData->mobilityType = GROUP_MOBILITY;
 }
 else if (strcmp(buf, "MYMOBILITY") == 0) {
 mobilityData->mobilityType = MYMOBILITY;
 }
 ...
 else if (strcmp(buf, "FILE") == 0) {
 mobilityData->mobilityType = FILE_BASED_MOBILITY;
 }
 else {
 char errorMessage[MAX_STRING_LENGTH];
 sprintf(errorMessage, "Unknown MOBILITY type: %s.\n", buf);
 ERROR_ReportError(errorMessage);
 }
 }
 else {
 mobilityData->mobilityType = NO_MOBILITY;
 }
 ...
}

FIGURE 4-198. Reading Mobility Model’s Name from Input File
385 QualNet 5.2 Programmer’s Guide

Chapter 4 Node Mobility
Function SetRandomMobility, implemented in mobility_placement.cpp, is called for each node at the start
of simulation to calculate the node positions over time. These positions, or destinations, are stored in the
array, destArray in the node’s mobility data structure, MobilityData. Between any two consecutive
destinations, the node moves along a straight line. SetRandomMobility, in turn calls the position calculation
function for the mobility model specified for the node. For example, if random waypoint mobility model is
specified for a node, SetRandomMobility calls function MOBILITY_WaypointInit. Mobility_WaypointInit is
implemented in mobility_waypoint.cpp. To add MYMOBILITY to QualNet, call MYMOBILITY’s node
position calculation function, MOBILITY_MymobilityInit, from SetRandomMobility, as shown in Figure 4-
199.

static
void SetRandomMobility(
 NodeAddress nodeId,
 MobilityData* mobilityData,
 TerrainData* terrainData,
 NodeInput* nodeInput,
 clocktype maxSimTime)
{
 assert(mobilityData->mobilityType != FILE_BASED_MOBILITY);

 if (mobilityData->mobilityType == NO_MOBILITY) {
 if (mobilityData->numDests > 1) {
 mobilityData->numDests = 1;
 }
 }
 else if (mobilityData->mobilityType == RANDOM_WAYPOINT_MOBILITY) {
 MOBILITY_WaypointInit(
 nodeId, mobilityData, terrainData, nodeInput, maxSimTime);
 }
 else if (mobilityData->mobilityType == MYMOBILITY) {
 MOBILITY_MymobilityInit(
 nodeId, mobilityData, terrainData, nodeInput, maxSimTime);
 }
}

FIGURE 4-199. Calling Mobility Model Position Calculation Function

4.8.5.6 Implementing Mobility Model Functions
A mobility model reads the mobility-related configuration parameters from the input file. It then calculates
the position of the node at different times, and stores the positions and associated times of arrival in an
array.

Figure 4-200 and Figure 4-201 show the implementation of the random waypoint mobility function,
MOBILITY_WaypointInit, which is implemented in QUALNET_HOME/libraries/wireless/src/
mobility_waypoint.cpp. MOBILITY_WaypointInit first reads the mobility parameters, MOBILITY-WP-
PAUSE, MOBILITY-WP-MIN, and MOBILITY-WP-MAX, and then calculates the future positions of the
node according to the specified algorithm. The configurable parameters are read using IO functions such
as IO_ReadString and IO_ReadDouble to read parameter values from the input file. IO_ReadString,
IO_ReadDouble and other IO functions are defined in QUALNET_HOME/include/fileio.h.
QualNet 5.2 Programmer’s Guide 386

Node Mobility Chapter 4
void MOBILITY_WaypointInit(
 NodeAddress nodeId,
 MobilityData* mobilityData,
 TerrainData* terrainData,
 NodeInput *nodeInput,
 clocktype maxSimClock)
{
 clocktype simClock;
 Coordinates dest1;
 Coordinates dest2;
 Orientation orientation;
 clocktype mobilityPause;
 double minSpeed;
 double maxSpeed;
 char buf[MAX_STRING_LENGTH];
 BOOL wasFound;
 // no orientation for this model right now.
 orientation.azimuth = 0;
 orientation.elevation = 0;
 /* Read the pause time after reaching destination */
 IO_ReadString(
 nodeId,
 ANY_ADDRESS,
 nodeInput,
 "MOBILITY-WP-PAUSE",
 &wasFound,
 buf);
 assert(wasFound == TRUE);
 mobilityPause = TIME_ConvertToClock(buf);
 /* Read the speed arrange(Min,Max) */
 IO_ReadDouble(
 nodeId,
 ANY_ADDRESS,
 nodeInput,
 "MOBILITY-WP-MIN-SPEED",
 &wasFound,
 &minSpeed);
 assert(wasFound == TRUE);
 IO_ReadDouble(
 nodeId,
 ANY_ADDRESS,
 nodeInput,
 "MOBILITY-WP-MAX-SPEED",
 &wasFound,
 &maxSpeed);
 assert(wasFound == TRUE);
 ...
}

FIGURE 4-200. Random Waypoint Mobility Function: Reading Mobility Parameters
387 QualNet 5.2 Programmer’s Guide

Chapter 4 Node Mobility

void MOBILITY_WaypointInit(
 NodeAddress nodeId,
 MobilityData* mobilityData,
 TerrainData* terrainData,
 NodeInput *nodeInput,
 clocktype maxSimClock)
{
 ...
 simClock = 0;
 dest1 = mobilityData->current->position;

 while (simClock < maxSimClock) {
 double distance;
 double speed;

 dest2.common.c1 =
 terrainData->origin.common.c1 +
 (terrainData->dimensions.common.c1 *
 RANDOM_erand(mobilityData->seed));
 dest2.common.c2 =
 terrainData->origin.common.c2 +
 (terrainData->dimensions.common.c2 *
 RANDOM_erand(mobilityData->seed));
 dest2.common.c3 = 0.0;
 // This model assumes that the third coordinate is always 0.0
 COORD_CalcDistance(
 terrainData->coordinateSystemType,
 &dest1, &dest2, &distance);
 speed = minSpeed
 + (RANDOM_erand(mobilityData->seed) * (maxSpeed - minSpeed));
 simClock += (clocktype)(distance / speed * SECOND);
 if (mobilityData->groundNode == TRUE) {
 MOBILITY_GetGroundElevation(terrainData, &dest2);
 }
 MOBILITY_AddANewDestination(
 mobilityData, simClock, dest2, orientation);
 simClock += mobilityPause;
 if (mobilityPause > 0) {
 MOBILITY_AddANewDestination(
 mobilityData, simClock, dest2, orientation);
 }
 dest1 = dest2;
 }
 return;
}

FIGURE 4-201. Random Waypoint Mobility Function: Calculating Node Positions
QualNet 5.2 Programmer’s Guide 388

Node Mobility Chapter 4
4.8.5.7 Including and Compiling Files
The final step in integrating your mobility model into QualNet is to add the source file to the QualNet source
tree and compile.

If you have created the files for the mobility model in an existing library or addon, then add the source file
to the Makefile-common for that library or addon. For example, if you have created your model files in the
Wireless library, then modify QUALNET_HOME/libraries/wireless/Makefile-common as shown in Figure 4-
202. Recompile QualNet after making the changes.

...
common sources
#
WIRELESS_SRCS = \
$(WIRELESS_DIR)/antenna.cpp \
$(WIRELESS_DIR)/antenna_global.cpp \
...
$(WIRELESS_DIR)/mac_maca.cpp \
$(WIRELESS_DIR)/mac_tdma.cpp \
$(WIRELESS_DIR)/mobility_group.cpp \
$(WIRELESS_DIR)/mobility_mymobility.cpp \
$(WIRELESS_DIR)/mobility_pedestrian.cpp \
$(WIRELESS_DIR)/mobility_waypoint.cpp \
$(WIRELESS_DIR)/multicast_odmrp.cpp \
...

FIGURE 4-202. Adding Model to Makefile-common

If you have created a new library called user_models, then follow the instructions given in Section 4.10.5 to
integrate the user_models library into QualNet.
389 QualNet 5.2 Programmer’s Guide

.
4.9 Adding Trace Collection

QualNet provides tracing capabilities which enable a user to trace a packet as it traverses the protocol
stack at each node in the network that the packet visits. The packet trace lists information such as the node
identifier, the layer in the stack and the protocol, among other things. This section describes how to add
tracing capability for a custom-built protocol.

The following list summarizes the actions that need to be performed to add tracing capability to a user-
developed protocol, MYPROTOCOL. Each of these steps is described in detail in subsequent sections.

1. Add the protocol to the list of traceable protocols (see Section 4.9.2).

2. In the initialization function of the protocol enable or disable tracing for the protocol, as specified in the

configuration file (see Section 4.9.3).

3. Write a function to print the new protocol’s header (see Section 4.9.4).

4. Make calls to the trace function TRACE_PrintTrace at appropriate places in the code to trace a packet

(see Section 4.9.5).

4.9.1 Trace File Format

This section describes the format of the trace file produced by Simulator. The trace file contains a header
which describes parameters for the experiment, a protocol map which gives a mapping between the
protocols being traced and their integer identifiers, and one or more records, where each record
corresponds to a single packet trace.

The format of a trace file is informally described below. Figure 4-203 shows an example of a trace file
generated by Simulator. The XML definition file shown in Figure 4-204 describes the format of a trace file
more formally.

<trace-file>
<head>
<version> QualNet_Version </version>
<scenario> Scenario_Name </scenario>
<comments> Comments </comments>
</head>
<body>
Protocol_Map
Records
</body>
</trace_file>

The different elements used in the above format definition are described below.

• QualNet_Version: String indicating the version of QualNet, e.g., “QualNet 5.2”

• Scenario_Name: String indicating the name of the scenario, e.g., “trace-tcp”

• Comments: String containing any user or system comments

• Protocol_Map: One or more occurrences of

<protocol_map> Protocol_Id Protocol_Name </protocol_map>

where:
Chapter 4 Adding Trace Collection
QualNet 5.2 Programmer’s Guide 390

Adding Trace Collection Chapter 4
Protocol_Id : Integer identifier used for the protocol Protocol_Name in the trace. This is the
same as the protocol’s integer value in the enumeration TraceProtocolType
in QUALNET_HOME/include/trace.h.

Protocol_Name : Name of the protocol being traced

The following are examples of Protocol_Map:
<protocol_map>3 IPv4</protocol_map>
<protocol_map>1 TCP</protocol_map>

• Records: One or more occurrences of

<rec>
<rechdr> Record_Header </rechdr>
<recbody>
Record_Body
</recbody>
</rec>

Record_Header and Record_Body are defined below.

• Record_Header: Record header, which has the following format

Originating_Node_Id Message_Seq_No Simulation_Time Originating_Protocol_Id
Processing_Node_Id Tracing_Protocol_Id Action_Description

where:

Originating_Node_Id : Identifier of the node where the packet originated

Message_Seq_No : Sequence number of the message

Simulation_Time : Current simulation time in seconds

Originating_Protocol_Id : Identifier of the protocol that created the packet, i.e., the integer value of
the protocol in the enumeration TraceProtocolType in trace.h

Processing_Node_Id : Identifier of the current node, i.e., the node printing this record

Tracing_Protocol_Id : Identifier of the protocol that is generating this trace record

Action_Description : Description of the packet action that triggered the trace. This is described
in detail below.

The following are examples of Record_Header:
3 0 0.033584881 7 3 2 <action> 1 0</action>
3 0 0.033584881 7 3 3 <action> 4 <queue> 0 192</queue></action>
391 QualNet 5.2 Programmer’s Guide

Chapter 4 Adding Trace Collection
• Action_Description: Description of the action that triggered the trace. It has the following format:

<action> Action </action>

where Action is one of the following:

- Send_Action Comment

- Receive_Action Comment

- Drop_Action Comment

- Enqueue_Action <queue> Queue_Interface_Id Queue_Priority </queue>

- Dequeue_Action <queue> Queue_Interface_Id Queue_Priority </queue>

where:

Send_Action : Integer code for a packet send (“1”)

Receive_Action : Integer code for a packet receive (“2”)

Drop_Action : Integer code for a packet drop (“3”)

Enqueue_Action : Integer code for a packet enqueue (“4”)

Dequeue_Action : Integer code for a packet dequeue (“5”)

Comment : Integer code for the comment explaining the send, receive or drop action.
The possible comments are listed in the enumeration
PacketActionCommentType in trace.h.

Queue_Interface_Id : Interface index for the queue

Queue_Priority : Queue priority

The following are examples of Action_Description:
<action> 2 0</action>
<action> 5 <queue> 0 2</queue></action>

• Record_Body: One or more occurrences of

Header_Start_Delimiter Header_Fields Header_End_Delimiter

where:

Header_Start_Delimiter : String indicating the start of a header, which is the protocol name
enclosed between “<“ and “>”. Examples are “<udp>” and “<ipv4>”.

Header_End_Delimiter : String indicating the end of a header, which is the protocol name
enclosed between “</“ and “>”. Examples are “</udp>” and
 “</ipv4>”.

Header_Fields : List of the values of the header fields. The fields are separated by
spaces. The list of flags in a header is enclosed between the delimiters
“<flags>” and “</flags>”.

The following are examples of Record_Body:

<udp>519 519 36 0</udp>
<ipv4>4 5 48 0 0 56 0 <flags>0 0 0</flags> 0 64 17 0 255.255.255.255
192.0.1.255</ipv4>
QualNet 5.2 Programmer’s Guide 392

Adding Trace Collection Chapter 4
Figure 4-203 shows an example trace file generated by Simulator.

<trace_file>

<head>
<version>QualNet 5.2</version>
<scenario>trace-tcp</scenario>
<comments>Any user or system free-form comments</comments>
</head>

<body>

<protocol_map>3 IPv4</protocol_map>
<protocol_map>1 TCP</protocol_map>
<protocol_map>2 UDP</protocol_map>

<rec>
<rechdr> 3 0 0.033584881 7 3 2 <action> 1 0</action></rechdr>
<recbody>
<udp>519 519 36 0</udp>
</recbody>
</rec>

<rec>
<rechdr> 3 0 0.033584881 7 3 3 <action> 4 <queue> 0 192</queue></action></
rechdr>
<recbody>
<udp>519 519 36 0</udp>
<ipv4>4 5 48 0 0 56 0 <flags>0 0 0</flags> 0 64 17 0 255.255.255.255
192.0.1.255</ipv4>
</recbody>
</rec>

<rec>
<rechdr> 3 0 0.033584881 7 3 3 <action> 5 <queue> 0 2</queue></action></rechdr>
<recbody>
<udp>519 519 36 0</udp>
<ipv4>4 5 48 0 0 56 0 <flags>0 0 0</flags> 0 64 17 0 255.255.255.255
192.0.1.255</ipv4>
</recbody>
</rec>

...
</body>
...
</trace_file>

FIGURE 4-203. Example of a Trace File
393 QualNet 5.2 Programmer’s Guide

Chapter 4 Adding Trace Collection
<!ELEMENT trace_file (head, body) >

<!ELEMENT head (version, scenario, comments) >

<!ELEMENT body (protocol_map*, rec*) >

<!ELEMENT version (#PCDATA) >
<!ELEMENT scenario (#PCDATA) >
<!ELEMENT comments (#PCDATA) >

<!ELEMENT protocol_map (#PCDATA) >
<!-- A protocol_map consists of the following two fields
 1) Integer corresponding to the protocol's enumeration
 2) String denoting the protocol's name
-->

<!ELEMENT rec (rechdr, recbody) >

<!ELEMENT rechdr (#PCDATA, action) >
<!-- The record header consists of the following six fields and
 an action element. Record header fields are:
 1) Originating node id
 2) Message sequence number
 3) Simulation time
 4) Originating protocol id
 5) Processing node id
 6) Tracing protocol id
-->

<!ELEMENT action (#PCDATA, queue) >
<!-- Action can have one of the following two forms
 1) Pair of integers, corresponding to action code and comment code
 2) Action code (integer) followed by a queue element
-->

<!ELEMENT queue (#PCDATA) >
(!-- Queue consists of the following two integer fields
 1) Interface id 2) Queue priority
-->

<!ELEMENT recbody (udp | tcp | ipv4 | ...)* >
<!-- The recbody element consists of protocol header elements.
 Only some of the traceable protocols are listed above.
 To add tracing for a new protocol, add it to the above list and
 define the header element corresponding to the new protocol.
 -->

<!ELEMENT udp (#PCDATA) >
<!ELEMENT ipv4 (#PCDATA | flags)* >
<!ELEMENT tcp (#PCDATA | flags)* >
<!ELEMENT flags (#PCDATA) >

FIGURE 4-204. Definition File for Trace File Syntax
QualNet 5.2 Programmer’s Guide 394

Adding Trace Collection Chapter 4
4.9.2 Including MYPPROTOCOL in List of Traceable Protocols

When a new traceable protocol is added to QualNet, it needs to be included in the list of traceable
protocols. To do this, add the protocol’s name to the enumeration TraceProtocolType defined in
trace.h.

For our example protocol, add the entry TRACE_MYPROTOCOL to TraceProtocolType, as shown in
Figure 4-205.

typedef enum
{
 TRACE_UNDEFINED = 0,
 TRACE_TCP, // 1
 TRACE_UDP, // 2
 TRACE_IP, // 3
 TRACE_CBR, // 4
 TRACE_FTP, // 5
 ...
 // Must be last one!!!
 TRACE_MYPROTOCOL,
 TRACE_ANY_PROTOCOL
}TraceProtocolType;

FIGURE 4-205. Adding MYPROTOCOL to List of Traceable Protocols

Always add to the end of lists in header files (just before the item TRACE_ANYPROTCOL).

4.9.3 Enabling/Disabling Tracing in Protocol's Initialization Function

Tracing for a protocol is enabled or disabled depending on the configuration parameters read from the
input file. Parameter TRACE-ALL specifies whether tracing is enabled for all protocols. TRACE-ALL is read
in the trace initialization function, TRACE_Initialize, which is called by the function
PARTITION_InitializeNodes at the start of simulation. TRACE_Initialize is implemented in
QUALNET_HOME/main/trace.cpp and PARTITION_InitializeNodes is implemented in QUALNET_HOME/
main/partition.cpp.

The default value for TRACE-ALL is NO. If TRACE-ALL is not included in the configuration file or is
included and set to NO, then tracing is disabled for all traceable protocols (unless tracing for a specific
protocol is explicitly enabled, as explained below). If TRACE-ALL is included in the configuration file and is
set to YES, then tracing is enabled for all traceable protocols (unless tracing for a specific protocol is
explicitly disabled).

Apart from the parameter TRACE-ALL, the configuration file can specify whether tracing is enabled for a
specific protocol. For example, the parameter TRACE-UDP determines whether tracing is enabled or
disabled for the UDP protocol. TRACE-UDP takes precedence over TRACE-ALL, and is read in the UDP
function TransportUdpInitTrace, shown in Figure 4-206. TransportUdpInitTrace is called by the UDP
initialization function TransportUdpInit. TransportUdpInitTrace and TransportUdpInit are implemented
QUALNET_HOME/libraries/developer/src/transport_udp.cpp.

The following APIs are used enable or disable tracing for a protocol:

• TRACE_IsTraceAll: This function determines if tracing is enabled for all protocols.

• TRACE_EnableTraceXML: This function enables tracing for a specific protocol.

• TRACE_DisableTraceXML: This function disables tracing for a specific protocol.
395 QualNet 5.2 Programmer’s Guide

Chapter 4 Adding Trace Collection
TRACE_IsTraceAll, Trace_EnableTraceXML and TRACE_DisableTraceXML are implemented in
QUALNET_HOME/main/trace.cpp.

For MYPROTOCOL, define an input parameter, TRACE-MYPROTOCOL, which is set to YES or NO in the
configuration file. In the initialization function of MYPROTOCOL, read the value of TRACE-MYPROTOCOL
and enable or disable trace for MYPROTOCOL depending on the value of TRACE-MYPROTOCOL and
TRACE-ALL. For example, function TransportUdpInitTrace calls function TRACE_EnableTraceXML if trace
collection is enabled for UDP and calls function TRACE_DisableTraceXML if trace collection is disabled for
UDP. The UDP function to print the UDP header, TransportUdpPrintTrace, is passed as a parameter to
TRACE_EnableTraceXML. TransportUdpPrintTrace is implemented in transport_udp.cpp.

For Application Layer protocols, the trace initialization function should be called from the
function APP_TraceInitialize, which is implemented in QUALNET_HOME/main/application.cpp.
QualNet 5.2 Programmer’s Guide 396

Adding Trace Collection Chapter 4
static
void TransportUdpInitTrace(Node* node, const NodeInput* nodeInput)
{
 char buf[MAX_STRING_LENGTH];
 BOOL retVal;
 BOOL traceAll = TRACE_IsTraceAll(node);
 BOOL trace = FALSE;
 static BOOL writeMap = TRUE;

 IO_ReadString(
 node->nodeId,
 ANY_ADDRESS,
 nodeInput,
 "TRACE-UDP",
 &retVal,
 buf);

 if (retVal)
 {
 if (strcmp(buf, "YES") == 0)
 {
 trace = TRUE;
 }
 else if (strcmp(buf, "NO") == 0)
 {
 trace = FALSE;
 }
 else
 {
 ERROR_ReportError(
 "TRACE-UDP should be either \"YES\" or \"NO\".\n");
 }
 }
 else
 {
 if (traceAll || node->traceData->layer[TRACE_TRANSPORT_LAYER])
 {
 trace = TRUE;
 }
 }
 if (trace)
 {
 TRACE_EnableTraceXML(node, TRACE_UDP,
 "UDP", TransportUdpPrintTrace, writeMap);
 }
 else
 {
 TRACE_DisableTraceXML(node, TRACE_UDP, "UDP", writeMap);
 }
 writeMap = FALSE;
}

FIGURE 4-206. Enabling/Disabling Trace Collection for UDP
397 QualNet 5.2 Programmer’s Guide

Chapter 4 Adding Trace Collection
4.9.4 Printing the Protocol Header

Write a function, MyprotocolPrintTrace, to print the MYPROTOCOL header. This function is called by the
trace function TRACE_PrintTraceXML. Use the UDP function TransportUdpPrintTrace that prints the UDP
header as a template. TransportUdpPrintTrace is shown in Figure 4-207 and is implemented in
transport_udp.cpp.

void TransportUdpPrintTrace(Node* node, Message* msg)
{
 char buf[MAX_STRING_LENGTH];
 TransportUdpHeader* udpHdr = (TransportUdpHeader *)
 MESSAGE_ReturnPacket(msg);

 sprintf(buf, "<udp>%hu %hu %hu %hu</udp>",
 udpHdr->sourcePort,
 udpHdr->destPort,
 udpHdr->length,
 udpHdr->checksum);
 TRACE_WriteToBufferXML(node, buf);
}

FIGURE 4-207. Function to Print the UDP Header

TransportUdpPrintTrace uses the function TRACE_WriteToBufferXML to write the value of each header
field to a buffer. The contents of the buffer are printed by the function TRACE_PrintTraceXML.
TRACE_WriteToBufferXML and TRACE_PrintTraceXML are implemented in trace.cpp.

4.9.5 Tracing a Packet

To trace a packet, place calls to function TRACE_PrintTrace at the appropriate places in the protocol code.
Usually, a trace is printed whenever a header is added or removed, a packet is dropped, or a packet is
enqueued or dequeued.

Function TRACE_PrintTrace is implemented in trace.cpp. The prototype for TRACE_PrintTrace is shown
below. The enumerations and struct definitions used below can be found in trace.h.

void TRACE_PrintTrace(Node* node,
 Message* message,
 TraceLayerType layerType,
 PacketDirection pktDirection,
 ActionData* actionData)

The parameters of TRACE_PrintTrace are:

• node: Pointer to the node

• message: Pointer to the message

• layerType: Layer at which the packet is being traced

• pktDirection: Direction of the packet: PACKET_IN for incoming packets, PACKET_OUT for outgoing
packets. The direction is relative to the node, not to a specific layer.

• actionData: Description of the action that triggered the trace. See Section 4.9.5.1 for details.
QualNet 5.2 Programmer’s Guide 398

Adding Trace Collection Chapter 4
4.9.5.1 Trace Actions
When a call to TRACE_PrintTrace is made, trace information is printed to the trace file in the form of a
record (see Section 4.9.1). Each record contains information such as node and packet identifiers,
simulation time, the action that triggered the trace, and the protocol headers in the packet. The data
structure ActionData, shown below, is used to store information about the trace actions. ActionData
and the other types that it uses are declared in trace.h.

typedef struct
{
 PacketActionType actionType;
 PacketActionCommentType actionComment;
 PktQueue pktQueue;
} ActionData;

The fields of ActionData are:

• actionType: Action that triggered the trace. It can be one of SEND, RECV, DROP, ENQUEUE or
DEQUEUE.

• actionComment: Comment giving information about the trace action. The possible comments are
enumerated in PacketActionCommentType.

If a new action comment is needed, add it to the enumeration PacketActionCommentType in trace.h.

• pktQueue: Details of the packet queue. The details that are printed are the interface index and priority
of the queue.

4.9.5.2 Trace of a Packet Send
To trace a packet when it is sent from the node, call TRACE_PrintTrace with the appropriate parameters.
An outgoing packet is usually traced after a header is added. For example, Figure 4-208 shows how an
outgoing packet is traced in the UDP function TransportUdpSendToNetwork, which is implemented in
transport_udp.cpp.
399 QualNet 5.2 Programmer’s Guide

Chapter 4 Adding Trace Collection
void
TransportUdpSendToNetwork(Node *node, Message *msg)
{
 TransportDataUdp *udp = (TransportDataUdp *) node->transportData.udp;
 TransportUdpHeader *udpHdr;
 AppToUdpSend *info;

 ...
 MESSAGE_AddHeader(node, msg, sizeof(TransportUdpHeader), TRACE_UDP);
 udpHdr = (TransportUdpHeader *) msg->packet;
 info = (AppToUdpSend *) MESSAGE_ReturnInfo(msg);
 udpHdr->sourcePort = info->sourcePort;
 udpHdr->destPort = info->destPort;
 udpHdr->length = (unsigned short) MESSAGE_ReturnPacketSize(msg);
 udpHdr->checksum = 0; /* checksum not calculated */
 ActionData acnData;
 acnData.actionType = SEND;
 acnData.actionComment = NO_COMMENT;
 TRACE_PrintTrace(node,
 msg,
 TRACE_TRANSPORT_LAYER,
 PACKET_OUT,
 &acnData);
 NetworkIpReceivePacketFromTransportLayer(
 node,
 msg,
 info->sourceAddr,
 info->destAddr,
 info->outgoingInterface,
 info->priority,
 IPPROTO_UDP,
 FALSE,
 info->ttl);
}

FIGURE 4-208. Tracing an Outgoing Packet
QualNet 5.2 Programmer’s Guide 400

Adding Trace Collection Chapter 4
4.9.5.3 Trace of a Packet Receive
To trace a packet when it is received at the node, call TRACE_PrintTrace with the appropriate parameters.
An incoming packet is usually traced before a header is removed. For example, Figure 4-209 shows how
an incoming packet is traced in the UDP function TransportUdpSendToApp, which is implemented in
transport_udp.cpp.

void
TransportUdpSendToApp(Node *node, Message *msg)
{
 TransportDataUdp *udpLayer =
 (TransportDataUdp *) node->transportData.udp;
 TransportUdpHeader* udpHdr = (TransportUdpHeader *)
 MESSAGE_ReturnPacket(msg);
 ...
 ActionData acnData;
 acnData.actionType = RECV;
 acnData.actionComment = NO_COMMENT;
 TRACE_PrintTrace(node,
 msg,
 TRACE_TRANSPORT_LAYER,
 PACKET_IN,
 &acnData);
 /* Remove UDP header. */
 MESSAGE_RemoveHeader(node, msg, sizeof(TransportUdpHeader), TRACE_UDP);
 /* Send packet to application layer. */
 MESSAGE_Send(node, msg, TRANSPORT_DELAY);
}

FIGURE 4-209. Tracing an Incoming Packet
401 QualNet 5.2 Programmer’s Guide

Chapter 4 Adding Trace Collection
4.9.5.4 Trace of a Packet Drop
To trace a packet when it is dropped at a node, call TRACE_PrintTrace with the appropriate parameters.
When a packet is dropped, the trace should contain a reason for the packet drop. The reason is specified
in the actionComment field of actionData (see Section 4.9.5.1). For example, Figure 4-210 shows how
a packet is traced in the IP function RouteThePacketUsingLookupTable before it is dropped because no
route was found. RouteThePacketUsingLookupTable is implemented in QUALNET_HOME/libraries/
developer/src/network_ip.cpp.

void
RouteThePacketUsingLookupTable(Node *node, Message *msg,
 int incomingInterface)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;
 int outgoingInterface;
 NodeAddress nextHop;
 ...
 if (nextHop == (unsigned) NETWORK_UNREACHABLE)
 {
 ...
 ip->stats.ipOutNoRoutes++;
 //Trace drop
 ActionData acnData;
 acnData.actionType = DROP;
 acnData.actionComment = DROP_NO_ROUTE;
 TRACE_PrintTrace(node,
 msg,
 TRACE_NETWORK_LAYER,
 PACKET_OUT,
 &acnData,
 NETWORK_IPV4);
 // Free message.
 MESSAGE_Free(node, msg);
 return;
 }
 ...
}

FIGURE 4-210. Tracing a Packet Drop
QualNet 5.2 Programmer’s Guide 402

Adding Trace Collection Chapter 4
4.9.5.5 Trace of a Packet Enqueuing
To trace a packet when it is added to a queue, call TRACE_PrintTrace with the appropriate parameters.
When a packet is enqueued, the trace should contain the interface index and the priority of the queue. For
example, Figure 4-210 shows how a packet is traced in the IP function NetworkIpQueueInsert when it is
added to the IP queue. NetworkIpQueueInsert is implemented in network_ip.cpp.

void
NetworkIpQueueInsert(
 Node *node,
 Scheduler *scheduler,
 Message *msg,
 NodeAddress nextHopAddress,
 NodeAddress destinationAddress,
 int outgoingInterface,
 int networkType,
 BOOL *queueIsFull,
 int incomingInterface,
 BOOL isOutputQueue)
{
 int queueIndex = ALL_PRIORITIES;
 IpHeaderType *ipHeader = NULL;
 ...
 //Trace Enqueue
 ActionData acn;
 acn.actionType = ENQUEUE;
 acn.actionComment = NO_COMMENT;
 NetworkType netType = NETWORK_IPV4
 acn.pktQueue.interfaceID = (unsigned short) outgoingInterface;
 acn.pktQueue.queuePriority = (
 unsigned char) IpHeaderGetTOS(ipHeader->ip_v_hl_tos_len);
 if (outgoingInterface != CPU_INTERFACE)
 {
 TRACE_PrintTrace(node, msg, TRACE_NETWORK_LAYER, PACKET_OUT,
 &acn, netType);
 }
 else
 {
 TRACE_PrintTrace(node, msg, TRACE_NETWORK_LAYER, PACKET_IN,
 &acn, netType);
 }
 ...
}

FIGURE 4-211. Tracing a Packet Enqueue
403 QualNet 5.2 Programmer’s Guide

Chapter 4 Adding Trace Collection
4.9.5.6 Trace of a Packet Dequeuing
To trace a packet when it is removed from a queue, call TRACE_PrintTrace with the appropriate
parameters. When a packet is dequeued, the trace should contain the interface index and the priority of the
queue. For example, Figure 4-210 shows how a packet is traced in the IP function
NetworkIpOutputQueueDequeuePacket when it is dequeued from the IP queue.
NetworkIpOutputQueueDequeuePacket is implemented in network_ip.cpp.

BOOL NetworkIpOutputQueueDequeuePacket(
 Node *node,
 int interfaceIndex,
 Message **msg,
 NodeAddress *nextHopAddress,
 macHWAddress *nexthopmacAddr
 int *networkType,
 QueuePriorityType *userPriority,
 int posInQueue)
{
 BOOL dequeued = FALSE;
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 Scheduler *scheduler = NULL;
 TosType userTos = ALL_PRIORITIES;
 int outgoingInterface;
 ...
 scheduler = ip->interfaceInfo[interfaceIndex]->scheduler;
 dequeued = NetworkIpQueueDequeuePacket(node,
 scheduler,
 msg,
 nextHopAddress,
 nexthopmacAddr,
 &outgoingInterface,
 networkType,
 &userTos,
 posInQueue);
 if (dequeued)
 {
 ...
 //Trace dequeue
 ActionData acn;
 acn.actionType = DEQUEUE;
 acn.actionComment = NO_COMMENT;
 acn.pktQueue.interfaceID = (unsigned short) interfaceIndex;
 acn.pktQueue.queuePriority = (unsigned char) queuePriority;
 TRACE_PrintTrace(node, *msg, TRACE_NETWORK_LAYER, PACKET_OUT, &acn,
 NetworkIpGetInterfaceType(node, interfaceIndex));
 ...
 }
 return dequeued;
}

FIGURE 4-212. Tracing a Packet Dequeue
QualNet 5.2 Programmer’s Guide 404

.
4.10 Creating an Addon, Interface or Model Library

Libraries, Interfaces, Addons, and contributed models are different types of optional features in QualNet. All
are organized in a virtually identical way.

• Libraries: A library is a set of network protocols and other models for QualNet. Most of the models
developed by Scalable Network Technologies are organized in pre-packaged libraries. Source code
and other files for libraries are located in QUALNET_HOME/libraries.

• Interfaces: An interface typically implements an instance of QualNet’s external interface API to allow
QualNet to inter-operate with some third party software. An interface module typically requires third
party software for compilation and use. For example, use of the HLA interface requires the user to
install an HLA RTI. Source code and other files for interfaces are located in QUALNET_HOME/
interfaces.

• Contributed Models: These models are often individual protocols or models developed and contributed
by a QualNet user for distribution within the user community. Source code and other files for contributed
models are located in QUALNET_HOME/contributed.

• Addons: These are special-purpose custom modules or prototypes of models under development.
Source code and other files for addons are located in QUALNET_HOME/addons.

For the sake of brevity, we will use the term “library” in the remainder of this section to refer to all four
classes of optional features.

We illustrate the process of adding a library to QualNet by creating a sample library, the user_models
library. For simplicity, the user_models library adds an Application Layer protocol, HELLO, but a
programmer can develop a library that adds functionality at any other layer or at multiple layers.

The following list summarizes the actions that need to be performed for adding a traffic-generating
Application Layer protocol, HELLO, to the user-created library, user_models. Each of these steps is
described in detail in subsequent sections. Although a traffic-generating Application Layer protocol
typically has two components, a client and a server, for simplicity, we describe the process for only one
component for HELLO, instead of for both client and server.

1. Create a directory and header and source files (see Section 4.10.1).

2. Include the protocol in the list of Application Layer protocols (see Section 4.10.2).

3. Develop components of the protocol (see Section 4.10.3).

4. Modify the file application.cpp to include the protocol’s header file (see Section 4.10.4).

5. Make calls to the model’s functions from the Application Layer functions (see Section 4.10.4).

6. Integrate the library into QualNet (see Section 4.10.5).

It is desirable to make libraries modular so that individual libraries can be included or excluded
from QualNet easily and without changes to code external to the library. To enable this, all
changes made to code not in your library should be made conditional on a compilation switch.
For the user_models library, the compilation switch is USER_MODELS_LIB. This switch is
defined as the value of the variable USER_MODELS_OPTIONS in QUALNET_HOME/libraries/
user_models/Makefile-common (see Section 4.10.5.1).
Creating an Addon, Interface or Model Library Chapter 4
405 QualNet 5.2 Programmer’s Guide

Chapter 4 Creating an Addon, Interface or Model Library
4.10.1 Creating Directory and Files

Create a directory in QUALNET_HOME/libraries called user_models. Create a subdirectory in
QUALNET_HOME/libraries/user_models called src. The Makefiles for the library will be placed in the top
directory, QUALNET_HOME/libraries/user_models. The code for the application model will be put in
QUALNET_HOME/libraries/user_models/src.

Create header and source files for the application model in the directory QUALNET_HOME/libraries/
user_models/src. The example application model, HELLO, has only one header and one source file. But a
model can have multiple header files and multiple source files. If the model adds functionality at multiple
layers, it is recommended to have separate header and source files for each layer. See Section 4.2.5.2 for
details of contents of the header and source files for a traffic-generating Application Layer protocol.

Figure 4-213 shows an example of the header file for the HELLO application, app_hello.h.

#ifndef HELLO_H
#define HELLO_H
...
void AppHelloInit(Node *node, NodeInput *nodeInput);
void AppHelloProcessEvent(Node *node, Message *packet);
void AppHelloFinalize(Node *node);
#endif

FIGURE 4-213. Header File for HELLO Application

In the above example, AppHelloInit, AppHelloProcessEvent and AppHelloFinalize are the initialization,
event handler and finalization functions for HELLO, respectively.

Figure 4-214 shows an example of the source file for the HELLO application, app_hello.cpp:

#include <stdlib.h>
#include "api.h"
#include "app_hello.h"
void AppHelloInit(Node *node, const NodeInput *nodeInput)
{
 printf("AppHelloInit called.\n");
}
void AppHelloProcessEvent(Node *node, Message *packet)
{
 printf("AppHelloProcessEvent called.\n");
}
void AppHelloFinalize(Node *node)
{
 printf("AppHelloFinalize called.\n");
}

FIGURE 4-214. Source File for HELLO Application
QualNet 5.2 Programmer’s Guide 406

Creating an Addon, Interface or Model Library Chapter 4
4.10.2 Including HELLO in List of Application Layer Protocols

This step is identical to including an Application Layer protocol as discussed in Section 4.2.5.3.

For our example protocol, add the entry APP_HELLO to AppType, as shown in Figure 4-215.

Add the new application at the end of the list because the items in this enumeration are used to
initialize random variables, which must not depend on the inclusion of this addon.

typedef enum
{
 APP_FTP_SERVER_DATA = 20,
 APP_FTP_SERVER = 21,
 APP_FTP_CLIENT,
 ...
 #ifdef USER_MODELS_LIB
 APP_HELLO,
#endif USER_MODELS_LIB
 APP_PLACEHOLDER
} AppType;

FIGURE 4-215. Adding HELLO to List of Application Layer Protocols

4.10.3 Developing Protocol Components

The following list summarizes the actions that need to be performed for developing components of an
Application Layer protocol.

1. Declare data structures for the protocol, as described in Section 4.2.5.4, in the header file app_hello.h.

2. Write the initialization function for the protocol, as described in Section 4.2.5.5.

3. Write the event dispatcher function for the protocol, as described in Section 4.2.5.6.2.

4. Write the finalization function for the protocol, as described in Section 4.2.5.8.2.

5. Write the other implementation functions for the protocol.

6. Implement code for collecting and printing statistics for the protocol, as described in Section 4.2.5.7.

7. Include all functions in the source file, app_hello.cpp. Include the prototypes of all interface functions in

the header file, app_hello.h.
407 QualNet 5.2 Programmer’s Guide

Chapter 4 Creating an Addon, Interface or Model Library
4.10.4 Calling Protocol Functions from Application Layer Functions

The initialization, event dispatcher, and finalization functions for the HELLO application are called from the
Application Layer initialization, event dispatcher, and finalization functions, in a manner similar to adding
an Application Layer protocol, described in Section 4.2.5, except that for HELLO, these calls are
conditional on the user_models library being activated.

1. Include the header file, app_hello.h, in QUALNET_HOME/main/application.cpp, as shown in Figure 4-

216.

...
#ifdef ADDON_LINK16
#include "link16_cbr.h"
#endif // ADDON_LINK16

#ifdef ADDON_USER_MODELS
#include "app_hello.h"
#endif /* ADDON_USER_MODELS */

...

FIGURE 4-216. Including HELLO Header File in application.cpp

2. Call the protocol’s initialization function, AppHelloInit, from the Application Layer initialization function

APP_InitializeApplications, as shown in Figure 4-217. Function APP_InitializeApplications is defined in

QUALNET_HOME/main/application.cpp. Read and store the configuration parameters for HELLO in

APP_InitializeApplications. See Section 4.2.5.5.2 for details of reading configuration parameters from

an input file.

void APP_InitializeApplications(Node *firstnode, const NodeInput *nodeInput)
{
 ...
 for (i = 0; i < appInput.numLines; i++)
 {
 sscanf(appInput.inputStrings[i], "%s", appStr);
 ...
 if (strcmp(appStr, "FTP") == 0)
 {
 ...
 }
 ...
 else
 if (strcmp(appStr, "mgen") == 0)
 {
#ifdef ADDON_MGEN4
 ...
#endif // ADDON_MGEN4
 }

 else
 if (strmcp(appStr, “HELLO”) == 0)

 {
#ifdef USER_MODELS_LIB

 ...
 /*Read user input into appropriate variables */
 /* Call HELLO initialization function */
 AppHelloInit (node, nodeInput);
QualNet 5.2 Programmer’s Guide 408

Creating an Addon, Interface or Model Library Chapter 4
#endif // USER_MODELS_LIB
 }

 else
 ...
 }
 ...
}

FIGURE 4-217. Calling HELLO Initialization Function

3. Call the protocol’s event handler function from the Application Layer event handler function,

APP_ProcessEvent, as shown in Figure 4-218. Function APP_ProcessEvent is defined in

QUALNET_HOME/main/application.cpp.

void APP_ProcessEvent(Node *node, Message *msg)
{
 short protocolType;
 protocolType = APP_GetProtocolType(node,msg);
 switch(protocolType)
 {
 case APP_ROUTING_BELLMANFORD:
 {
 RoutingBellmanfordLayer(node, msg);
 break;
 }
 ...
 #ifdef USER_MODELS_LIB
 case APP_HELLO:
 {
 AppHelloProcessEvent(node, msg);
 break;
 }
 #endif /* USER_MODELS_LIB */
 ...
 }//switch//
}

FIGURE 4-218. Calling HELLO Event Dispatcher Function

4. Call the protocol’s finalization function from the Application Layer finalization function, APP_Finalize, as

shown in Figure 4-219. Function APP_Finalize is defined in QUALNET_HOME/main/application.cpp.
409 QualNet 5.2 Programmer’s Guide

Chapter 4 Creating an Addon, Interface or Model Library
void App_Finalize (Node *node)
{
 ...
 AppInfo *applist = NULL;
 AppInfo *nextApp = Null;
 ...
 for (appList = node->appData.appPtr; appList != NULL;
 appList = nextApp)
 {
 switch (appList->appType)
 {
 ...
 case APP_CBR_CLIENT:
 {
 AppCbrClientFinalize(node, appList);
 break;
 }
 ...
 #ifdef USER_MODELS_LIB
 case APP_HELLO
 {
 AppHelloFinalize(node, appList);
 break;
 }
 #endif /* USER_MODELS_LIB */
 ...
 nextApp = appList->appNext;
 }
 ...
}

FIGURE 4-219. Calling HELLO Finalization Function

4.10.5 Integrating a New Library into QualNet

To integrate your library into QualNet, create Makefiles for your library, as described in Section 4.10.5.1,
and include the library Makefile for your platform in the main Makefile, as described in Section 4.10.5.2.
Recompile QualNet, as described in Section 4.10.5.3.

4.10.5.1 Creating Makefiles

In the directory QUALNET_HOME/libraries/user_models, create a file Makefile-common that specifies the
source files to be included and any other platform-independent information required for compilation. Create
a file Makefile-windows (for Windows platforms) or Makefile-unix (used for Linux and Mac platforms).
Platform-specific information is included in these two files. The files to be added are shown below.

1. File QUALNET_HOME/libraries/user_models/Makefile-common:

USER_MODELS_OPTIONS = -DUSER_MODELS_LIB
USER_MODELS_DIR = ../libraries/user_models/src
USER_MODELS_SRCS = \
$(USER_MODELS_DIR)/app_hello.cpp
USER_MODELS_INCLUDES = \
-I$(USER_MODELS_DIR)
QualNet 5.2 Programmer’s Guide 410

Creating an Addon, Interface or Model Library Chapter 4
2. File QUALNET_HOME/libraries/user_models/Makefile-windows:

include ../libraries/user_models/Makefile-common
ADDON_OPTIONS = $(ADDON_OPTIONS) $(USER_MODELS_OPTIONS)
ADDON_SRCS = $(ADDON_SRCS) $(USER_MODELS_SRCS)
ADDON_INCLUDES = $(ADDON_INCLUDES) $(USER_MODELS_INCLUDES)

3. File QUALNET_HOME/libraries/user_models/Makefile-unix:

include ../libraries/user_models/Makefile-common
ADDON_OPTIONS += $(USER_MODELS_OPTIONS)
ADDON_SRCS += $(USER_MODELS_SRCS)
ADDON_INCLUDES += $(USER_MODELS_INCLUDES)

4.10.5.2 Include Library Makefile in Main Makefile
Enable the library by including its Makefile in the addons Makefile for your platform (Makefile-addons-
windows or Makefile-addons-unix).

For Windows, make the following entry in the file QUALNET_HOME/main/Makefile-addons-windows:

...
INSERT LIBRARIES HERE...
USER_MODELS library
include ../libraries/user_models/Makefile-windows
#
...

For Linux or Mac OS X, make the following entry in the file QUALNET_HOME/main/Makefile-addons-unix:

...
INSERT LIBRARIES HERE...
USER_MODELS library
include ../libraries/user_models/Makefile-unix
#
...
411 QualNet 5.2 Programmer’s Guide

Chapter 4 Creating an Addon, Interface or Model Library
4.10.5.3 Recompiling QualNet
After creating and modifying the Makefiles, recompile QualNet.

To correctly integrate a library into QualNet, you must delete all object files before recompiling.

Windows

Use the following commands to remove all object (.obj) files and recompile:

nmake clean
nmake

See Section 2.2 for detailed instructions for recompiling QualNet on Windows.

Linux and Mac OS X

Use the following commands to remove all object (.o) files and recompile:

make clean
make

See Section 2.3 (for Linux) and Section 2.4 (for Mac OS X) for detailed instructions for recompiling
QualNet.
QualNet 5.2 Programmer’s Guide 412

.
4.11 Communication Between Layers

Although QualNet protocols follow a strict, adjacent layering approach, protocols can be written to deviate
from this and communicate across layers and even across nodes.

4.11.1 Communication Between Adjacent Layers

This section covers the general approach used to communicate between adjacent layers.

Communication between adjacent layers is accomplished either by using the message API
MESSAGE_Send (see Section 3.3.1.2) or by using direct function calls. A protocol may use
MESSAGE_Send directly (see Section 3.3.2.1.2) or it can use one of the layer-specific APIs which are
implemented using MESSAGE_Send (see Section 3.3.2.1.1).

As an example, an application that relies on UDP may use MESSAGE_Send directly, or it may call one of
the APIs listed in Table to pass data to UDP. Figure 4-220 shows the implementation of one of these
functions, APP_UdpSendNewData, with comments added for explication. APP_UdpSendNewData sends
application data to UDP using MESSAGE_Send, and is implemented in app_util.cpp.
Communication Between Layers Chapter 4
413 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Between Layers
void
APP_UdpSendNewData(
 Node *node,
 AppType appType,
 NodeAddress sourceAddr,
 short sourcePort,
 NodeAddress destAddr,
 char *payload,
 int payloadSize,
 clocktype delay,
 TraceProtocolType traceProtocol)
{
 Message *msg;
 AppToUdpSend *info;
 ActionData acnData;

 // Create a packet event with the Transport Layer as the destination layer
 // and UDP as the destination protocol. The event type is
 // MSG_TRANSPORT_FromAppSend.
 msg = MESSAGE_Alloc(
 node,
 TRANSPORT_LAYER,
 TransportProtocol_UDP,
 MSG_TRANSPORT_FromAppSend);

 // ALlocate memory to store data.
 MESSAGE_PacketAlloc(node, msg, payloadSize, traceProtocol);

 // Copy application data into memory just allocated.
 memcpy(MESSAGE_ReturnPacket(msg), payload, payloadSize);

 // Create and assign info field values for UDP.
 MESSAGE_InfoAlloc(node, msg, sizeof(AppToUdpSend));
 info = (AppToUdpSend *) MESSAGE_ReturnInfo(msg);

 SetIPv4AddressInfo(&info->sourceAddr, sourceAddr);
 info->sourcePort = sourcePort;

 SetIPv4AddressInfo(&info->destAddr, destAddr);
 info->destPort = (short) appType;
 info->priority = APP_DEFAULT_TOS;
 info->outgoingInterface = ANY_INTERFACE;
 info->ttl = IPDEFTTL;
 ...
 // Send the message to UDP at the Transport Layer.
 MESSAGE_Send(node, msg, delay);
}

FIGURE 4-220. Communication Between Layers Using MESSAGE_Send

The other method of passing data between adjacent layers is to use direct function calls. An example of
this is communication between UDP at the Transport Layer and IP at the Network Layer. UDP function
TransportUdpSendToNetwork appends a UDP header to the user data received from an application
running at the Application Layer and sends the resulting packet to IP using the function
NetworkIpReceivePacketFromTransportLayer. TransportUdpSendToNetwork is shown in Figure 4-221 and
is implemented in QUALNET_HOME/libraries/developer/src/transport_udp.cpp. Note that
QualNet 5.2 Programmer’s Guide 414

Communication Between Layers Chapter 4
MESSAGE_Send is not used in this case. NetworkIpReceivePacketFromTransportLayer is implemented in
QUALNET_HOME/libraries/developer/src/network_ip.cpp.

void
TransportUdpSendToNetwork(Node *node, Message *msg)
{
 TransportDataUdp *udp = (TransportDataUdp *) node->transportData.udp;
 TransportUdpHeader *udpHdr;
 AppToUdpSend *info;

 if (udp->udpStatsEnabled == TRUE)
 {
 udp->statistics->numPktFromApp++;
 }

 MESSAGE_AddHeader(node, msg, sizeof(TransportUdpHeader), TRACE_UDP);

 udpHdr = (TransportUdpHeader *) msg->packet;
 info = (AppToUdpSend *) MESSAGE_ReturnInfo(msg);

 udpHdr->sourcePort = info->sourcePort;
 udpHdr->destPort = info->destPort;
 udpHdr->length = (unsigned short) MESSAGE_ReturnPacketSize(msg);
 udpHdr->checksum = 0; /* checksum not calculated */

 ActionData acnData;
 acnData.actionType = SEND;
 acnData.actionComment = NO_COMMENT;
 TRACE_PrintTrace(node,
 msg,
 TRACE_TRANSPORT_LAYER,
 PACKET_OUT,
 &acnData);

 NetworkIpReceivePacketFromTransportLayer(
 node,
 msg,
 info->sourceAddr,
 info->destAddr,
 info->outgoingInterface,
 info->priority,
 IPPROTO_UDP,
 FALSE,
 info->ttl);
}

FIGURE 4-221. Communication Between Layers Using Function Calls

The method of layer communication (whether to use direct function calls or MESSAGE_Send) is
dependent on the layer and how it is implemented. It should be noted that the simulator’s performance is
better if direct function calls are used, as compared to using MESSAGE_Send. This is because function
calls bypass the event scheduling system of QualNet, and thus some overhead is reduced. However,
direct function calls can not model delays, and MESSAGE_Send must be used if delays are required to be
modeled between layers.
415 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Between Layers
4.11.2 Communication Between Non-adjacent Layers

Although the design philosophy of QualNet is for adjacent layers to communicate with each other, it is
possible for protocols at non-adjacent layers to communicate with each other. For instance, protocols
written at the Application Layer, if desired, may bypass the Transport Layer and communicate directly with
the Network Layer. This procedure would entail the Application Layer protocol to use the Network Layer
APIs instead of the Transport Layer APIs.

As an example, suppose we want the current CBR application to bypass the Transport Layer protocol
(UDP in this case) and communicate directly with the Network Layer. Also, suppose that we want to
maintain the current Network Layer APIs. In order to achieve this, we must close the gap between the
Application and Network Layer as shown in Figure 4-222.

FIGURE 4-222. Bypassing the Transport Layer

Section 4.11.2.1 describes the communication from the Application Layer to the Network Layer, and
Section 4.11.2.2 describes the communication from the Network Layer to the Application layer, bypassing
the Transport Layer in each case.

4.11.2.1 Application Layer to Network Layer Communication
Normally, a UDP-based application sends user data to UDP, which appends a UDP header to the packet
and sends it to IP at the Network Layer. To enable CBR to directly send user data to IP, we have to first
determine what APIs are used by UDP to communicate with the Network Layer, and then use the same
interface between the CBR and IP. In this case, CBR calls API function
APP_UdpSendNewHeaderVirtualDataWithPriority to send data to UDP, and UDP uses function
NetworkIpReceivePacketFromTransportLayer to pass data to the Network Layer. Therefore, the modified
CBR application should replace the call to APP_UdpSendNewHeaderVirtualDataWithPriority with a call to
NetworkIpReceivePacketFromTransportLayer, with appropriate parameters. Additionally, any actions
performed in APP_UdpSendNewHeaderVirtualDataWithPriority should be performed by CBR directly
before calling NetworkIpReceivePacketFromTransportLayer.

CBR function AppLayerCbrClient, shown in Figure 4-25, calls the API function
APP_UdpSendNewHeaderVirtualDataWithPriority to send data to UDP. To enable CBR to send data to IP
directly, replace the call to APP_UdpSendNewHeaderVirtualDataWithPriority with a call to
NetworkIpReceivePacketFromTransportLayer, as shown in Figure 4-223. CBR functions are implemented
in QUALNET_HOME/libraries/developer/src/app_cbr.cpp and function
NetworkIpReceivePacketFromTransportLayer is implemented in network_ip.cpp.
QualNet 5.2 Programmer’s Guide 416

Communication Between Layers Chapter 4
APP_UdpSendNewHeaderVirtualDataWithPriority is implemented in QUALNET_HOME/main/
app_util.cpp, and prototypes for message APIs can be found in the file QUALNET_HOME/include/
message.h.

The steps needed to enable CBR to directly communicate with IP are listed below.

1. To enable CBR to call the IP function NetworkIpReceivePacketFromTransportLayer, include the file

network_ip.h in the file app_cbr.cpp by inserting the following statement:

#include "network_ip.h"

2. When IP receives a packet from the upper layers, it appends an IP header to the packet. One of the

fields of the IP header is the identifier of the protocol to which IP delivers the packet at the destination.

To enable IP to deliver a packet to CBR, define an identifier for CBR by including the following

statement in QUALNET_HOME/libraries/developer/src/network_ip.h:

#define IPPROTO_CBR 255

Here, 255 is used as an example. Be sure to use a number that is not used by any other protocol.

3. In CBR function AppLayerCbrClient, declare a new message variable newMsg and allocate memory for

it using API function MESSAGE_Alloc (see Figure 4-223). This message variable is used only to send

data to IP and not to schedule an event. Therefore the layer, protocol and event type of the message

are not important and are set to 0.

4. Copy the CBR data into the packet field of newMsg using the function memcpy (see Figure 4-223).

5. Update the virtualPayLoadSize field of newMsg (see Section 3.3.1.1) by using the API function

MESSAGE_AddVirtualPayload (see Figure 4-223). This is normally done in the function

APP_UdpSendNewHeaderVirtualDataWithPriority, but since that API function is not being used in this

modification, virtualPayLoadSize field of the message should be updated in AppLayerCbrClient

before data is sent to IP. See Section 4.2.5.6.2 for an explanation of the use of virtualPayLoadSize

field,

6. Send the CBR data to IP by calling function NetworkIpReceivePacketFromTransportLayer (see

Figure 4-223). In the function call, constant IPDEFTTL is the default value of the TTl field.

void AppLayerCbrClient(Node *node, Message *msg)
{
 ...
 switch(msg->eventType)
 {
 case MSG_APP_TimerExpired:
 {
 ...
 switch (timer->type)
 {
 case APP_TIMER_SEND_PKT:
 {
 CbrData data;
 Message *newMsg;
 ...
 // Create a new message to hold the data.
 newMsg = MESSAGE_Alloc(node, 0, 0, 0);
 // Allocate memory for user data.
417 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Between Layers
 MESSAGE_PacketAlloc(node, newMsg, sizeof(data), TRACE_CBR);
 // Copy user data into packet field.
 memcpy(MESSAGE_ReturnPacket(newMsg), &data, sizeof(data));
 // Update virtualPayLoadSize field of message.
 MESSAGE_AddVirtualPayload(node,
 newMsg,
 clientPtr->itemSize - sizeof(data));
 // Send message to IP.
 NetworkIpReceivePacketFromTransportLayer(
 node,
 newMsg,
 clientPtr->localAddr,
 clientPtr->remoteAddr,
 ANY_INTERFACE,
 clientPtr->tos,
 IPPROTO_CBR,
 FALSE,
 IPDEFTTL);
 clientPtr->numBytesSent += clientPtr->itemSize;
 ...
 }
 ...
 }
 break;
 }
 ...
 }
 MESSAGE_Free(node, msg);
}

FIGURE 4-223. Application Layer to Network Layer Bypassing Transport Layer
QualNet 5.2 Programmer’s Guide 418

Communication Between Layers Chapter 4
4.11.2.2 Network Layer to Application Layer Communication
For communication from the Network Layer to the Application Layer, first determine what APIs are used
between the Transport and Application Layers and then have the Network Layer use the same interface to
pass data directly to the Application Layer.

At the Network Layer, IP function DeliverPacket reads the protocol number for the destination protocol of a
received packet from the packet’s IP header and passes the packet to the destination protocol. For a UDP-
based application, DeliverPacket sends the received packet to UDP using the function SendToUdp. UDP,
in turn, passes the packet to the application using the UDP function TransportUdpSendToApp. The IP
functions DeliverPacket and SendToUdp are implemented in network_ip.cpp. The UDP function
TransportUdpSendToApp is shown in Figure 4-57 and is implemented in transport_udp.cpp.

To enable IP to send data to CBR directly, write a function SendToCbr and modify function DeliverPacket to
call SendToCbr to deliver packets to CBR. The steps needed to enable IP to directly communicate with
CBRT are listed below.

1. Define a data structure IpToAppRecv, similar to the data structure UdpToAppRecv, in

QUALNET_HOME/include/api.h, as shown below:

struct IpToAppRecv
{
 Address sourceAddr;
 short sourcePort;
 Address destAddr;
 short destPort;
 int incomingInterfaceIndex;
};

This data structure is used for the info field of a message for communication between IP and the
Application Layer.

2. Modify the IP function DeliverPacket by adding a case for CBR in the second switch statement, as

shown in Figure 4-224. The constant IPPROTO_CBR is explained in Section 4.11.2.1.
419 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Between Layers
static void
DeliverPacket(Node *node, Message *msg,
 int interfaceIndex, NodeAddress previousHopAddress)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 NodeAddress sourceAddress = 0;
 NodeAddress destinationAddress =0;
 unsigned char ipProtocolNumber;
 unsigned ttl =0;
 TosType priority;
 ...
 IpHeaderType *ipHeader = (IpHeaderType *) msg->packet;
 ...
 ipProtocolNumber = ipHeader->ip_p;
 ...
 switch (ipProtocolNumber)
 {
 // Delivery to Transport Layer protocols.

 case IPPROTO_UDP:
 {
 SendToUdp(node, msg, priority, sourceAddress, destinationAddress,
 interfaceIndex);
 break;
 }
 ...
 case IPPROTO_CBR:
 {
 SendToCbr(node, msg, priority, sourceAddress,
 destinationAddress, interfaceIndex);
 break;
 }
 ...
 }
 ...
}

FIGURE 4-224. Network Layer to Application Layer Bypassing Transport Layer
QualNet 5.2 Programmer’s Guide 420

Communication Between Layers Chapter 4
3. Write the function SendToCbr in network_ip.cpp, as shown in Figure 4-225.

Function SendToCbr uses the event type MSG_APP_FromTransport to send a packet from IP to the
Application Layer. This name is misleading because the packet is being sent from the Network Layer,
not from the Transport Layer. A more meaningful name for the event type would be
MSG_APP_FromNetwork. If this event type is used, declare the new event type in api.h, as described
in Section 4.2.5.6.2, and in the CBR server event dispatcher function AppLayerCbrServer, shown in
Figure 4-26, replace MSG_APP_FromTransport with MSG_APP_FromNetwork.

void SendToCbr(
 Node *node,
 Message *msg,
 TosType priority,
 NodeAddress sourceAddress,
 NodeAddress destinationAddress,
 int incomingInterfaceIndex)
{
 CbrData data;
 IpToAppRecv *info;

 // Get the CBR header to get source port information.
 memcpy (&data, MESSAGE_ReturnPacket(msg), sizeof(data));

 // Set layer and protocol to Application Layer and CBR Server respectively.
 MESSAGE_SetLayer(msg, APP_LAYER, APP_CBR_SERVER);

 // Set event type to one recognized by CBR.
 MESSAGE_SetEvent(msg, MSG_APP_FromTransport);

 // Set the info field (this will be used by CBR Server).
 MESSAGE_InfoAlloc(node, msg, sizeof(IpToAppRecv));
 info = (IpToAppRecv *) MESSAGE_ReturnInfo(msg);
 SetIPv4AddressInfo(&(info->sourceAddr), sourceAddress);
 info->sourcePort = data.sourcePort;
 SetIPv4AddressInfo(&(info->destAddr), destinationAddress);
 info->destPort = APP_CBR_SERVER;
 info->incomingInterfaceIndex = incomingInterfaceIndex;

 // Send packet to Application Layer.
 MESSAGE_Send(node, msg, PROCESS_IMMEDIATELY);
}

FIGURE 4-225. Delivering Packets from IP to CBR
421 QualNet 5.2 Programmer’s Guide

Chapter 4 Communication Between Layers
4.11.3 Communication Among Layers Across Nodes

In addition to supporting the ability to communicate between non-adjacent layers, QualNet also allows the
capability to bypass the protocol stack and communicate directly across nodes. For instance, an
application protocol at one node can directly communicate with an application protocol at another node.
This is not restricted to just between the same applications. Cross-node communication can also occur
between different protocols in the same layer or of different layers.

Note: In general, we do not recommend using this capability. Bypassing the lower layers of the
protocol stack may result in misleading statistical results. Use of this capability also has an
impact on parallel execution, including disabling some optimizations that are implemented at
the lower layers of the stack. However, if handled properly, it can result in improved runtime
performance.

To continue with our CBR example, if we wanted to model only a fixed delay when sending CBR traffic
between the source node and the destination node, we can achieve this by sending a message directly
from the CBR source node to the CBR destination node. To achieve this, modify the CBR function
AppLayerCBrClient, as shown in Figure 4-226. AppLayerCbrClient is implemented in the file
QUALNET_HOME/libraries/developer/src/app_cbr.cpp.

Also, include the file partition.h in app_cbr.cpp to access the partition data structure, which is required to
map the destination node identifier to a node pointer, by inserting the following statement in app_cbr.cpp:

#include "partition.h"

The comments in Figure 4-226 explain the purpose of each line of code.

void AppLayerCbrClient(Node *node, Message *msg)
{
 ...
 switch (timer->type)
 {
 case APP_TIMER_SEND_PKT:
 {
 CbrData data;
 Message *newMsg;
 Node *destNode;
 NodeAddress destId;
 UdpToAppRecv *info;
 ...
 // Get the destination nodeId.
 destId = MAPPING_GetNodeIdFromInterfaceAddress(
 node, GetIPv4Address(clientPtr->remoteAddr));
 // nodeIsLocal tells whether the destination node exists on
 // the same processor as the current node.
 BOOL nodeIsLocal = FALSE;
 // Get the destination node pointer.
 nodeIsLocal = PARTITION_ReturnNodePOinter(
 node->partitionData, &destNode,
 destId, TRUE);
 // Make sure that the destination node pointer exists.
 assert (destNode != NULL);
 // Create a new message to send to CBR Server at destination.
 newMsg = MESSAGE_Alloc(node, APP_LAYER, APP_CBR_SERVER,
 MSG_APP_FromTransport);
QualNet 5.2 Programmer’s Guide 422

Communication Between Layers Chapter 4
 // Allocate memory for user data.
 MESSAGE_PacketAlloc(node, newMsg, sizeof(data), TRACE_CBR);
 memcpy(MESSAGE_returnPacket(newMsg), &data, sizeof(data));
 // Create and set the info field.
 MESSAGE_InfoAlloc(node, newMsg, sizeof(UdpToAppRecv));
 info = (UdpToAppRecv *) MESSAGE_ReturnInfo(msg);
 info->sourceAddr = clientPtr->localAddress;
 info->sourcePort = clientPtr->sourcePort;
 info->destAddr = clientPtr->remoteAddress;
 info->destPort = APP_CBR_SERVER;
 info->incomingInterfaceIndex = 0;
 // Send the message to the destination node after 1 ms delay.
 if (nodeIsLocal){
 MESSAGE_Send(destNode, newMsg, 1 * MILLI_SECOND);
 } else {
 // If the node is not local, ise MESSAGE_RemoteSend
 // instead of MESSAGE_Send to deliver the message.
 MESSAGE_RemoteSend(destNode, destId, newMsg,
 1 * MILLI_SECOND);
 }
 clientPtr->numBytesSent += clientPtr->itemSize;
 ...
}

FIGURE 4-226. Code Sample to Bypass Layers and Communicate Between Nodes

In addition to the change to the layer function, the user must specify a minimum lookahead (i.e., delay) on
the message in order to enable parallel execution. Assuming the minimum delay is 1 millisecond, the
following code segment must be added to the CBR_ClientInit function.

#ifdef PARALLEL
 PARALLEL_SetProtocolIsNotEOTCapable(node);
 PARALLEL_SetMinimumLookaheadForInterface(
 node,
 (1 * MILLISECONDS));
#endif // PARALLEL
423 QualNet 5.2 Programmer’s Guide

5 Customizing QualNet Graphical User

Interface (GUI)

The chapter describes how to add capabilities to the QualNet Graphical User Interface (GUI).

The GUI components in QualNet include the following:

• QualNet Architect: Used to create and design experiments (in Design mode) and to execute and
animate experiments (in Visualize mode).

• QualNet Analyzer: Used for displaying graphs of collected statistics.

• QualNet Packet Tracer: Used for displaying packet traces.

These tools in QualNet allow for a limited amount of customization. While the source code is not available
to users, settings files in the QUALNET_HOME/gui/settings directory allow the tools to be customized.

.
5.1 Customizing Design Mode of QualNet Architect

Details for using QualNet Architect are provided in QualNet User’s Guide. This section describes how to
customize the Design mode of QualNet Architect.

Chapter 4 describes how to develop code for new models at different layers of the protocol stack. This
section describes how to integrate new models into Architect by modifying some settings files.
Section 5.1.1 provides an overview of these settings files. Section 5.1.2 gives a detailed description of the
elements used in these files and Section 5.1.3 describes the interaction among these files. Section 5.1.4
explains how to modify these settings files to integrate a new protocol into Architect.

5.1.1 Description of QualNet GUI Settings Files

QualNet Architect provides property editors for a user to input scenario and protocol parameters. These
parameters are used to create the QualNet configuration files (.config, .app, etc.), which are used as input
files for QualNet Simulator. There is a property editor associated with each scenario component, such as a
device, link, application, or network object. In addition, there are property editors for setting global
properties and interface properties.
QualNet 5.2 Programmer’s Guide 424

Customizing Design Mode of QualNet Architect Chapter 5
In a property editor, related parameters are grouped together. Each group of parameters appears under a
tab or as a list item under a tab. In this document, we refer to such a related group of parameters as a
segment of a property editor. A segment may be a part of several property editors and may appear at
different places in different property editors. For example, consider the property editors for the default
device (see Figure 5-1) and the wireless subnet (see Figure 5-2). The Routing Protocol segment, which
groups together routing-related parameters, appears in both property editors: as a list item in one and as a
tab in the other.

FIGURE 5-1. Default Device Property Editor

FIGURE 5-2. Wireless Subnet Property Editor
425 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
QualNet Architect uses several settings files to build the property editors. This section explains the general
structure and usage of these files, but is not a complete reference. These files are of three types:

• Component Files: A component file is associated with each property editor in Architect and contains
structural information for displaying all segments of the property editor. For each segment of the
property editor, the component file contains its detailed description or has a reference to a shared
description (see Shared Description Files below). All component files have the extension “.cmp” and
are stored in the folder QUALNET_HOME/gui/settings/components.

• Shared Description Files: Many segments are common to several property editors. To allow sharing
of descriptions of these common segments, the segment descriptions are put in shared description
files. Descriptions of related segments are contained in the same shared description file. Shared
description files have the extension “.prt” and are stored in the folder QUALNET_HOME/gui/settings/
protocol_models. Section 5.1.3 describes how component files use descriptions contained in shared
description files.

• Toolset Description File: The file toolset.xml contains the description of the layout of Architect Toolset,
i.e., the icons for each device type, application, link, etc. This file is stored in the folder
QUALNET_HOME/gui/settings.

5.1.1.1 Structure of GUI Settings Files

The GUI settings files are in standard XML format and have a common structure. These files can contain
the following four nested elements, each of which is composed of named attributes:

• category: The category element is the top level element and can have subcategory and
variable elements as its children. In a component file, the category element represents the
property editor. In a shared description file, the category element represents the group of shared
segment descriptions. See Section 5.1.2.1 for the attributes of the category element.

• subcategory: The subcategory element can have subcategory and variable elements as its
children. The subcategory element contains information for displaying a segment in a property editor.
See Section 5.1.2.2 for the attributes of the subcategory element.

• variable: The variable element can have variable and option elements as its children. The
variable element corresponds to a parameter in a property editor. See Section 5.1.2.3 for the
attributes of the variable element.

• option: The option element can have variable elements as its children. If a parameter is of type
list (i.e., it can take as its value one of an enumerated list of values), the option element corresponds
to an enumeration of the list. See Section 5.1.2.4 for the attributes of the option element.

5.1.1.2 Component Files
In Architect, there is a property editor for each of the components in the Standard Toolset of Architect. In
addition, there are property editors for global (scenario) parameters, for interface parameters, for ATM link
parameters, and for ATM interface parameters.

Table 5-1 lists the different property editors, the component file that describes the property editor, and the
configuration file generated by the component file. The component files are stored in QUALNET_HOME/
gui/settings/components.

TABLE 5-1. Property Editors and Component Files

Property Editor Component File
Configuration File

Generated

Antenna (embedded in Antenna
Model Editor)

antenna.cmp .antenna-models

ATM atm.cmp .config
QualNet 5.2 Programmer’s Guide 426

Customizing Design Mode of QualNet Architect Chapter 5
5.1.1.3 Shared Description Files

Shared description files contain descriptions of property editor segments shared by component files.
Table 5-2 lists the different shared description files used by Architect and the configuration file generated
by them. The second column of table also lists the category and subcategories defined in the file.
The indentations in the table entry correspond to the levels of nesting in the file. For example, file
application.prt has one category, NODE-CONFIGURATION, which has one subcategory,

ATM Interface atminetrface.cmp .config

ATM Link atmlink.cmp .config

BGP Link bgp.cmp .bgp

Default Device defaultnode.cmp .config

Hierarchy hierarchy.cmp .config

Interface interface.cmp .config

Point-to-point Link point_to_point_link.cmp .config

Satellite satellite.cmp .config

Scenario (Global Settings) scenario.cmp .config

Switch switch.cmp .config

Wired Subnet subnet.cmp .config

Wireless Subnet wireless-subnet.cmp .config

ALE ale.cmp .app

ALE-SINGLEHOST ale_singlehost.cmp .app

CBR cbr.cmp .app

CELLULAR-ABSTRACT-APP cellular_abstract.cmp .app

FTP ftp.cmp .app

FTP/GENERIC ftpgeneric.cmp .app

GSM gsm.cmp .app

HTTP http.cmp .app

LOOKUP lookup.cmp .app

MCBR mcbr.cmp .app

MGEN mgen.cmp .app

Phone Call phonecall.cmp .app

SUPERAPPLICATION superapplication.cmp .app

TELNET telnet.cmp .app

THREADED-APP threaded_app.cmp .app

TRAFFIC-GEN trafficgen.cmp .app

TRAFFIC-GEN-SINGLEHOST trafficgen_singlehost.cmp .app

TRAFFIC-TRACE traffictrace.cmp .app

TRAFFIC-TRACE-SINGLEHOST traffictrace_singlehost.cmp .app

VBR vbr.cmp .app

VoIP voip.cmp .app

TABLE 5-1. Property Editors and Component Files (Continued)

Property Editor Component File
Configuration File

Generated
427 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
APPLICATION, as its child. The other six subcategories are children of the subcategory
APPLICATION. The shared description files are stored in QUALNET_HOME/gui/settings/protocol_models.

TABLE 5-2. Shared Description Files

Shared Description
File Explanation

Configuration
File

Generated

antenna.prt Properties of antenna models.

category name="NODE CONFIGURATION
 subcategory name="Antenna Properties"

.antenna-models

application.prt Structural information for all applications.

category name="NODE CONFIGURATION
 subcategory name="APPLICATION"

subcategory name="HTTP"
subcategory name="DNS"
subcategory name="VOIP"
subcategory name="IPNE”
subcategory name="RTP"
subcategory name="MDP"

.app

application_layer.prt Common properties of all applications.

category name="NODE CONFIGURATION"
subcategory name="Application Layer"

.config

arp.prt Properties of the ARP model.

category name="NODE CONFIGURATION"
subcategory name="ARP"

.config

atminterfaces.prt Detailed properties of ATM interfaces.

category name="NODE CONFIGURATION"
 subcategory name="ATM INTERFACES"

subcategory name="ATM Interface 0"
subcategory name="ATM Layer2"
subcategory name="Adaptation Protocols"
subcategory name="ARP"

.config

battery_models.prt Properties of battery models.

category name="NODE CONFIGURATION"
subcategory name="Battery Models"

.config

channel_properties.prt Properties of radio channels including frequency and propagation
characteristics (pathloss, fading, and shadowing).

category name="NODE CONFIGURATION"
 subcategory name="Channel Properties"

.config

external_interfaces.prt Properties of standard external interfaces, such as HLA, DIS, and
STK.

category name="NODE CONFIGURATION"
 subcategory name="External Interfaces"
 subcategory name="HLA Interface"

 subcategory name="DIS Interface"
 subcategory name="STK Interface"

.config

interfaces_device_prop
erties.prt

Properties of external interface devices.

category name="NODE CONFIGURATION"
 subcategory name="INTERFACE DEVICE PROPERTIES"

.config
QualNet 5.2 Programmer’s Guide 428

Customizing Design Mode of QualNet Architect Chapter 5
interface_faults.prt Properties of interface faults.

category name="NODE CONFIGURATION"
subcategory name="INTERFACE FAULTS”

subcategory name="Interface Fault 0"

.config, .faults

interfaces.prt Detailed properties of interfaces.

category name="NODE CONFIGURATION"
 subcategory name="INTERFACES"

subcategory name="Interface 0"
subcategory name="Physical Layer"
subcategory name="MAC Layer"
subcategory name="Abstract Internet Controller"
subcategory name="Network Layer"
subcategory name="Routing Protocol"
subcategory name="Faults"
subcategory name="File Statistics"

.config

internet_controller.prt Properties of internet controllers.

category name="NODE CONFIGURATION"
 subcategory name="Internet Controller"

.config

mac_layer.prt Properties of MAC layer protocols.

category name="NODE CONFIGURATION"
 subcategory name="MAC Layer"

.config

mobility.prt Mobility-related properties.

category name="NODE CONFIGURATION"
 subcategory name="MOBILITY"

.config

mpls.prt MPLS properties.

category name="NODE CONFIGURATION"
 subcategory name="MPLS Specs"

.config

network_layer.prt Properties of Network Layer protocols.

category name="NODE CONFIGURATION"
 subcategory name="NETWORK LAYER"

subcategory name="Schedulers and Queues"
subcategory name="QoS Configuration"
subcategory name ="Network Security"
subcategory name="ARP"

.config

node_faults.prt Properties of node faults.

category name="NODE CONFIGURATION"
subcategory name="NODE FAULTS”

subcategory name="Node Fault 0"

.config, .faults

packet_tracing.prt Properties for packet tracing.

category name="NODE CONFIGURATION"
subcategory name="PACKET TRACING"

.config

phy_layer.prt Properties of Physical Layer protocols.

category name="NODE CONFIGURATION"
subcategory name="Physical Layer"

.config

TABLE 5-2. Shared Description Files (Continued)

Shared Description
File Explanation

Configuration
File

Generated
429 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
point_to_point_link.prt Properties of point-to-point links.

category name="COMPONENTS"
subcategory name="LINKS"

subcategory name="POINT TO POINT LINK
PROPERTIES"

subcategory name="Network Layer"
subcategory name="Routing Protocol"
subcategory name="ARP"
subcategory name="Faults"
subcategory name="Background Traffic"

subcategory name="Background Traffic 0"

.config,

.bgtraffic, .faults

router_models.prt Properties of router models.

category name="NODE CONFIGURATION"
subcategory name="ROUTER MODEL"

.config

routing_protocols.prt Properties of routing protocols.

category name="NODE CONFIGURATION"
subcategory name="ROUTING PROTOCOL"

subcategory name="BGP Configuration"

.config

statistics.prt Parameters for collecting statistics for .stat file.

category name="NODE CONFIGURATION"
subcategory name="STATISTICS"

.config

supplemental_file.prt List of supplemental files used in the scenario.

category name="NODE CONFIGURATION"
subcategory name="Supplemental Files”

.config

terrain.prt Terrain properties.

category name="NODE CONFIGURATION"
subcategory name="Terrain”

.config

transport.prt Properties of the Transport Layer.

category name="NODE CONFIGURATION"
subcategory name="TRANSPORT”

.config

user-behavior.prt User behavior model properties.

category name="NODE CONFIGURATION"
subcategory name="USER BEHAVIOR"

.config

TABLE 5-2. Shared Description Files (Continued)

Shared Description
File Explanation

Configuration
File

Generated
QualNet 5.2 Programmer’s Guide 430

Customizing Design Mode of QualNet Architect Chapter 5
5.1.2 Elements of Settings Files

This section describes the elements used in the GUI settings files and their attributes.

5.1.2.1 The category Element
The category element is the top-level element in the all GUI settings files. A category element can
have subcategory and variable elements as its children. In a component file, the category element
represents the property editor. In a shared description file, the category element represents the group of
shared segment descriptions. The attributes of the category element are listed in Table 5-3.

TABLE 5-3. Attributes of the category Element

Attribute Name
Attribute Values or

Type Description

name

Required

String Name of the category.

For a component file, this is the name displayed in the
associated property editor’s title bar.

addon

Optional

Comma-separated list
of strings

Name(s) of the addon module(s) in which this category is
available.

At least one of the listed addon modules should be installed
for this category to be available.

Note: For Scalable Network Technologies use only.

propertytype

Required for component
files

Optional for shared
description files

String Component identifier.

The propertytype should be unique across all component
files.

singlehost

Optional

List:

• true

• false

This attribute is used only in component files representing
applications and specifies whether the application is a
single-host application.

true : Application is a single-host application.

false : Application is a client-server application.

Loopback

Optional

List:

• true

• false

This attribute is used only in component files representing
applications and specifies whether the application is loop-
back enabled.

true : Application is a loop-back enabled.

false : Application is not loop-back enabled.
431 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
The following is an example of a category element representing the default device property editor:

<category name="Default Device Properties" icon="default.gif"
 propertytype="Device">
 <variable name="Node Name" key="HOSTNAME" type="Text"
 default="Host" help="" unique="true" />
 <variable name="2D Icon" key="GUI-NODE-2D-ICON" type="Icon"
 default="default.png" help="" invisible="ScenarioLevel"
 filetype="xpm,bmp,jpg,jpeg,png"/>
 <variable name="3D Icon" key="GUI-NODE-3D-ICON" type="File"
 default="default.3ds" help="" />
 <variable name="Partition" key="PARTITION" type="Integer"
 default="0"
 help="Parallel partition to which to assign node." />
 <subcategory name="Node Configuration" icon="nodeconfig.gif">
 <subcategory name="Mobility and Placement"
 refpath="NODE CONFIGURATION+Mobility"
 icon="protocol.gif" />
 <subcategory name="Network Layer"
 refpath="NODE CONFIGURATION+Network Layer"
 icon="protocol.gif" />
 <subcategory name="Routing Protocol"
 refpath="NODE CONFIGURATION+ROUTING PROTOCOL"
 icon="protocol.gif" />
 ...
 </subcategory>
 <subcategory name="Interfaces"
 refpath="NODE CONFIGURATION+INTERFACES"
 icon="interfaces.gif" />
</category>
QualNet 5.2 Programmer’s Guide 432

Customizing Design Mode of QualNet Architect Chapter 5
5.1.2.2 The subcategory Element
A subcategory element can have subcategory and variable elements as its children. The
subcategory element contains information for displaying a segment (tab or list item) in a property editor
The attributes of the subcategory element are listed in Table 5-4.

The following are examples of a subcategory element:

<subcategory name="General">
<variable name="Node Name" key="HOSTNAME" type="Text"

 default="Switch" help="" />
<variable name="2D Icon" key="GUI-NODE-2D-ICON" type="File"

 default="switch.gif" help="" />
<variable name="3D Icon" key="GUI-NODE-3D-ICON" type="File"

 default="switch.3ds" help="" />
</subcategory>
...
<subcategory name="Node Configurations" icon="nodeconfig.gif">

<subcategory name="Mobility" refpath="NODE CONFIGURATION+MOBILITY"
 icon="protocol.gif" />
 ...
</subcategory>

TABLE 5-4. Attributes of the subcategory Element

Attribute Name
Attribute Values or

Type Description

name

Required

String Specifies the name of the subcategory.

When the subcategory is included in a component file
(either directly or through a reference), this name is
displayed as the name of a tab or list item of a property
editor.

addon

Optional

Comma-separated list
of strings

Name(s) of the addon module(s) in which this
subcategory is available.

At least one of the listed addon modules should be installed
for this subcategory to be available.

Note: For Scalable Network Technologies use only.

refpath

Optional

String Reference path.

This is a concatenation of category and subcategory
names that identifies the location of a segment description in
shared description files.

See Section 5.1.3 for details.

Note: It is recommended that this attribute be used only
only in component (.cmp) files an not in shared
description (.prt) files.
433 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
5.1.2.3 The variable Element
A variable element can have variable and option elements as its children. The variable element
corresponds to a parameter in a property editor. The attributes of the variable element are listed in
Table 5-5.

TABLE 5-5. Attributes of the variable Element

Attribute Name
Attribute Values or

Type Description

name

Required

String Name of the variable.

When the variable is included in a component file (either
directly or through a reference), this name is displayed as
a parameter name in a property editor.

key

Required

String Identifier (parameter name) printed to the configuration file,
for example, SEED or SIMULATION-TIME.

type

Required

List

See Table 5-6.

Type of the variable.

This attribute determines the type of the associated
parameter and the specialized component used to accept
the value of the parameter. For example, if type is
Selection, then the parameter can take a value from a
list, and a combo-box with possible values is displayed.

default

Required

See Table 5-6. Default value of the parameter represented by the
variable. The default value depends upon the type.
See Table 5-6.

help

Optional

String Help text that explains the purpose of the parameter
associated with the variable and is typically displayed
as a tool-tip when the mouse is placed over the parameter
name in the property editor.

min, max

Optional

Integer, Real, or IPv4
address (depending on
the type attribute)

Minimum and maximum values for the parameter
associated with the variable. These are used to specify
the range of values for the parameter.

These are used only if the variable is of type integer,
fixed, or dotted decimal (see Table 5-6).

unit

Optional

String Unit used for representing the values of the parameter
associated with the variable, e.g., unit = “bps”

requires

Optional

JavaScript Boolean
Expression

Condition that should be satisfied to accept the value
entered for the variable.

This condition can be expressed as a JavaScript
expression (see below.)

disable

Optional

JavaScript Boolean
Expression

Condition that should be satisfied for this variable to be
read-only.

This condition can be expressed as a JavaScript
expression (see below.)

Note: Not recommended for users.

filetype

Optional

Comma-separated list
of file extensions

Recommended file types.

This is used when the type attribute is set to File.
QualNet 5.2 Programmer’s Guide 434

Customizing Design Mode of QualNet Architect Chapter 5
invisible

Optional

Comma-separated list
of values of the
propertytype
attribute of category
elements in component
files

Categories in which this variable is not visible.

This attribute is used to specify the property editors in
which a shared parameter is invisible.

Note: Not recommended for users.

maxunit, minunit

Optional

Decimal abbreviation
optionally followed by a
unit (must be same as
the unit attribute)

Supported
abbreviations (which
are case-insensitive) in
order from largest to
smallest are: E, P, T, G,
M, and K

Default abbreviation for
maxunit: E

Default abbreviation for
minunit: none (no
 abbreviation)

Maximum and minimum units.

These attributes are used only if the variable is of type
fixed multiplier.

These attributes determine the range of units that are
available for specifying the parameter’s value.

For example, if maxunit = “Tbps” and minunit is not
specified, then the following units are available from the
units combo-box: Tbps, Gbps, Mbps, Kbps, and bps.

Note: A numerical value followed by a unit can also be
specified for these attributes, e.g., maxunit =
“10 Gbps”. In that case, the value denoted by this
attribute is the maximum (minimum) value of the
parameter associated with the variable.

addon

Optional

Comma-separated list
of strings

Name(s) of the addon module(s) in which this variable
is available.

At least one of the listed addon modules should be
installed for this variable to be visible.

Note: For Scalable Network Technologies use only.

prepend

Optional

List:

• nn

• id

Indication that the key is printed with a qualifier prepended
to it.

nn : Indicates that the network identifier is printed before
the key

id : Indicates that the node identifier is printed before the
key

unique

Optional

List:

• true

• false

Indication whether this property can be modified in group
editing mode or not.

true : Indicates that the property can not be edited in
group editing mode

false : Indicates that the property can be edited in group
editing mode

keyvisible

Optional

List:

• true

• false

Indication whether the key associated with this variable
will be printed in the .config file.

true : The key will be printed in the .config file.

false : The key will not be printed in the .config file.

 Note: Not recommended for users.

TABLE 5-5. Attributes of the variable Element (Continued)

Attribute Name
Attribute Values or

Type Description
435 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
JavaScript Expressions

JavaScript expressions can be used in XML files to represent boolean conditions. JavaScript expressions
can be used as the value of the requires, disable, and visibilityrequires attributes of the
variable element and of the requires and visibilityrequires attributes of the option element.
In GUI settings files, JavaScript expressions must follow these rules:

• The key attribute of a variable element can be used in JavaScript expressions if it is enclosed in
square brackets, ‘[‘ and ‘]’ (except when used as an argument of macros
scriptInterface.anyEqualsTo and scriptInterface.allEqualsTo, as described below).
For example AODV-HELLO-INTERVAL can be used in a JavaScript expression as follows:

[AODV-HELLO-INTERVAL] > 3000000000

• The value attribute of an option elements can be used in JavaScript expressions if it is enclosed in
single quotes. For example, IPv6 and DUAL-IP can be used in a JavaScript expression as follows:

[NETWORK-PROTOCOL] == ‘IPv6’ || [NETWORK-PROTOCOL] == ‘DUAL-IP’

• Macro this.value can be used in a JavaScript expression to refer to the value of the variable
element in whose attributes the expression is used. For example:

this.value >= [DYMO-TTL-START]

• Time values used in JavaScript expressions must be in units of nanoseconds. For example, the
following expression states the condition that the current value is greater than 2 seconds:

this.value > 2000000000

Time unit abbreviations, such as S, MS, H, etc., should not be used in Java expressions. Expressions
using these abbreviations will always evaluate to true.

optional

Optional

List:

• true

• false

Indicates whether the parameter represented by this
variable is an optional parameter.

true : The parameter is optional.

false : The parameter is required.

visibilityrequires

Optional

JavaScript Boolean
Expression

Condition that should be satisfied to make the variable
visible in the property editor.

This condition can be expressed as a JavaScript
expression (see below.)

TABLE 5-5. Attributes of the variable Element (Continued)

Attribute Name
Attribute Values or

Type Description
QualNet 5.2 Programmer’s Guide 436

Customizing Design Mode of QualNet Architect Chapter 5
• For a variable element of type array, use an index enclosed in parentheses, ‘(‘ and ‘)’ after the
key attribute to refer to a specific instance of the variable element. For example:

[PROPAGATION-MODEL(2)]==‘FREE-SPACE’

• For a variable element of type array, use the macro scriptInterface.anyEqualsTo if any
instance of the variable element can have a specified value. In this case, the key attribute should be
enclosed in single quotes. For example, the following expression is true if any instance of
PROPAGATION-MODEL is set to FREE-SPACE.

scriptInterface.anyEqualsTo(‘PROPAGATION-MODEL’,‘FREE-SPACE’)

• For a variable element of type array, use the macro scriptInterface.allEqualsTo if all
instances of the variable element should have a specified value. In this case, the key attribute
should be enclosed in single quotes. For example, the following expression is true if all instances of
PROPAGATION-MODEL is set to FREE-SPACE.

scriptInterface.allEqualsTo(‘PROPAGATION-MODEL’,‘FREE-SPACE’)

• The macro respective can be used as the dynamic index to bind the instances of two arrays if the
variable elements representing the two arrays are descendents of the same variable element of type
array. Consider the following example:

<variable name="Number of Queues"
 key="NUM-PRIORITIES" type="Array" default="3" min="1">
 <variable name="Queue Size" key="QUEUE-SIZE" type="Integer"
 default="150000" />
 <variable name="Queue Type" key="QUEUE-TYPE" type="Selection"
 default="FIFO">
 <option value="FIFO" name="FIFO"/>
 <option value="RED" name="RED"/>
 <option value="WRED" name="WRED">
 <variable name="Minimum Threshold" key="MIN-THRESHOLD"
 type="Integer" default="10"
 visibilityrequires=”[QUEUE-TYPE(respective)]==’WRED’”/>
 </option>
 </variable>
 </variable>

In this example, Queue Size and Queue Type are children of Number of Queues, which is a
variable of type array. Queue Type has several options, one of which, WRED, has a child,
Minimum Threshold. Minimum Threshold is visible only if the Java expression [QUEUE-
TYPE(respective)]==’WRED’ is true. This expression evaluates to true only if the corresponding
instance of QUEUE-TYPE is set to WRED, for example, Minimum Threshold[2] will be visible only if
Queue Type[2] is set to WRED. (Note that both Minimum Threshold and Queue Type are
descendents of same variable of type array, Number of Queues.)
437 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
Table 5-6 lists the acceptable values for the type attribute of the variable element and the
corresponding values of the default attribute. Note that not all values are available in all the XML files.

TABLE 5-6. Possible Values of type and Corresponding default Attributes of the variable
Element

Value of the type
Attribute Description Valid Values for the default Attribute

Integer For integer inputs Any valid integer value, e.g. "1", “199", etc.

Fixed For floating point inputs Any valid float value, e.g. "1000.50"

Checkbox For YES/NO inputs via a combo
box

“NO” or “YES”

File For selecting a file from the file
system

One of the following:

• "Please specify": Indicates that the file
parameter is required

• "optional": Indicates that the file parameter
is not required

• A valid file path, e.g., "./somefile.txt"

Time For time inputs A time value in QualNet time format, e.g., "2S",
"500MS", or "5H".

Mask For inputs that are strings of ‘0’
and ‘1’

A string of 0’s or 1’s, e.g., "01”.

Coordinates For accepting a set of two double
values

Space-separated integer or float values, e.g.,
"100.0 200.0”.

Fixed multiplier For accepting unit based input,
such as 100 MHz, 2 Gbps, etc.

If this type is used, the following
attributes of the variable also
need to be specified: unit,
minunit, and maxunit.

Numerical value and the unit, separated by a
space, e.g., "10 mps”.

Text For accepting strings Any string.

Selection For accepting a value from a list.

A combo-box with a list of items
to be selected is displayed.
Which items are displayed in the
combo-box is determined by the
option elements that are
children of the variable.

The value of any of the option elements that are
children of the variable. See Section 5.1.2.4.

Tickbox For YES/NO inputs via a check-
box

“NO” or “YES”

Dotted decimal For accepting inputs in the format
of an IPv4 address.

Any valid IPv4 address, e.g., “192.0.1.1”,
“128.1.234.1”, etc.

SlotFile For launching the Slot File Editor.

A button is displayed to launch
the Slot File Editor. The slot file
name selected in the Slot File
Editor is also displayed.

 Note: Not recommended for
users.

“Optional”
QualNet 5.2 Programmer’s Guide 438

Customizing Design Mode of QualNet Architect Chapter 5
Only a variable element of type Array can have variable elements as its children. If a variable is
a child of a variable of type Array, the child variable corresponds to an indexed parameter. For
example, a variable of type Array representing the parameter IP-QUEUE-NUM-PRIORITIES has
other variables as its children which correspond to the parameters IP-QUEUE-TYPE, QUEUE-WEIGHT,
etc.

Only a variable element of type Selection can have option elements as its children. Each option
child of a variable corresponds to one of the possible values of the parameter represented by the
variable element. For example, a variable of type Selection representing the parameter
ROUTING-PROTOCOL has several options as its children, one for each routing protocol (AODV, LAR,
DSR, etc.).

Array For accepting array variables.

An Array variable specifies the
number of child variables,
e.g., the number of priority
queues, the number of
propagation channels, etc.

Note: Not recommended for
users.

A positive integer value.

Icon For accepting icon file names. Any image file.

NodeList For accepting list of node IDs
(separated by spaces).

 Note: Not recommended for
users.

A list of node IDs.

SelectionDynamic For accepting a value from a list
whose members are available
only at run time.

A combo-box with a list of items
(node ID and its interface
addresses) to be selected is
displayed. Which items are
displayed in the combo-box is
determined at run time and
depends on the component type.

 Note: Not recommended for
users.

There is no default value for this type.

NetworkCheckBox For accepting a value from a list
of advertised networks for BGP.

A combo-box with a list of
networks is displayed. Which
networks are displayed in the
combo-box is determined at run
time.

 Note: Not recommended for
users.

There is no default value for this type.

TABLE 5-6. Possible Values of type and Corresponding default Attributes of the variable
Element (Continued)

Value of the type
Attribute Description Valid Values for the default Attribute
439 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
The following is an example of a variable element:

<variable name="Directional Antenna Mode"
 key="MAC-DOT11-DIRECTIONAL-ANTENNA-MODE" type="Selection"
 default="NO">

<option value="NO" name="No" />
<option value="YES" name="Yes">
 <variable name="Direction Cache Expiration Time"

 key="MAC-DOT11-DIRECTION-CACHE-EXPIRATION-TIME"
 type="Time" default="2S" />

 <variable name="NAV Delta Angle"
 key="MAC-DOT11-DIRECTIONAL-NAV-AOA-DELTA-ANGLE"
 type="Fixed" default="37.0" />

 <variable name="Short Packet Limit"
 key="MAC-DOT11-DIRECTIONAL-SHORT-PACKET-TRANSMIT-LIMIT"
 type="Integer" default="8" />

</option>
</variable>

5.1.2.4 The option Element

An option element can have variable elements as its children. The attributes of the option element
are listed in Table 5-7.

TABLE 5-7. Attributes of the option Element

Attribute
Required or

Optional Description of the Attribute

name

Required

String Name of the option.

No two options that are children of the same parent variable
can have the same name.

When the option is included in a component file (either directly or
through a reference), this name is displayed in a combo-box as one
of the values of the parent variable (parameter).

value

Required

String String that is written in the QualNet configuration file as the value of
the parent variable (parameter).

No two options that are children of the same parent variable
can have the same value.

addon

Optional

Comma-
separated list
of strings

Name(s) of the addon module(s) in which this option is available.

At least one of the listed addon modules should be installed for this
option to be visible.

Note: For Scalable Network Technologies use only.

requires

Optional

JavaScript
Boolean
Expression

Condition that should be satisfied to accept the value entered for the
option.

This condition can be expressed as a JavaScript expression (see
Section 5.1.2.3.)

visibilityrequires

Optional

JavaScript
Boolean
Expression

Condition that should be satisfied to make the option visible in the
property editor.

This condition can be expressed as a JavaScript expression (see
Section 5.1.2.3.)
QualNet 5.2 Programmer’s Guide 440

Customizing Design Mode of QualNet Architect Chapter 5
The following is an example of an option element:

<option value="N/A" name="CTDB7"
 help="Urban Terrain Features will be specified using the CTDB7
 database.">
 <variable name="Database Type" key="CTDB7-DATABASE-TYPE"
 type="Selection" default="N/A">
 <option value="N/A" name="N/A"/>
 <option value="NOCELL" name="NOCELL"/>
 <option value="SINGLECELL" name="SINGLECELL"/>
 <option value="MULTICELL" name="MULTICELL"/>
 <option value="GTRS" name="GTRS"/>
 </variable>
 <variable name="Database Path"
 key="CTDB7-DATABASE-PATH" type="String"
 default="Please Specify" />
 <variable name="Database Name" key="CTDB7-DATABASE-NAME"
 type="String" default="Please Specify" />
 </option>

5.1.3 Using Shared Descriptions

As described in Section 5.1.1, a component file describes the structure of a property editor. A property
editor is composed of one or more segments (tabs or list items). For each segment of the property editor,
the component file either contains its detailed description or refers to a segment description in a shared
description file.

This sharing of descriptions can only be done at the segment level. Since segments are represented by
subcategory elements, subcategories in component files can refer to subcategories in shared
description files. This is done by means of the refpath attribute of the subcategory element (see
Section 5.1.2.2). The refpath attribute takes as its value a reference path. A reference path is a path to a
subcategory definition derived by concatenating, in order, the root category name and all subcategory
names along the path. All valid reference paths to subcategories in shared description files can be
obtained by concatenating category and subcategory names in Table 5-2 such that a subcategory
in the concatenated string is a child of the preceding category or subcategory. The ‘+” operator is used
for concatenation.

Following are examples of valid reference paths derived from Table 5-2:

NODE CONFIGUARTION+INTERFACES FAULTS
NODE CONFIGURATION+NETWORK LAYER+QoS
COMPONENTS+LINKS+Background Traffic

Wherever a component file uses a reference in a subcategory description, the corresponding description
from the shared description file is used to display the property editor segment. As an example consider the
property editors for the default node (see Figure 5-1) and the wireless subnet (see Figure 5-2). Both
property editors share the segment Routing Protocol, which appears as a list item in the default node
property editor and as a tab in the wireless subnet property editor. The component file for the default node,
defaultnode.cmp, is shown in Figure 5-3.

It is recommended that shared description (.prt) files not contain references to other shared
description files. Only component files should use references to shared description files.
441 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
...
<category name="Default Device Properties" icon="default.gif"
 propertytype="Device">
 <variable name="Node Name" key="HOSTNAME" type="Text" default="Host"
 help="" unique="true" />
 ...
 <subcategory name="Node Configuration" icon="nodeconfig.gif">
 <subcategory name="Mobility and Placement"
 refpath="NODE CONFIGURATION+MOBILITY"
 icon="protocol.gif" />
 ...
 <subcategory name="Routing Protocol"
 refpath="NODE CONFIGURATION+ROUTING PROTOCOL"
 icon="protocol.gif" />
 ...
 <subcategory name="Faults"
 refpath="NODE CONFIGURATION+NODE FAULTS"
 icon="faults.gif" help="Specify card fault"/>
 </subcategory>
 <subcategory name="Interfaces"
 refpath="NODE CONFIGURATION+INTERFACES"
 icon="interfaces.gif" />
</category>
...

FIGURE 5-3. Component File for Default Node’s Property Editor

The component file for the wireless subnet property editor is shown in Figure 5-4.

<category name="Wireless Subnet Properties" icon=""
 propertytype="WirelessSubnet">
 <variable name="2D Icon" key="GUI-NODE-2D-ICON" type="Icon"
 default="wireless.png" help="" invisible="ScenarioLevel"
 filetype="xpm,bmp,jpg,jpeg,png"/>
 ...
 <subcategory name="Physical Layer"
 refpath="NODE CONFIGURATION+PHYSICAL LAYER"
 icon="protocol.gif" />
 <subcategory name="MAC Layer"
 refpath="NODE CONFIGURATION+MAC Layer"
 icon="protocol.gif" />
 ...
 <subcategory name="Routing Protocol"
 refpath="NODE CONFIGURATION+ROUTING PROTOCOL"
 icon="protocol.gif" />
 ...
</category>
...

FIGURE 5-4. Component File for Wireless Subnet’s Property Editor
QualNet 5.2 Programmer’s Guide 442

Customizing Design Mode of QualNet Architect Chapter 5
Component files for both the default node and the wireless subnet use the reference path “NODE
CONFIGURATION+ROUTING PROTOCOL” to use the description of the Routing Protocol segment in the
shared description file network_type.prt, which is shown in Figure 5-5.

Note that component files for both the default node and the wireless subnet refer to the same description of
the Routing Protocol segment, but the Routing Protocol segment appears at different places in the two
property editors (see Figure 5-1 and Figure 5-2). This is because the default node component file refers to
the Routing Protocol segment from the third level (category -> subcategory -> subcategory) while
the wireless subnet component file refers to it from the second level (category -> subcategory).

<category name="NODE CONFIGURATION">
 <subcategory name="ROUTING PROTOCOL"
 class="interface,device,atmdevice">
 <variable name="Routing Protocol IPv4"
 key="ROUTING-PROTOCOL"
 type="Selection" default="BELLMANFORD"
 visibilityrequires="[NETWORK-PROTOCOL] != 'IPv6'">
 ...
 </variable>
 ...
 <variable name="Ensble IP Forwarding" key="IP-FORWARDING"
 type="Checkbox" default="YES"
 invisible="interface" optional="true"
 help="Determines whether or not node(s) will forward
 packets"/>
 ...
 </subcategory>
</category>
...

FIGURE 5-5. Shared Description of Routing Protocol Segment

5.1.4 Integrating New Models into Architect

In QualNet, a new protocol can be developed manually using the procedures described in Chapter 4 and
can be integrated into QualNet Architect. This section describes how to modify the GUI settings files to
integrate protocols into Architect.

Integrating an application protocol requires the creation of a new component file for the property editor of
the application and possibly modifying one or more shared description file. This process is described in
Section 5.1.4.2.

Integrating protocols other than application protocols requires modifying shared description files only. This
process is described in Section 5.1.4.1.

When modifying existing GUI settings files, do not delete or move any elements, as this will
interfere with the proper working of existing property editors. Only add new elements needed
to integrate your protocol, at the appropriate places, taking care to preserve the structure of the
XML files and to maintain the rules for each element.

Changes made to the GUI settings files take effect only after the GUI is restarted.
443 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
5.1.4.1 Integrating a New Protocol
To integrate a new protocol that is not an application protocol into QualNet GUI, one of the shared
description files described in Section 5.1.1 need to be modified. Identify a protocol from the QualNet library
that is most similar to the new protocol. The subcategory names listed in Table 5-2 indicate where each
type of protocol is described in the shared description files. Find the segment of the shared description file
pertaining to the existing protocol, and use that as a template to add code in the shared description file to
incorporate the new protocol.

We illustrate the steps for integrating a protocol into QualNet GUI by taking a new routing protocol as an
example. Routing protocols are described in the subcategory identified by the path NODE
CONFIGURATION+ROUTING PROTOCOL in the file routing_protocols.prt.

Figure 5-6 shows a code segment from file routing_protocols.prt that specifies different routing protocols.
Each supported routing protocol appears as an option under the variable “Routing Protocol
IPv4” or under the variable “Routing Protocol IPv6”. If the routing protocol has any configurable
parameters, they appear as variable elements under the option corresponding to the routing protocol.
To add a new routing protocol that can be used only for IPv4 networks, add a new option under the
variable “Routing Protocol IPv4”, similar to the existing options. To add a new routing protocol
that can be used only for IPv6 networks, add a new option under the variable “Routing Protocol
IPv6”. To add a new routing protocol that can be used for both IPv4 and IPv6 networks, add a new
option at both places.

...
<subcategory name="ROUTING PROTOCOL">
 <variable name="Routing Protocol IPv4" key="ROUTING-PROTOCOL"
 type="Selection" default="BELLMANFORD"
 visibilityrequires="[NETWORK-PROTOCOL] != 'IPv6'">
 ...
 <option value="AODV" name="AODV" addon="wireless">
 <variable name="Network Diameter (hops)"
 key="AODV-NET-DIAMETER" type="Integer" default="35"
 help="The maximum possible number of hops between two
 nodes in the network" />
 ...
 </option>
 <option value="DYMO" name="DYMO" addon="wireless">
 <variable name="Enable Processing Hello"
 key="DYMO-PROCESS-HELLO" type="Selection"
 default="NO" help="If the value is set to ...">
 <option value="NO" name="No" />
 <option value="YES" name="Yes">
 ...
 </option>
 </variable>
 ...
 </option>
 ...
 <!-- INSERT OPTION FOR NEW PROTOCOL FOR IPv4 or DUAL-IP HERE -->
QualNet 5.2 Programmer’s Guide 444

Customizing Design Mode of QualNet Architect Chapter 5
 ...
 </variable>
 <variable name="Routing Protocol IPv6" key="ROUTING-PROTOCOL-IPv6"
 type="Selection" default="RIPng"
 visibilityrequires="[NETWORK-PROTOCOL] == 'IPv6' ||
 [NETWORK-PROTOCOL] == 'DUAL_IP'">
 <option value="OSPFv3" name="OSPFv3" addon="multimedia_enterprise">
 <variable name="Define Area" key="OSPFv3-DEFINE-AREA"
 type="Selection" default="NO"/>
 ...
 </option>
 ...
 <!-- INSERT OPTION FOR NEW PROTOCOL FOR IPV6 or DUAL-IP HERE -->
 ...
 <option value="AODV" name="AODV" addon="wireless">
 ...
 </variable>
</subcategory>
...

FIGURE 5-6. Integrating a Routing Protocol
445 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
5.1.4.2 Integrating a New Traffic Generator
Integrating a new application protocol (traffic generator) into the QualNet GUI involves the following steps:

• Creating a new component (.cmp) file in the folder QUALNET_HOME/gui/settings/components

• Modifying the file Standard.xml in QUALNET_HOME/gui/settings/Toolsets to display a button
corresponding to the new application in the Standard Toolset of Architect.

Creating a Component File

To create a component file for a new application, identify a protocol from the QualNet library that is most
similar to the new protocol and use that protocol’s component file as a template. Table 5-2 lists the
available applications and their component files.

When creating a new component file, follow the rules for the file structure and elements described in
Section 5.1.1 and Section 5.1.2. The component file should have one category. Each parameter of the
protocol should be represented by one variable. Use subcategories to group parameters into tabs
and list items, if desired.

Note: The propertytype of the new component should be assigned a value not used by any other
component.

As an example, Figure 5-7 shows the component file for the CBR application, cbr.cmp, and Figure 5-8
shows the corresponding property editor. Each variable in the component file represents a CBR
parameter. Each option represents a possible value for a parameter of enumeration type. Note that all
top-level variables (direct children of the category element) are grouped under a default tab called
“General”.
QualNet 5.2 Programmer’s Guide 446

Customizing Design Mode of QualNet Architect Chapter 5
...
<category name="CBR Properties" singlehost="false" loopback="enabled"
 propertytype="CBR">
 <variable name="Source" key="SOURCE" type="SelectionDynamic"
 keyvisible="false" optional="false"/>
 <variable name="Destination" key="DESTINATION" type="SelectionDynamic"
 keyvisible="false" optional="false"/>
 <variable name="Items To Send" key="ITEM-TO-SEND" type="Integer"
 default="100" min="0" keyvisible="false"
 help="Number of items to send" optional="false"/>
 <variable key="ITEM-SIZE" type="Integer" name="Item Size (bytes)"
 default="512" min="24" max="65023" keyvisible="false"
 help="Item size in bytes" optional="false"/>
 <variable name="Interval" key="INTERVAL" type="Time" default="1S"
 keyvisible="false" optional="false"/>
 <variable name="Start Time" key="START-TIME" type="Time" default="1S"
 keyvisible="false" optional="false"/>
 <variable name="End Time" key="END-TIME" type="Time" default="25S"
 keyvisible="false" optional="false"/>
 <variable name="Priority" key="PRIORITY" type="Selection"
 default="PRECEDENCE" keyvisible="false">
 <option value="TOS" name="TOS"
 help="value (0-255) of the TOS bits in the IP header">
 <variable name="TOS Value" key="TOS-BITS" type="Integer" default="0"
 min="0" max="255" keyvisible="false" optional="false"/>
 </option>
 <option value="DSCP" name="DSCP"
 help="value (0-63) of the DSCP bits in the IP header">
 <variable name="DSCP Value" key="DSCP-BITS" type="Integer" default="0"
 min="0" max="63" keyvisible="false" optional="false"/>
 </option>
 <option value="PRECEDENCE" name="Precedence"
 help="value (0-7) of the Precedence bits in the IP header">
 <variable name="Precedence Value" key="PRECEDENCE-BITS" type="Integer"
 default="0" min="0" max="7" keyvisible="false"
 optional="false"/>
 </option>
 </variable>
 <variable name="Enable Rsvp-Te" key="ENABLE-RSVP-TE" type="Selection"
 default="N/A" keyvisible="false" optional="true">
 <option value="N/A" name="No" />
 <option value="RSVP-TE" name="Yes" />
 </variable>
</category>
...

FIGURE 5-7. Component File for CBR Application
447 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Design Mode of QualNet Architect
FIGURE 5-8. Property Editor for CBR Application

Adding a Button to the ToolSet

A button is added to the Standard Toolset by modifying the file Standard.xml. If the GUI has never been
started, then you must modify the file Standard.xml in QUALNET_HOME/gui/settings/toolsets. If the GUI
has been started before, then you must modify the file Standard.xml in the following folder:

• In Windows XP systems, modify the file Standard.xml in C:\Documents and
Settings\<username>\.qualnetUserDir\qualnet_5_2\Toolsets.

• In Windows Vista and Windows 7 systems, modify the file Standard.xml in
C:\Users\<username>\.qualnetUserDir\qualnet_5_2\Toolsets.

• In Linux and Mac OS X systems, modify the file Standard.xml in ~/.qualnetUserDir/qualnet_5_2/
Toolsets.

File Standard.xml is shown in Figure 5-9.

To add a button to the Toolset for the new application, add a subcategory under the category
“Applications” with the following attributes:

• name: Name of the application.

• icon: Name of the image file for the button. This image file should be placed in the folder
QUALNET_HOME/gui/icons/3DVisualizer/icons. The image file should be in PNG format.

• tooltip: Text that is displayed when the mouse is placed over the button for the application.

• type: This should be “App” for all applications.

• propertytype: This should be the same as the propertytype of the category in the component
file for the application.
QualNet 5.2 Programmer’s Guide 448

Customizing Visualize Mode of QualNet Architect Chapter 5
...
<category name="Devices">
 <subcategory name="Default" icon="default.png" tooltip="Default"
 type="Default" propertytype="Device" />
 <subcategory name="Switch" icon="switch.png" tooltip="Switch"
 type="Switch" propertytype="Switch" />
 <subcategory name="ATM" icon="atm.png" tooltip="ATM" type="ATM"
 propertytype="ATM" />
</category>

<category name="Applications">
 <subcategory name="CBR" icon="cbr.png" tooltip="CBR" type="App"
 propertytype="CBR" />
 <subcategory name="Ftp" icon="ftp.png" tooltip="Ftp" type="App"
 propertytype="FTP" />
 <subcategory name="Telnet" icon="telnet.png" tooltip="Telnet" type="App"
 propertytype="TELNET" />
 <subcategory name="Ftp-Generic" icon="ftp_gen.png" tooltip="Ftp/Generic"
 type="App" propertytype="FTP/GENERIC" />
 <subcategory name="Lookup" icon="lookup.png" tooltip="Lookup" type="App"
 propertytype="LOOKUP" />
 ...
 <!-- INSERT ENTRY FOR NEW APPLICATION HERE -->
 ...
 <subcategory name="VBR" icon="vbr.png" tooltip="VBR" type="App"
 propertytype="VBR" />
</category>

<category name="Links">
...
</category>
...

FIGURE 5-9. File Standard.xml

.
5.2 Customizing Visualize Mode of QualNet Architect

This section describes the customization features available for the Visualize mode of QualNet Architect.
Section 5.2.3 describes the communication between QualNet Simulator and QualNet Architect.
Section 5.2.2 describes the API functions that can be used to add customized animation to a protocol. This
information can be used to interface QualNet Simulator with any other GUI module. Section 5.2.3
describes how to display dynamic statistics as they change during model execution.

5.2.1 Communication between QualNet Simulator and QualNet Architect

QualNet Architect provides a graphical interface for animating experiments, and provides limited
opportunity to interact with the running simulation. This section describes how the runtime interaction
between the QualNet Architect and Simulator is set up. A programmer can use the information presented
in this section to interface QualNet Simulator with a GUI module of their choice.
449 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Visualize Mode of QualNet Architect
5.2.1.1 Initializing QualNet
When you press the Run button in QualNet Architect, the following steps are performed to initialize
QualNet for a simulation:

1. The internal representation of the scenario is written into the plain text format recognized by Simulator.

These are the QualNet configuration files, .config, .app, etc.

2. These files are placed a directory having the same name as the scenario and placed at the same level

as the scenario file.

3. A socket is opened on the first available port ≥ 4000.

4. An external process is started with the following command:

qualnet <input-file> -interactive <local-host> <port#>

5. A connection on the socket is waited on.

QualNet Simulator does the following:

1. Opens a socket connection to the specified host and port.

If QualNet is run on a distributed architecture, each partition opens a socket connection to the
specified host and port.

2. Checks out a license.

3. Reads the input file.

4. Sends scenario initialization information to Architect by calling GUI_Initialize.

5. Creates and initializes nodes, networks and interfaces.

• Calls GUI_InitNode for each node.

• Calls GUI_CreateSubnet for each subnet.

• Calls GUI_CreateHierarchy for hierarchical networks.

• Calls GUI_InitialInterfaces to configure IP addresses for all the nodes.

This in turn may result in calls to other GUI functions.

• Calls GUI_InitWirelessInterface to set up the wireless properties (power, sensitivity, range etc.) for a
node's wireless interface.

• Calls GUI_CreateWeatherPattern for creating weather patterns.

6. Processes instructions sent from Architect.

7. Upon receiving a Step command from Architect, starts processing events.

Steps 2-3 are essentially identical to running Simulator from the command line. Steps 1 and 4 establish the
communication channel between QualNet Simulator and Architect. Step 5 is basically identical to the non-
animated mode of execution, with occasional information sent to Architect to configure the network for
viewing. Steps 6 and 7 are described more fully in Section 5.2.1.2.
QualNet 5.2 Programmer’s Guide 450

Customizing Visualize Mode of QualNet Architect Chapter 5
5.2.1.2 Runtime Interaction
The interaction between Architect and Simulator is very simple. Architect sends commands to Simulator
over the socket. At user defined intervals, Simulator reads the commands and adjusts its behavior
accordingly. Simulator also sends event-related animation and statistics information to Architect as the
events occur. Most of the information sent to Architect can be enabled or disabled through Architect
controls. Table 5-8 lists the commands sent from Architect to Simulator.

The commands are sent across the socket as character strings: the command number followed by the
parameters, if any. The command number is specified in the enumeration GuiCommands in the file gui.h.
For example, the command to set the communication interval to 100 milliseconds is:

 1 100000000

where: 1 is the command number for GUI_SET_COMM_INTERVAL, and
 100000000 is the time representation of 100 milliseconds. (100MS is also an acceptable
 representation for 100 milliseconds.)

TABLE 5-8. Commands Sent from Architect to Simulator

Command Parameters Description

GUI_STEP This command tells Simulator to begin processing
events for a period of simulation time specified by
the GUI_SET_COMM_INTERVAL command. At
the end of this period, Simulator waits for the next
command from Architect.

GUI_SET_COMM_INTERVAL Time (interval) Tells Simulator how far to advance in simulation
time before checking for more commands from
Architect.

GUI_ENABLE_LAYER Integer (layer #) All animation commands from the specified
protocol layer are sent over the socket to Architect.

GUI_DISABLE_LAYER Integer (layer #) All animation commands from the specified layer
are dropped without being sent to Architect.
Provides an easy way to limit the amount of
information being passed over the socket.
However, the animation functions are still called
from the protocol code. The filtering is done in the
GUI interface code.

GUI_ENABLE_NODE Integer (node ID) Enables animation for a particular node.

GUI_DISABLE_NODE Integer (node ID) Disables animation for a particular node.

GUI_SET_STAT_INTERVAL Time (interval) Sets the interval (in simulation time) at which the
user can query Simulator for the latest statistics.

GUI_ENABLE_METRIC Integer (metric ID)
Integer (node ID)
Integer (layer)

Enables transmission of a specific metric across
the socket.

GUI_DISABLE_METRIC Integer (metric ID)
Integer (node ID)
Integer (layer)

Disables reporting of a specific metric.

GUI_STOP Terminates the simulation experiment.
451 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Visualize Mode of QualNet Architect
Table 5-9 lists the replies sent by Simulator to Architect.

The replies are sent across the socket as character strings (similar to sending commands): the reply
number followed by the parameters, if any. The reply number is specified in the enumeration GuiReplies
in the file gui.h

5.2.1.3 Finalization

When the simulation is run with Architect, simulation execution can end in one of three ways:

• The simulation runs to completion and terminates normally. A GUI_FINISHED reply is sent from
Simulator to Architect.

• The simulation terminates with an error. A GUI_ERROR or GUI_ASSERTION reply is sent to Architect,
Architect performs some clean up tasks and sends a GUI_STOP command to Simulator, and Simulator
shuts down by sending a GUI_FINISHED reply back to Architect.

• The user terminates the execution by pressing Architect's stop button. Architect performs some clean
up tasks and sends a GUI_STOP command to Simulator, and Simulator shuts down by sending a
GUI_FINISHED reply back to Architect.

TABLE 5-9. Replies Sent from Simulator to Architect

Reply Parameters Description

GUI_STEPPED Time (the
simulation time
just reached)

Reports to Architect that Simulator has reached the
end of the period specified by the last STEP
command.

GUI_ANIMATION_COMMAND Varies Sends an animation command. The first parameter
is the number corresponding to the GUI event in
the enumeration GuiEvents in file gui.h. The
remaining parameters depend upon the animation
command.

GUI_ASSERTION String (the error
message)

Indicates an assertion failure in Simulator code.

GUI_ERROR String (the error
message)

Indicates an error was detected in Simulator code.

GUI_WARNING String (the error
message)

Indicates a warning from Simulator.

GUI_SET_EFFECT 5 integers (event,
layer, type,
effect, color)

Assigns a visual effect to a particular animation
event.

GUI_STATISTICS_COMMAND Varies Sends a statistics command. The first parameter is
the number corresponding to the GUI statistics
event in the enumeration GuiStatisticsEvents
in gui.h. The remaining parameters depend upon
the statistics command.

GUI_FINISHED Indicates the end of the simulation.
QualNet 5.2 Programmer’s Guide 452

Customizing Visualize Mode of QualNet Architect Chapter 5
5.2.2 Adding Customized Animation to a Protocol

QualNet provides a rich API for adding animation to a protocol. These API functions are defined in
QUALNET_HOME/include/gui.h and in API Reference Guide.

When running QualNet from the command line, the following command enables animation output and the
animation commands are dumped to standard output:

qualnet <input-file> -animate

Animation can also be enabled by running an experiment in Architect.

If animation is enabled, each node's guiOption variable is set to TRUE at initialization. All calls to GUI
API functions should be wrapped as follows:

if (node->guiOption) {
 // GUI API function
}

Figure 5-10 shows an example of calling a GUI API function. Function PhyAbstractTransmissionEnd is
implemented in QUALNET_HOME/libraries/wireless/src/phy_abstract.cpp.

void PhyAbstractTransmissionEnd(Node *node, int phyIndex) {
 PhyData* thisPhy = node->phyData[phyIndex];
 PhyDataAbstract* phy_abstract = (PhyDataAbstract *)thisPhy->phyVar;
 int channelIndex;

 PHY_GetTransmissionChannel(node, phyIndex, &channelIndex);

 assert(phy_abstract->mode == PHY_TRANSMITTING);

 phy_abstract->txEndTimer = NULL;
 //GuiStart
 if (node->guiOption == TRUE) {
 GUI_EndBroadcast(node->nodeId,
 GUI_PHY_LAYER,
 GUI_DEFAULT_DATA_TYPE,
 thisPhy->macInterfaceIndex,
 getSimTime(node));
 }
 //GuiEnd

 PHY_StartListeningToChannel(node, phyIndex, channelIndex);
 ...
 }

FIGURE 5-10. Calling GUI Functions
453 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Visualize Mode of QualNet Architect
Most of the animation functions available represent "semantic" events, such as "packet was sent", which
can be displayed in different ways depending on the situation. For example, "sending packet wirelessly"
will look different from "sending packet over a wire", even though both call the same function.

The following general types of animation are available in QualNet:

• Packet animation: sends, receives

• Queue animation: insertions, deletions, drops

• Wireless animation: transmissions, directional transmissions, antenna patterns

• Node animation: icons, labels, motion, orientation

• Statistics: definition, data updates

• Logical link: applications, abstract linkages

Table 5-10 lists the commands available in each class of animation. Many of these functions require
GuiLayers as a parameter. This parameter is used to enable animation filtering in Architect. A
programmer can take advantage of this to display only the user's own defined animation. There is no
animation defined at the GUI_CHANNEL_LAYER, so the programmer can specify this layer for all the
custom animation, and disable all other layers in Architect.

TABLE 5-10. GUI API Functions for Animation

Animation Type GUI API Functions

Packet Animation GUI_Drop
 GUI_Broadcast
 GUI_EndBroadcast
 GUI_Multicast
 GUI_Unicast
 GUI_Receive

Queue Animation GUI_AddInterfaceQueue
 GUI_QueueInsertPacket
 GUI_QueueDropPacket
 GUI_QueueDequeuePacket

Wireless Animation GUI_Collision
 GUI_SetPatternIndex
 GUI_SetPatternAndAngle
 GUI_Broadcast
 GUI_EndBroadcast

Node Animation GUI_MoveNode
 GUI_SetNodeOrientation
 GUI_SetNodeIcon
 GUI_SetNodeLabel
 GUI_SetNodeRange

Statistics Animation GUI_DefineMetric
 GUI_SendIntegerData
 GUI_SendUnsignedData
 GUI_SendRealData

Logical Link Animation GUI_AddLink
 GUI_DeleteLink
 GUI_AddApplication
 GUI_DeleteApplication
QualNet 5.2 Programmer’s Guide 454

Customizing Visualize Mode of QualNet Architect Chapter 5
Programmers can customize the appearance of some of the animation using the GUI_SetEffect function.
Table 5-11 lists the customizable GUI events and effects that can be customized.

5.2.3 Adding Dynamic Statistics

QualNet Architect has the capability of displaying some statistics as they change during the model
execution. User-defined dynamic statistics can be added to any protocol at any layer. In this section, we
describe how to add dynamic statistics to an Application Layer traffic-generating protocol. Section 4.2.5
describes how to add a traffic-generating Application Layer protocol to QualNet. This section gives details
of additional steps that are required to add dynamic statistics to an Application Layer protocol.

The following list summarizes the actions that need to be performed for adding dynamic statistics to an
Application Layer protocol, MYPROTOCOL. Each of these steps is described in detail in subsequent
sections.

1. Define handles for statistic variables in the protocol data structure (see Section 5.2.3.1).

2. Initialize the statistic handles in the protocol initialization function (see Section 5.2.3.2).

3. Modify the Application Layer dynamic statistics function APP_RunTimeStat to call MYPROTOCOL’s

function to send the intermediate values of the statistics to the GUI (see Section 5.2.3.3).

4. Write MYPROTOCOL’s dynamic statistics function to send the intermediate values of the statistics to

the GUI (see Section 5.2.3.4).

TABLE 5-11. Customizable GUI Effects

GUI Event GUI Effects

GUI_Receive GUI_FLASH_X
GUI_CIRCLE_NODE
GUI_DEFAULT_EFFECT

GUI_Unicast GUI_FLASH_X
GUI_CIRCLE_NODE
GUI_DEFAULT_EFFECT

GUI_Drop GUI_FLASH_X
GUI_CIRCLE_NODE
GUI_DEFAULT_EFFECT
455 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Visualize Mode of QualNet Architect
5.2.3.1 Defining Statistic Handles
An integer handle is associated with each statistic variable, which is used to send intermediate values of
the statistic to the GUI. The handle for the statistic variable is included in the same data structure as the
statistic variable itself. The following convention is used to declare a statistic handle:

int <statisticName>Id;

where <statisticName> is a statistic variable declared previously in the data structure. For example,
Figure 5-11 shows a sample statistics declaration for MYPROTOCOL.

typedef struct {
 int BytesSent; /* stat variable for num of bytes sent */
 int BytesSentId; /* statistic handle */
 int BytesReceived; /* stat variable for num of bytes received */
 int BytesReceivedId; /* statistic handle */
} MyprotocolStatsType;

FIGURE 5-11. Declaring Statistic Handles

5.2.3.2 Initializing Statistic Handles
Statistic handles are initialized in the protocol’s initialization function. The API GUI_DefineMetric is used to
assign a unique value to each statistic handle. The parameters for GUI_DefineMetric are described below.
The function GUI_DefineMetric and the enumeration types GuiLayers, GuiDataTypes, and
GuiMetrics are declared in gui.h.

int GUI_DefineMetric(char* name,
 NodeId nodeID,
 GuiLayers layer,
 int linkID,
 GuiDataTypes datatype,
 GuiMetrics metrictype)

Parameters:

• name: Description label of the statistic in the GUI.

• nodeID: Node’s identifier.

• layer: Layer at which the protocol resides. It can be one of the values enumerated in GuiLayers.

• linkID: Application session identifier. This is set to zero if it is not applicable.

• datatype: Statistic's data type. It can be one of the values enumerated in GuiDataTypes.

• metrictype: Indication whether the statistic is cumulative or averaged. It can be one of the values
enumerated in GuiMetrics.
QualNet 5.2 Programmer’s Guide 456

Customizing Visualize Mode of QualNet Architect Chapter 5
In the statistics initialization function for MYPROTOCOL, MyprotocolInitStats, initialize the statistic handles
by calling GUI_MetricDefine. Figure 5-12 shows how this is done for the statistic variables and handles
defined in Figure 5-11. Call MyprotocolInitStats from the MYPROTOCOL initialization function,
MyprotocolInit.

static void MyprotocolInitStats (Node* node, MyprotocolStatsType *stats)
{
 BytesSent = 0;
 BytesReceived = 0;
 if (node->guiOption)
 {
 stats->BytesSentId = GUI_DefineMetric("Total Bytes Sent",
 node->nodeId,
 GUI_APP_LAYER,
 0,
 GUI_INTEGER_TYPE,
 GUI_CUMULATIVE_METRIC);
 stats->BytesReceivedId = GUI_DefineMetric("Total Bytes Received",
 node->nodeId,
 GUI_APP_LAYER,
 0,
 GUI_INTEGER_TYPE,
 GUI_CUMULATIVE_METRIC);
 }
}

FIGURE 5-12. Initializing Statistic Handles

5.2.3.3 Modifying the Application Layer Dynamic Statistics Function

When the GUI requires intermediate statistic values, function PARTITION_PrintRunTimeStats, defined in
QUALNET_HOME/main/partition.cpp, is executed. This function calls the dynamic statistics functions of all
layers, each of which in turn calls all protocol-specific dynamic statistics functions at that layer. For
example, PARTITION_PrintRunTimeStats calls function APP_RunTimeStats to print dynamic statistics for
Application Layer protocols. APP_RunTimeStat calls the function to print dynamicr statistics for each
protocol running at the node. APP_RunTimeStat is implemented in QUALNET_HOME/main/
application.cpp.

To enable dynamic statistics for the Application Layer protocol, MYPROTOCOL, modify the function
APP_RunTimeStat to call MYPROTOCOL’s dynamic statistics function, as shown in Figure 5-13.
APP_MYPROTOCOL is the entry for MYPROTOCOL in the enumeration AppType (see Section 4.2.5.3)
and MyprotocolRunTimeStat is the function to print MYPROTOCOL’s dynamic statistics (see
Section 5.2.3.4).
457 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing Visualize Mode of QualNet Architect
void
APP_RunTimeStat(Node *node)
{
 NetworkDataIp *ip = (NetworkDataIp *) node->networkData.networkVar;
 int i;
 AppInfo *appList = NULL;
 ...
 for (appList = node->appData.appPtr;
 appList != NULL;
 appList = appList->appNext)
 {
 /*
 * Get application specific data structure and call
 * the corresponding protocol to print the stats.
 */

 switch (appList->appType)
 {
 ...
//StartVBR
 case APP_VBR_CLIENT:
 case APP_VBR_SERVER:
 {
 VbrRunTimeStat(node, (VbrData *) appList->appDetail);
 }
 break;
//EndVBR
 ...
 case APP_MYPROTOCOL:
 {
 MyprotocolRunTimeStat(node,
 (MyprotocolData *) appList->appDetail);
 }
 break;
 default:
 break;
 }
 }
}

FIGURE 5-13. Modifying Application Layer Dynamic Statistics Function
QualNet 5.2 Programmer’s Guide 458

Customizing Visualize Mode of QualNet Architect Chapter 5
5.2.3.4 Writing the Dynamic Statistics Function for MYPROTOCOL
To enable dynamic statistics in a model, write a function to send the intermediate values of the model’s
statistics to the GUI. For each statistic type (integer, double, unsigned), there is a separate API to send the
value to the GUI. These APIs are listed below and their prototypes are defined in gui.h:

void GUI_SendIntegerData(NodeId nodeId,
 int metricID,
 int value,
 clocktype time);

void GUI_SendRealData(NodeId nodeId,
 int metricID,
 double value,
 clocktype time);

void GUI_SendUnsignedData(NodeId nodeId,
 int metricID,
 unsigned value,
 clocktype time);

Parameters:

• nodeId: Node’s identifier.

• metricID: Handle assigned to the statistic (see Section 5.2.3.2).

• value: Current value of the metric.

• time: Current simulation time.

Write the dynamic statistics function for MYPROTOCOL, MyprotocolRunTimeStat. Include the prototype
for MyprotocolRunTimeStat in the protocol’s header file, myprotocol.h. Figure 5-14 shows a sample
implementation of MyprotocolRunTimeStat. The node->guiOption clause ensures that the protocol
sends data to the GUI only if the GUI option is selected.

void MyprotocolRunTimeStat(Node* node, MyprotocolData* dataPtr) {
 clocktype now = getSimTime(node);
 if (node->guiOption)
 {
 GUI_SendIntegerData(node->nodeId,
 dataPtr->stats.BytesSentId,
 dataPtr->stats.BytesSent,
 now);
 GUI_SendIntegerData(node->nodeId,
 dataPtr->stats.BytesReceivedId,
 dataPtr->stats.BytesReceived,
 now);
 }
}

FIGURE 5-14. Dynamic Statistics Function for MYPROTOCOL
459 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing QualNet Packet Tracer
.
5.3 Customizing QualNet Packet Tracer

Packet Tracer customization consists of adding tracing support for new protocols. First, Simulator code is
updated to produce trace output for the new protocol (see Section 4.9). Second, a description of that trace
output is made available to Packet Tracer. This section describes how to add the description of a new
protocol header to files used by Packet Tracer.

5.3.1 Trace File Generated by Simulator

The syntax of a trace file produced by Simulator is described in Section 4.9.1. A trace file contains trace
records and each trace record contains values of the fields of each header of the packet. As an example,
Figure 5-15 shows the definition of the data structure for the IP header in file QUALNET_HOME/libraries/
developer/src/network_ip.h, and Figure 5-17 shows a record from a trace file generated by Simulator
corresponding to the trace of an IP header.

typedef
struct ip_header_str
{
 UInt32 ip_v_hl_tos_len; /* version, header length, type of
 service and total length */
 UInt16 ip_id; /* IP protcol ID */
 UInt16 ipFragment;
 unsigned char ip_ttl; /* time to live */
 unsigned char ip_p; /* protocol */
 unsigned short ip_sum; /* checksum */
 unsigned ip_src,ip_dst; /* source and dest address */

} IpHeaderType;

FIGURE 5-15. IP Header Data Structure

...
<rec>
<rechdr> 1 1 10.001383416 34 1 3 <action> 4 <queue> 0 192</queue></action></rechdr>
<recbody>
<ipv4>4 5 48 0 0 44 1 <flags>0 0 0</flags> 0 1 123 0 0.0.0.1 255.255.255.255</ipv4>
</recbody>
</rec>
...

FIGURE 5-16. Trace Record Showing an IP Header Trace
QualNet 5.2 Programmer’s Guide 460

Customizing QualNet Packet Tracer Chapter 5
5.3.2 Definition Files Used by Packet Tracer

Packet Tracer makes use of two files to interpret and display the data from a trace file. These files are
HeaderDef.xml and Datatype.xml in the folder QUALNET_HOME/gui/settings. File HeaderDef.xml
contains definitions of the protocol headers and file Datatype.xml contains definitions of data types used in
the protocol header definitions. As an example, Figure 5-17 shows the descriptions of the UDP and IPv4
headers in the file HeaderDef.xml and Figure 5-18 shows some of the basic data type definitions from the
file Datatype.xml. Adding tracing support for a new protocol header involves editing the file HederDef.xml;
in some cases, the file Datatype.xml may need to be changed as well.

<protocol_header_def>
...
<!-- udp -->

<protocolheader name="udp" label="UDP" length="20" type="" color="#00ffff">
 <u16 label="Source Port" />
 <u16 label="Destination Port" />
 <u16 label="Length" postlabel="bytes" />
 <u16 label="Checksum" postlabel="not computed" />
</protocolheader>
...
<!-- ipv4 -->
 ...
<protocolheader name="ipv4" label="IPv4" length="20" type="" color="#ff0000">
 <group name="flags" label="Flags" length="3">
 <u1 label="Reserved" />
 <u1 label="Don't fragment" />
 <u1 label="More fragments" />
 </group>

 <u4 label="Version" />
 <u4 label="Header Length" postlabel="32 bit words" />
 <u6 label="TOS" />
 <u1 label="ECN ECT" />
 <u1 label="ECN CE" />
 <u16 label="Total Length" />
 <u16 label="Identification" />
 <flags />
 <u13 label="Fragment Offset" />
 <u8 label="TTL" />
 <u8 label="Protocol" />
 <u16 label="Checksum" postlabel="not computed" />
 <ipv4Addr label="Source IP" />
 <ipv4Addr label="Destination IP" />
</protocolheader>
...

FIGURE 5-17. Header Descriptions in File HeaderDef.xml
461 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing QualNet Packet Tracer
<data_type>
 <!-- Unsigned types. Bitlength 1..64 -->
 <basic name="u1" signed="false" bitlength="1" />
 <basic name="u2" signed="false" bitlength="2" />
 <basic name="u3" signed="false" bitlength="3" />
 <basic name="u4" signed="false" bitlength="4" />
 ...
 <basic name="u16" signed="false" bitlength="16" />
 <basic name="u17" signed="false" bitlength="17" />
 ...
 <basic name="u64" signed="false" bitlength="64" />

 <!-- Signed types. Bitlength 2..64 -->
 <basic name="s2" signed="true" bitlength="2" />
 <basic name="s3" signed="true" bitlength="3" />
 ...
 <basic name="s63" signed="true" bitlength="63" />
 <basic name="s64" signed="true" bitlength="64" />

 <string name="str" />

 <string name="ipv4Addr" validation= "\d{1-3}\.\d{1-3}\.\d{1-3}\.\d{1-3}" />
 <string name="macAddr" validation= "\xx-\xx-\xx-\xx-\xx-\xx" />

 <float name="double" />

 <float name="simTime" format="4.6" />

</data_type>

FIGURE 5-18. Data Type Definitions in File Datatype.xml
QualNet 5.2 Programmer’s Guide 462

Customizing QualNet Packet Tracer Chapter 5
5.3.3 Packet Tracer Display

Packet Tracer uses the definitions of XML elements in the file HeaderDef.xml (see Figure 5-17) and the
definition of data types in the file Datatype.xml (see Figure 5-18) to parse and display the data in trace files.
Each record in the trace file has a rechdr and a recbody (see Section 4.9.1). Packet Tracer parses the
data contained in a rechdr of a trace according to the record_header element in file HeaderDef.xml.
Packet Tracer displays each rechdr as a row in the trace table, as shown in Figure 5-19. When a row is
selected, the details of the action that triggered the generation of the rechdr are displayed below the
trace table. If the row corresponds to a queue action (e.g., enqueue or dequeue), then the queue identifier
and priority are also displayed below the trace table.

FIGURE 5-19. Trace Table Displayed by Packet Tracer

The recbody of a trace record contains one or more protocol headers. Packet Tracer uses the definition
of protocolheader elements in the file HeaderDef.xml to parse and display the data contained in
recbody. Based on the IP header description in HeaderDef.xml (.i.e., the protocolheader element
whose name attribute is “ipv4”) and the definition of the data types in file in Datatype.xml, Packet Tracer
parses the IP header data in Figure 5-16 as follows:

• Version is assigned the value 4

• Header Length is assigned the value 5

• TOS is assigned the value 48

• ECN ECT is assigned the value 0

• ECN CE is assigned the value 0

• Total Length is assigned the value 44

• Identification is assigned the value 1

• Reserved is assigned the value 0

• Don’t Fragment is assigned the value 0

• More Fragments is assigned the value 0

• Fragment Offset is assigned the value 0

• TTL is assigned the value 1

• Protocol is assigned the value 123

• Checksum is assigned the value 0

• Source IP is assigned the value 0.0.0.1

• Destination IP is assigned the value 255.255.255.255
463 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing QualNet Packet Tracer
Packet Tracer displays the header data in the Explorer window. Figure 5-20 shows the display
corresponding to the IP header data in Figure 5-16.

FIGURE 5-20. Display of an IP Header in Packet Tracer

5.3.4 Adding Trace Capability for a New Header

To enable Packet Tracer to recognize and display a new header, add the description of the new header to
the file QUALNET_HOME/gui/settings/HeaderDef.xml. The header description in HeaderDef.xml should
match the format of the header trace in the trace file (see Section 4.9.1).

The format of a protocol header in a trace file is specified by means of a protocolheader element in the
file HeaderDef.xml. A protocolheader element uses data type definitions and data display definitions.
This section first describes data type definitions and data display definitions and then describes the syntax
of a protocolheader element.

5.3.4.1 Data Type Definitions
Data type definitions are used to declare data types used in the description of protocol headers. Data type
definitions are specified in the file QUALNET_HOME/gui/settings/Datatype.xml. A data type definition can
also be included in the protocol header description itself as a child element of a protocolheader
element (see Section 5.3.4.3).

This section describes the format of data type definition elements that can be used in protocol header
descriptions.
QualNet 5.2 Programmer’s Guide 464

Customizing QualNet Packet Tracer Chapter 5
5.3.4.1.1 The basic Data Type

The basic element is used for defining integer types. Table 5-12 describes the attributes of the basic
element. The basic element does not have any children.

The following are examples of the basic element:

 <basic name="u12" signed="false" bitlength="12" />
 <basic name="s23" signed="true" bitlength="23" />

5.3.4.1.2 The float Data Type

The float element is used for defining floating point types. Table 5-13 describes the attributes of the
float element. The float element does not have any children.

The following are examples of the basic element:

 <float name="double" />
 <float name="simTime" format="4.6" />

5.3.4.1.3 The char and string Data Types

The char and string elements are used for defining character data types. Table 5-14 describes the
attributes of the char and string elements. The char and string elements do not have any children.

TABLE 5-12. Attributes of the basic Element

Attribute
Required or

Optional Description of the Attribute

name Required Name of the type definition.

signed Required Indication whether the number can be negative.

• signed="true" indicates the number can be negative.

• signed="false" indicates the number can only be non-
negative.

bitlength Required Number of bits in the binary representation of the number.

TABLE 5-13. Attributes of the float Element

Attribute
Required or

Optional Description of the Attribute

name Required Name of the type definition.

format Optional Not used currently.

TABLE 5-14. Attributes of the char and string Elements

Attribute
Required or

Optional Description of the Attribute

name Required Name of the type definition.

validation Optional Not used currently.

length Optional Not used currently.
465 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing QualNet Packet Tracer
The following are examples of the char and string elements:

 <char name="c" length="1" />
 <string name="str" /
 <string name="macAddr" validation= "\xx-\xx-\xx-\xx-\xx-\xx" />

5.3.4.1.4 The enum Data Type

The enum element is used for defining an enumerated mapping between strings and integers. Table 5-15
describes the attributes of the enum element. The enum element has enumitem element as its child.

The following is an example of the enum element:

 <enum name="actiontype" label="Action type" length="8">
 <enumitem postlabel="SEND" enumvalue="1" />
 <enumitem postlabel="RECV" enumvalue="2" />
 <enumitem postlabel="DROP" enumvalue="3" />
 <enumitem postlabel="ENQUEUE" enumvalue="4" />
 <enumitem postlabel="DEQUEUE" enumvalue="5" />
 </enum>

The enumitem element is used in the definition of an enum type. Table 5-16 describes the attributes of the
enumitem element. The enumitem element has no children.

The following are examples of the enumitem element:

 <enumitem postlabel="Hello" enumvalue="0" />
 <enumitem postlabel="Database Desc." enumvalue="1" />

TABLE 5-15. Attributes of the enum Element

Attribute
Required or

Optional Description of the Attribute

name Required Name of the type definition.

label Required Name displayed by Packet Tracer.

format Optional Not used currently.

length Optional Used to validate the element type. If it is not specified, the default
value is 32.

TABLE 5-16. Attributes of the enumitem Element

Attribute
Required or

Optional Description of the Attribute

postlabel Required String displayed by Packet Tracer after the item’s value.

enumvalue Required Integer value displayed by Packet Tracer for the item.
QualNet 5.2 Programmer’s Guide 466

Customizing QualNet Packet Tracer Chapter 5
5.3.4.1.5 The group Data Type

The group element is used for defining a structured listing of data definitions. Table 5-17 describes the
attributes of the group element. The group element can have data type definition elements (basic,
float, char, string, enum, and group) and data display definition elements (see Section 5.3.4.2) as its
children. The data type definition elements must be specified before the data display definition elements.

The following is an example of the group element:

 <group name="flags" label="Flags" length="3">
 <u1 label="Reserved" />
 <u1 label="Don't fragment" />
 <u1 label="More fragments" />
 </group>

5.3.4.2 Data Display Definitions

Data display definitions determine how data read from a trace file is displayed by Packet Tracer. Data
display definition elements are specified as children of a group element (see Section 5.3.4.1.5) or a
protocolheader element (see Section 5.3.4.3). The element name of a data display definition element
is the name attribute of a data type definition element. This data type definition element should either be a
child of the parent group or protocolheader element or should be defined in the file Datatype.xml. The
attributes of a data display definition element are listed in Table 5-18.

The following are examples of the data display definition element:

 <u4 label="Version" />
 <u4 label="Header Length" postlabel="32 bit words" />

TABLE 5-17. Attributes of the group Element

Attribute
Required or

Optional Description of the Attribute

name Required Name of the type definition.

label Required Name displayed by Packet Tracer.

length Optional Not used currently.

contents_repeat Optional Indication whether children of the group element are repeated.

• contents_repeat="yes" indicates the children of the group
are repeated an indeterminate number of times.

• contents_repeat="no" indicates the children of the group
appear only once.

TABLE 5-18. Attributes of the Data Display Definition Element

Attribute
Required or

Optional Description of the Attribute

label Optional String displayed by Packet Tracer before the element’s value.

postlabel Optional String displayed by Packet Tracer after the element’s value.
467 QualNet 5.2 Programmer’s Guide

Chapter 5 Customizing QualNet Packet Tracer
5.3.4.3 Protocol Header Definitions
A protocol header format is described by means of a protocolheader element in the file HeaderDef.xml.
A protocolheader element determines how Packet Tracer interprets the recbody element of a trace
file. The attributes of the protocolheader element are listed in Table 5-19.

The children of the protocolheader element are data type definition elements (see Section 5.3.4.1) and
data display definition elements (see Section 5.3.4.2). Within a protocolheader element, all data type
definitions are listed before data display definitions.

Figure 5-17 shows examples of the protocolheader element.

TABLE 5-19. Attributes of the protocolheader Element

Attribute
Required or

Optional Description of the Attribute

name Required Protocol name as it appears in the trace file.

label Required Protocol name displayed by Packet Tracer.

length Optional Not used currently.

type Required Indication of the packet type. It can have one of the following four
values: “application”, “control”, “fragment”, or “”. This
determines the icon displayed in the second column (labelled “Type”)
in the trace table. If an empty string (“”) is specified, the same icon as
is used for “application” is displayed.

color Optional Not used currently.
QualNet 5.2 Programmer’s Guide 468

6 Interfacing with QualNet: External

Interface API

The External Interface API allows QualNet to interact with external entities such as other programs or
physical devices. Figure 6-1 illustrates the responsibilities of the interface developer and how the External
Interface API operates with QualNet.

FIGURE 6-1. External Interface API

The External Entity exists outside of the QualNet simulation. It is the responsibility of the External Interface
to implement the communication tasks with the External Entity. The External Interface interacts with the
QualNet Simulation using the External Interface API.

The API is divided into two main sections: interface registration functions and utility functions. Interface
registration functions allow the interface developer to create an interface and define how it operates. The
utility functions simplify interface development by automating routine tasks.

In this chapter we describe how to develop an external interface for QualNet. We give an example of an
external interface in Section 6.1. Section 6.2 describes the interface registration functions, and the utility
functions are described in Section 6.3.

 External
 Interface

 QualNet
Simulation

External
 Entity

Communication

External Interface API

Interface Developer
QualNet 5.2 Programmer’s Guide
 469

Chapter 6 Tutorial
.
6.1 Tutorial

We illustrate the process of developing an external interface for QualNet by means of a tutorial. This
tutorial describes the steps in writing an external interface that communicates with an external program
through a socket and interacts with an Application Layer protocol in QualNet.

This tutorial has three components:

• TUTORIALTESTER: This program corresponds to the external entity of Figure 6-1, and is described in
Section 6.1.1.

• INTERFACETUTORIAL: This is an Application Layer program in QualNet that interacts with
TUTORIALTESTER through an external interface, and is described in Section 6.1.2.

• External Interface: This is the external interface used by INTERFACETUTORIAL to interact with
TUTORIALTESTER, and is described in Section 6.1.3.

6.1.1 The TUTORIALTESTER Program

The first step in writing an external interface is to consider the external entity that the interface is meant to
interact with. The external entity may be a program running on the same computer, a program running on
a different computer, a hardware device, or something entirely different. Each type of external entity
interacts with QualNet in a different manner. The interface developer should tailor the interface to the
external entity.

In this tutorial, the external entity is a simple interactive program called TUTORIALTESTER. The source
code for the TUTORIALTESTER program can be found in the file QUALNET_HOME/scenarios/
interfacetutorial/tutorialtester.cpp.

The TUTORIALTESTER program may be built on UNIX by executing the following command:

g++ -o tutorialtester tutorialtester.cpp

The TUTORIALTESTER program may be built on Windows using the following command:

cl tutorialtester.cpp /link ws2_32.lib

The TUTORIALTESTER program is an interactive console application that accepts user input in the
following format:

<source node id> <destination node id> <command>

where,

<source node id> : Source node identifier

<destination node id> : Destination node identifier

<command> : Command, which can be either a set command or a get command

A set command has the following format:

s <value>

where,

<value>: Any string
QualNet 5.2 Programmer’s Guide 470

Tutorial Chapter 6
A get command has the following format:

g

TUTORIALTESTER interacts with the Application Layer program INTERFACETUTORIAL in the QualNet
simulation. Each node in the QualNet simulation that has an INTERFACETUTORIAL application running
on it maintains a variable. The set command acts on this variable by assigning it a new value, and the get
command retrieves the variable’s current value and sends it back to the TUTORIALTESTER program.
TUTORIALTESTER accepts input from a user and sends the input to QualNet through a socket. This
results in the INTERFACETUTORIAL program running at the source node sending the command
contained in the user input to the destination node.

6.1.2 The INTERFACETUTORIAL Application Layer Protocol

The INTERFACETUTORIAL application is implemented by the files interfacetutorial_app.h and
interfacetutorial_app.cpp in the directory QUALNET_HOME/interfaces/interfacetutorial/src. The
commented source code can be read from those files. This section provides a summary of the
INTERFACETUTORIAL functions.

AppInterfaceTutorialGet: This function searches the list of applications running at a node for the
INTERFACETUTORIAL application. This is typically called from the message processing function to
retrieve the application data structure.

AppInterfaceTutorialNew: This function allocates a new INTERFACETUTORIAL application data
structure. This function is called from AppInterfaceTutorialInit.

AppLayerInterfaceTutorial: This function processes Application Layer messages, such as incoming UDP
packets. This is the heart of the application. Each received command is analyzed here. For set commands,
the application’s variable is updated to the value specified in the command. For get commands, the value
of the application’s variable is forwarded back to the external interface where it is sent to the external entity.

AppInterfaceTutorialInit: This function initializes a new INTERFACETUTORIAL application.

AppInterfaceTutorialFinalize: This function finalizes the application. There are no tasks to perform as this
is a simple application. Typically a protocol would print statistics in the finalization function.

The INTERFACETUTORIAL application must be integrated into QualNet. The procedure is similar to
adding an Application Layer protocol to QualNet (see Section 4.2.5) and is summarized below:

• Add the APP_INTERFACETUTORIAL enumeration value to the AppType enumeration in
QUALNET_HOME/include/application.h.

• Add the TRACE_INTERFACETUTORIAL enumeration value to the TraceProtocolType
enumeration in QUALNET_HOME/include/trace.h.

• Call the AppInterfaceTutorialInit function from the APP_InitializeApplications function, which is defined
in QUALNET_HOME/main/application.cpp.

• Call the AppLayerInterfaceTutorial function from the APP_ProcessEvent function, which is defined in
QUALNET_HOME/main/application.cpp.

• Call the AppInterfaceTutorialFinalize function from the APP_Finalize function, which is defined in
QUALNET_HOME/main/application.cpp.
471 QualNet 5.2 Programmer’s Guide

Chapter 6 Tutorial
• Compile the application into QualNet. In this case the application is packaged as an addon. Edit the
addons makefile for your platform. If you are running QualNet on Windows, uncomment the following
line in the file QUALNET_HOME/main/Makefile-addons-windows:

include ../interfaces/interfacetutorial/Makefile-windows

 If you are running QualNet on UNIX, uncomment the following line in the file QUALNET_HOME/main/
Makefile-addons-unix:

include ../interfaces/interfacetutorial/Makefile-unix

See Section 4.10 for instructions to activate an addon module.

• In the configuration file, specify INTERFACETUTORIAL as the application running at each node that is
capable of sending and receiving commands from the external interface.

Sample configuration files are included in the directory QUALNET_HOME/scenarios/interfacetutorial.
To run QualNet using the sample configuration files, copy the files tutorial.config, tutorial.nodes and
tutorial.app from QUALNET_HOME/scenarios/interfacetutorial into the directory QUALNET_HOME/bin,
and run QualNet using tutorial.config as the configuration file.

6.1.3 The Interface Tutorial External Interface

The external interface for this tutorial is implemented by the files interfacetutorial.h and interfacetutorial.cpp
in the directory QUALNET_HOME/interfaces/interfacetutorial/src. This section provides a summary of the
tutorial’s external interface functions.

InterfaceTutorialInitializeNodes: This function initializes the external interface. It is called after all nodes
and protocols have been created. It creates an interface-specific data structure and opens TCP port 5132
for listening. The TUTORIALTESTER program connects to this TCP port and sends in commands.

InterfaceTutorialReceive: This function receives user input from a socket. It parses the input, determines
the source node, destination node, and the command. It sends the command from source node to
destination node by calling EXTERNAL_SendDataAppLayerUDP.

InterfaceTutorialForward: This function sends information back to the TUTORIALTESTER program
through the TCP socket. This function is called when a destination node receives the “get” command.

InterfaceTutorialFinalize: This function is called at the end of the simulation and closes the open socket
connections.

Like the INTERFACETUTORIAL application, the external interface must be integrated into QualNet. The
following list summarizes the steps required to integrate the external interface:

• Register the interface by calling the function EXTERNAL_RegisterExternalInterface from the
EXTERNAL_UserFunctionRegistration function, which is defined in QUALNET_HOME/main/
external.cpp (see Section 6.2).

• Register the interface’s functions by calling the function EXTERNAL_RegisterFunction from the
EXTERNAL_UserFunctionRegistration function, which is defined in QUALNET_HOME/main/
external.cpp (see Section 6.2).

• Compile the source file, QUALNET_HOME/interfaces/interfacetutorial/src/interfacetutorial.cpp, into
QualNet. To do this, edit the addons makefile for your platform, as described in Section 6.1.2.
QualNet 5.2 Programmer’s Guide 472

Interface Registration Chapter 6
.
6.2 Interface Registration

This section describes the functions to register an external interface and the callback functions
implemented by the interface (see Section 6.2.1) and the format of the callback functions (see
Section 6.2.2).

6.2.1 Registration Functions

Function EXTERNAL_UserFunctionRegistration, which is defined in QUALNET_HOME/main/external.cpp,
is called by the kernel at the beginning of the simulation. This function is used to register an external
interface (by calling the function External_RegisterExternalInterface) and the callback functions
implemented by the interface (by calling the function External_RegisterFunction).

• External_RegisterExternalInterface: This function registers a new external interface with QualNet
and creates the necessary data structures. This function must be called before any other function that
requires an EXTERNAL_Interface* argument.

Syntax:

EXTERNAL_Interface* EXTERNAL_RegisterExternalInterface(
EXTERNAL_InterfaceList *list,
char *name,
EXTERNAL_PerformanceParameters params,
ExternalInterfaceType type);

Parameters:

list : The list of external interfaces

name : The name of the external interface

params : The performance parameters. Currently no performance parameters are supported, so
pass EXTERNAL_NONE.

type : The type of the external interface

Return value:

A pointer to the newly registered external interface

• EXTERNAL_RegisterFunction: This function registers a callback function for an external interface.
Callback functions are described in Section 6.2.2.

Syntax:

void EXTERNAL_RegisterFunction(
EXTERNAL_Interface *iface,
EXTERNAL_FunctionType type,
EXTERNAL_Function function);

Parameters:

iface : The interface structure

type : The function type (EXTERNAL_INITIALIZE, EXTERNAL_INITIALIZE_NODES,
EXTERNAL_TIME, EXTERNAL_SIMULATION_HORIZON,
EXTERNAL_PACKET_DROPPED, EXTERNAL_RECEIVE or EXTERNAL_FORWARD,
EXTERNAL_FINALIZE)

function : The pointer to the function that is called by QualNet

Once the interface and its callback functions have been registered QualNet starts using the interface.
QualNet calls the registered callback functions as needed.
473 QualNet 5.2 Programmer’s Guide

Chapter 6 Interface Registration
6.2.2 Callback Functions

The interface developer determines the behavior of the external interface by providing callback functions
that perform certain tasks. There are eight callback functions the interface developer may provide. An
external interface may not need all eight callback functions, in which case the interface needs to implement
and register only the functions that it needs. QualNet calls the registered functions as necessary.

The callback functions are:

• Initialize: This is an initialization function called before nodes and protocols are created. This function
is used for setting up data structures and initializing services that are used on a simulation-wide basis.
For example, an HLA Initialize function would initialize the RTI and Federate ambassadors, and a
network emulation Initialize function would initialize the packet sniffing library.

Syntax:

void InterfaceInitializeFunction(
EXTERNAL_Interface *iface,
NodeInput *nodeInput)

{
// Create socket connections, open log files, etc.

}

Parameters:

iface : The interface structure

nodeInput : The NodeInput structure. Contains experiment configuration information.

• InitializeNodes: This is an initialization function called after nodes and protocols have been created.
This function is called immediately before the simulation begins. This function is used for setting up
individual nodes or protocols to operate with the external interface. Additionally, the interface might
initialize data used for time management (such as setting up a correspondence between External Time
and Simulation time). For example, an HLA InitializeNodes function would create an HLA application on
each node that is associated with an HLA object, and a network emulation InitializeNodes function
would create correspondences between real network devices and simulated nodes, and possibly
create a protocol at the Application Layer to handle events.

Syntax:

void InterfaceInitializeNodesFunction(
 EXTERNAL_Interface *iface,
 NodeInput *nodeInput)
{

// Conduct further initialization.
}

Parameters:

iface : The interface structure

nodeInput : The NodeInput structure. Contains experiment configuration information.

• Time: This function is called to query the time of the external interface.

Syntax:

clocktype InterfaceTimeFunction(EXTERNAL_Interface *iface)
{

// Compute and return the time of the external entity.
}

Parameters:

iface : The interface structure
QualNet 5.2 Programmer’s Guide 474

Interface Registration Chapter 6
Return value:

The current time of the external entity in nanoseconds. 0 corresponds to the start of the
simulation.

• SimulationHorizon: This function is called by the kernel to query the external interface’s simulation
horizon. The value of the simulation horizon controls the advance of the simulation clock. The interface
increases the horizon to indicate that it is ok for the simulation clock to advance. The kernel executes
events less than and up to the horizon. Once the simulation reaches the horizon, it executes a loop in
which it calls this function and the Receive function (explained below) until the horizon is again
advanced to allow the execution of more events.

Syntax:

void InterfaceSimulationHorizonFunction(EXTERNAL_Interface *iface)
{

// Set iface->horizon to the external entity’s simulation horizon.
}

Parameters:

iface : The interface structure

• PacketDropped: This function is called when a packet is dropped. Since there are many places a
packet can be dropped, support for this function is not included by default. It is the interface developer’s
responsibility to add support for this callback.

Syntax:

void InterfacePacketDroppedFunction(EXTERNAL_Interface *iface)
{

// Process the dropped packet.
}

Parameters:

iface : The interface structure

• Receive: This function retrieves information from the external interface and injects messages into
QualNet.

Syntax:

void InterfaceReceiveFunction(EXTERNAL_Interface *iface)
{

// Receive data from external entity and add messages to
// QualNet simulation.

}

Parameters:

iface : The interface structure

• Forward: This function forwards information back to the external source. It is essentially the reverse of
the Receive function.

Syntax:

void InterfaceForwardFunction(
EXTERNAL_Interface *iface,
void *forwardData,
int forwardSize)

{
// Send data back to external entity.

}

475 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
Parameters:

iface : The interface structure

forwardData : A pointer to the data that needs to be forwarded. Since the external interface
originally created this data it is expected that the external interface knows how to
interpret the data.

forwardSize : The size in bytes of the forwarded data

• Finalize: This function is called at the end of the simulation. It is used for freeing memory and stopping
the services started by the external interface.

Syntax:

void InterfaceFinalizeFunction(EXTERNAL_Interface *iface)
{

// Close socket connections, close log files, free memory, etc.
}

Parameters:

iface : The interface structure

.
6.3 Utility Functions

The External Interface API provides several utility functions that simplify the job of the interface developer.
The utility functions are divided into three categories:

• External interface API utility functions

• Functions for injecting traffic from external interfaces

• Operating system-specific utility functions for sockets

6.3.1 External Interface API Utility Functions

The file QUALNET_HOME/include/WallClock.h defines a C++ class, WallClock, which is used to keep
track of elapsed real time during a simulation. The class implements methods for pausing and resuming
the wall clock and for reading the wall clock’s value. See file QUALNET_HOME/include/WallClock.h or API
Reference Guide for a description of the WallClock class and its methods.

Additional external interface API utility functions are defined in the files external.h, external_util.h, and
partition.h in the folder QUALNET_HOME/include.

The following utility functions are defined in QUALNET_HOME/include/external.h:

• EXTERNAL_SetTimeManagementRealTime: This function automates synchronizing QualNet with
real time. This function turns time management on and specifies the lookahead value. Internally, this
function registers a horizon function that uses real time for the horizon value. The lookahead value is
the amount of time that QualNet is allowed to run ahead of real time.

Syntax:

void EXTERNAL_SetTimeManagementRealTime(
 EXTERNAL_Interface *iface,
 clocktype lookahead);
QualNet 5.2 Programmer’s Guide 476

Utility Functions Chapter 6
Parameters:

iface : The external interface

lookahead : How far into the future the simulation is allowed to run

• EXTERNAL_ChangeRealTimeLookahead: This function modifies the lookahead value. This function
can be called only after EXTERNAL_SetTimeManagementRealTime.

Syntax:

void EXTERNAL_ChangeRealTimeLookahead(
 EXTERNAL_Interface *iface,
 clocktype lookahead);

Parameters:

iface : The external interface

lookahead : The new lookahead value

• EXTERNAL_QueryExternalTime: This function returns the time of an external interface using the
interface’s time callback function (see Section 6.2.2).

Syntax:

clocktype EXTERNAL_QueryExternalTime(EXTERNAL_Interface *iface);

Parameters:

iface : The external interface

Return Value:

The time of the external interface. The function returns EXTERNAL_MAX_TIME if the time
callback function is not defined for the interface.

• EXTERNAL_QuerySimulationTime: This function returns the current simulation time.

Syntax:

clocktype EXTERNAL_QuerySimulationTime(EXTERNAL_Interface *iface);

Parameters:

iface : The external interface

Return Value:

The current simulation time

• EXTERNAL_QueryRealTime: This function returns the wall clock time in the QualNet time format (in
nanoseconds).

Syntax:

clocktype EXTERNAL_QueryRealTime();

Return Value:

The real (wall clock) time

• EXTERNAL_QueryCPUTime: This function returns the amount of CPU time used by QualNet. The first
call to this function by an interface returns 0; subsequent calls to this function by the same interface
returns the amount of CPU time used since the first call to the function.

Syntax:

clocktype EXTERNAL_QueryCPUTime(EXTERNAL_Interface *iface);

Parameters:

iface : The external interface
477 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
Return Value:

0, for the first call to the function; CPU time used since the first call, for subsequent calls

• EXTERNAL_Sleep: This function puts QualNet to sleep for a specified length of time. Depending on
the platform that is being used, the length of time spent sleeping could be greater.

Syntax:

void EXTERNAL_Sleep(clocktype amount);

Parameters:

amount : The amount of time to sleep

• EXTERNAL_SetReceiveDelay: This function sets the minimum delay between two consecutive calls
to the receive function (see Section 6.2.2). This prevents the receive function from being called too
frequently, which may adversely affect performance.

Syntax:

void EXTERNAL_SetReceiveDelay(
 EXTERNAL_Interface *iface,
 clocktype delay);

Parameters:

iface : The external interface

delay : The minimum delay

• EXTERNAL_ForwardData: This function sends data back to the external source with no time stamp.
The forward function (see Section 6.2.2) receives this data and processes it.

Syntax:

void EXTERNAL_ForwardData(
 EXTERNAL_Interface *iface,
 Node *node,
 void *forwardData,
 int forwardSize,
 EXTERNAL_ForwardData_ReceiverOpt FwdReceiverOpt =
 EXTERNAL_ForwardDataAssignNodeID_On);

Parameters:

iface : The external interface

node : The node that is forwarding the data

forwardData : The data to forward

forwardSize : The size of the data to forward

FwdReceiverOpt : Option whether to store the receiving node for forwarded data

• EXTERNAL_RemoteForwardData: This function is similar to EXTERNAL_ForwardData except that it
sends data back to the external interface that is on a different partition.

Syntax:

void EXTERNAL_RemotForwardData(
 EXTERNAL_Interface *iface,
 Node* node,
 void *forwardData,
 int forwardSize
 int partitionId
 clocktype delay);
QualNet 5.2 Programmer’s Guide 478

Utility Functions Chapter 6
Parameters:

iface : The external interface

node : The node that is forwarding the data

forwardData : The data to forward

forwardSize : The size of the data to forward

partitionId : The identifier of the partition that the external interface is on

delay : The delay for forwarding the data

• EXTERNAL_GetInterfaceByName: This function searches an interface list for an interface with the
specified name.

Syntax:

EXTERNAL_Interface* EXTERNAL_GetInterfaceByName(
 EXTERNAL_InterfaceList *list,
 char *name);

Parameters:

list : The external interface list

name : The interface's name

Return Value:

The interface, if found; NULL, if not found

• EXTERNAL_Bootstrap: This function is called by the kernel early in the simulation initialization
process (before threads are created) and provides a place for the external interface code to examine
the simulation command line arguments.

Syntax:

void EXTERNAL_Bootstrap(

 int argc,

 char * argv [],

 SimulationProperties * simProps,

 PartitionData * partitionData);

Parameters:

argc : The number of arguments in the command line

argv : The arguments in the command line

simProps : Global properties of the simulation for all partitions

partitionData : Pointer to the data for this partition

The following utility function is defined in QUALNET_HOME/include/external_util.h:

• EXTERNAL_SetSimulationEndTime: This function sets the end time for the simulation.

Syntax:

void EXTERNAL_SetSimulationEndTime(

 EXTERNAL_Interface* iface,

 clocktype endTime = 0);
479 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
Parameters:

iface : The external interface

endTime : The time at which the simulation should end. If this parameter is omitted, the
simulation ends at the current time.

The following utility functions are defined in QUALNET_HOME/include/partition.h:

• PARTITION_ClientStateSet: This function sets or replaces a pointer to the specified client’s state in
the indicated partition.

Syntax:

void PARTITION_ClientStateSet(

 PartitionData* partitionData,

 const char* stateName,

 void* clientState);

Parameters:

partitionData : Pointer to the data for this partition

stateName : The name used to locate the client’s state information

clientState : Pointer to the data structure the client wishes to store

• PARTITION_ClientStateFind: This function searches for the specified client’s state in the indicated
partition and returns a pointer to it.

Syntax:

void* PARTITION_ClientStateFind(

 PartitionData* partitionData,

 const char* stateName)

Parameters:

partitionData : Pointer to the data for this partition

stateName : The name used to locate the client’s state information

Return Value:

A pointer to the client’s state. If the state is not found, the function returns NULL.

• PARTITION_GetRealTimeMode: This function checks whether the simulation is executing in real time
mode.

Syntax:

bool

PARTITION_GetRealTimeMode (PartitionData * partitionData);

Parameters:

partitionData : Pointer to the data for this partition

Return Value:

TRUE, if the simulation is running in real time mode; FALSE, otherwise.
QualNet 5.2 Programmer’s Guide 480

Utility Functions Chapter 6
• PARTITION_SetRealTimeMode: This function sets the simulation execution mode.

Syntax:

void

PARTITION_SetRealTimeMode(

 PartitionData * partition,

 bool runAsRealtime);

Parameters:

partition : Pointer to the data for this partition

runAsRealtime : Indication to run execute in real time

6.3.2 Functions for Injecting Traffic from External Interfaces

The file QUALNET_HOME/include/external_util.h defines some general QualNet utility functions for
external interfaces, including functions for sending packets at the Application Layer using UDP and TCP,
creating mappings, enabling/disabling nodes, moving nodes, and changing node orientations.

• EXTERNAL_SendDataAppLayerUDP: This function sends a packet between two nodes using UDP.
By default, the function sends the data immediately. The default destination application is
APP_FORWARD. APP_FORWARD simply forwards the received data back to the external interface.

Syntax:

void EXTERNAL_SendDataAppLayerUDP(
 EXTERNAL_Interface *iface,
 NodeAddress from,
 NodeAddress to,
 char *data,
 int dataSize,
 clocktype timestamp = 0,
 AppType app = APP_FORWARD,
 TraceProtocolType trace = TRACE_FORWARD,
 TosType priority = IPTOS_PREC_ROUTINE,
 UInt8 ttl = TTL_NOT_SET);

Parameters:

iface : The external interface

from : The address of the sending node

to : The address of the receiving node

data : The data that is to be sent. If contents of the packet are not important, no actual
data is sent, and this parameter is set to NULL and the dataSize parameter is
used to indicate the size of the packet.

dataSize : The size of the data

timestamp : The time to send the packet. Pass 0 to send immediately. Defaults to 0.

app : The application to send to. Defaults to APP_FORWARD.

trace : The trace protocol. Defaults to TRACE_FORWARD.

priority : The priority of the message

ttl : The time to live
481 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
• EXTERNAL_SendDataAppLayerTCP: This function sends data between two nodes using TCP. The
TCP connection is established the first time this function is called between a pair of nodes.By default,
the function sends the data immediately. Unlike EXTERNAL_SendDataAppLayerUDP, which can
deliver data to any application using UDP, EXTERNAL_SendDataAppLayerTCP delivers data only to
the application APP_FORWARD. APP_FORWARD simply forwards the received data back to the
external interface.

Syntax:

void EXTERNAL_SendDataAppLayerTCP(
 EXTERNAL_Interface *iface,
 NodeAddress from,
 NodeAddress to,
 char *data,
 int dataSize,
 clocktype timestamp = 0,
 UInt8 ttl = TTL_NOT_SET);

Parameters:

iface : The external interface

from : The address of the sending node

to : The address of the receiving node

data : The data that is to be sent. If contents of the packet are not important, no actual
data is sent, and this parameter is set to NULL and the dataSize parameter is
used to indicate the size of the packet.

dataSize : The size of the data

timestamp : The time to send the packet. Pass 0 to send immediately. Defaults to 0.

ttl : The time to live

• EXTERNAL_SendDataNetworkLayer: This function sends data between two nodes at the Network
Layer. This function differs from the UDP and TCP SendData functions because it sends IP packets.
The contents of the IP packet (such as a transport header or application data) must be created by the
user. The packet is not passed to the interface’s forward function. By default, the function sends the
data immediately.

Syntax:

void EXTERNAL_SendDataNetworkLayer(
 EXTERNAL_Interface* iface,
 NodeAddress from,
 NodeAddress srcAddr,
 NodeAddress destAddr,
 unsigned short identification,
 BOOL dontFragment,
 BOOL moreFragments,
 unsigned short fragmentOffset,
 TosType tos,
 unsigned char protocol,
 unsigned int ttl,
 char* payload,
 int payloadSize,
 clocktype timestamp = 0);
QualNet 5.2 Programmer’s Guide 482

Utility Functions Chapter 6
Parameters:

iface : The external interface

from : The address of the sending node

srcAddr : The IP address of the node originally creating the packet (may be different
than the from address)

destAddr : The address of the receiving node

identification : The identification field in the IP header

dontFragment : Indication whether to set the Don’t Fragment bit in the IP header

moreFragments : Indication whether to set the More Fragments bit in the IP header

fragmentOffset : The Fragment Offset field in the IP header

tos : The Type of Service field in the IP header

protocol : The Protocol field in the IP header

ttl : The Time to Live field in the IP header

payload : The data to be sent. This should include appropriate transport headers. If
NULL, the payload will consist of 0’s.

payloadSize : The size of the data

timestamp : The time to send the packet. Pass 0 to send at the interface’s current time
according to the interface’s time function (if the interface does not have a
time function, the packet is sent immediately). Defaults to 0.

• EXTERNAL_CreateMapping: This function creates a mapping between a key and a value. The key
may be of any type and of any length, such as an IP address, a MAC address, or a generic string. The
value may be anything (it is just a generic pointer). Correctly using the mapped value is the
responsibility of the external interface.

Syntax:

void EXTERNAL_CreateMapping(
 EXTERNAL_Interface *iface,
 char *key,
 int keySize,
 char *value,
 int valueSize);

Parameters:

iface : The external interface

key : Pointer to the key

keySize : The size of the key in bytes

value : The value that the key maps to

valueSize : The size of the value

• EXTERNAL_ResolveMapping: This function resolves a mapping created by the function
EXTERNAL_CreateMapping. If a mapping for the specified key exists, the function returns 0; in this
case the value associated with the key is placed in the value parameter and the size of the value is
placed in the valueSize parameter. If a mapping for the specified key does not exist, the function
returns non-zero and the value and valueSize parameters are invalid.

This is an overloaded function. One of the versions of the function is described here.
483 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
Syntax:

int EXTERNAL_ResolveMapping(
 EXTERNAL_Interface *iface,
 char *key,
 int keySize,
 char **value,
 int *valueSize);

Parameters:

iface : The external interface

key : Pointer to the key

keySize : The size of the key in bytes

value : Pointer to the value (output)

valueSize : The size of the key in bytes (output)

Return Value:

0, if the mapping resolved; non-zero, if it did not resolve

• EXTERNAL_ActivateNode: This function activates a node so that it can begin processing events.

Syntax:

void EXTERNAL_ActivateNode(EXTERNAL_Interface *iface, Node *node,
 ExternalScheduleType scheduling
 = EXTERNAL_SCHEDULE_STRICT,
 clocktype deactivationEventTime = -1);

Parameters:

iface : The external interface

node : The node to activate

scheduling : The scheduling algorithm

deactivationEventTime : The time for deactivation

• EXTERNAL_DectivateNode: This function deactivates a node so that it stops processing events.

Syntax:

void EXTERNAL_DeactivateNode(EXTERNAL_Interface *iface,
 Node *node,
 ExternalScheduleType scheduling
 = EXTERNAL_SCHEDULE_STRICT,
 clocktype deactivationEventTime = -1);

Parameters:

iface : The external interface

node : The node to activate

scheduling : The scheduling algorithm

deactivationEventTime : The time for deactivation

• EXTERNAL_ChangeNodePosition: This function changes the position of a node. This function works
with any coordinate system. The node orientation is not changed. The valid range of coordinate values
depends on the terrain data. Coordinate values are checked to be in the proper range; if they are not in
the proper range, the coordinate values are converted to values within the proper range.
QualNet 5.2 Programmer’s Guide 484

Utility Functions Chapter 6
Syntax:

void EXTERNAL_ChangeNodePosition(
 EXTERNAL_Interface *iface,
 Node *node,
 double c1,
 double c2,
 double c3,
 clocktype delay);

Parameters:

iface : The external interface

node : The node

c1 : The first coordinate: latitude or x

c2 : The second coordinate: longitude or y

c3 : The third coordinate: altitude or z

delay : The delay for changing the position

• EXTERNAL_ChangeNodeOrientation: This function changes the orientation of a node. The node
position is not changed. Azimuth/elevation values are checked to be in the proper range; if they are not
in the proper range, the azimuth/elevation values are converted to values within the proper range.

Syntax:

void EXTERNAL_ChangeNodeOrientation(
 EXTERNAL_Interface *iface,
 Node *node,
 short azimuth,
 short elevation);

Parameters:

iface : The external interface

node : The node

azimuth : The azimuth, 0 <= azimuth <= 359

elevation : The elevation, -180 <= elevation <= 180

• EXTERNAL_ChangeNodePositionAndOrientation: This function changes both the position and
orientation of a node. This function works using both coordinate systems. The valid range of coordinate
values depends on the terrain data. Coordinate values and azimuth/elevation values are checked to be
in the proper range; if they are not in the proper range, the coordinate values and azimuth/elevation
values are converted to values within the proper range.

Syntax:

void EXTERNAL_ChangeNodePositionAndOrientation(
 EXTERNAL_Interface *iface,
 Node *node,
 double c1,
 double c2,
 double c3,
 short azimuth,
 short elevation);
485 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
Parameters:

iface : The external interface

node : The node

c1 : The first coordinate: latitude or x

c2 : The second coordinate: longitude or y

c3 : The third coordinate: altitude or z

azimuth : The azimuth, 0 <= azimuth <= 359

elevation : The elevation, -180 <= elevation <= 180

• EXTERNAL_ChangeNodePositionOrientationAndVelocityAtTime: This function updates the
position, orientation, and velocity vector of a node at a user-specified time. The velocity vector is
expected to be in the same distance units used for the node’s position, per one second. The speed
parameter must also be provided, accurate for the provided velocity vector, and always in meters per
second. Coordinate values, azimuth, elevation, and speed values are checked to be in the proper
range, and are converted to the proper range if not.

Syntax:

void EXTERNAL_ChangeNodePositionOrientationAndVelocityAtTime(
 EXTERNAL_Interface *iface,
 Node *node,
 clocktype mobilityEventTime,
 double c1,
 double c2,
 double c3,
 short azimuth,
 short elevation,
 double speed,
 double c1Speed,
 double c2Speed,
 double c3Speed);

Parameters:

iface : The external interface

node : The node

mobilityEventTime : The absolute simulation time (not delay) at which the mobility event
should execute

c1 : The first coordinate: latitude or x-coordinate

c2 : The second coordinate: longitude or y-coordinate

c3 : The third coordinate: altitude or z-coordinate

azimuth : The azimuth, 0 <= azimuth <= 359

elevation : The elevation, -180 <= elevation <= 180

speed : The speed in meters/sec

c1Speed : The rate of change of the first coordinate in the units of the position, per
second

c2Speed : The rate of change of the second coordinate in the units of the position,
per second

c3Speed : The rate of change of the third coordinate in the units of the position, per
second
QualNet 5.2 Programmer’s Guide 486

Utility Functions Chapter 6
• EXTERNAL_ChangeNodePositionOrientationAndVelocityAtTime: This function updates the
position, orientation, and velocity vector of a node at a user-specified
time. The velocity vector is expected to be in the same distance units
used for the node’s position, per one second. Coordinate values,
azimuth, elevation, and speed values are checked to be in the proper
range, and are converted to the proper range if not.

Syntax:

void EXTERNAL_ChangeNodePositionOrientationAndVelocityAtTime(
 EXTERNAL_Interface *iface,
 Node *node,
 clocktype mobilityEventTime,
 double c1,
 double c2,
 double c3,
 short azimuth,
 short elevation,
 double c1Speed,
 double c2Speed,
 double c3Speed);

Parameters:

iface : The external interface

node : The node

mobilityEventTime : The absolute simulation time (not delay) at which the mobility event
should execute

c1 : The first coordinate: latitude or x-coordinate

c2 : The second coordinate: longitude or y-coordinate

c3 : The third coordinate: altitude or z-coordinate

azimuth : The azimuth, 0 <= azimuth <= 359

elevation : The elevation, -180 <= elevation <= 180

c1Speed : The rate of change of the first coordinate in the units of the position, per
second

c2Speed : The rate of change of the second coordinate in the units of the position,
per second

c3Speed : The rate of change of the third coordinate in the units of the position, per
second

• EXTERNAL_ChangeNodeVelocityAtTime: This function updates the velocity vector of a node at a
user-specified time. The velocity vector is expected to be in the same distance units used for the terrain
coordinate system, per one second. The speed parameter must also be provided, accurate for the
provided velocity vector, and always in meters per second.

Syntax:

void EXTERNAL_ChangeNodeVelocityAtTime(
 EXTERNAL_Interface *iface,
 Node *node,
 clocktype mobilityEventTime,
 double speed,
 double c1Speed,
 double c2Speed,
 double c3Speed);
487 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
Parameters:

iface : The external interface

node : The node

mobilityEventTime : The absolute simulation time (not delay) at which the mobility event
should execute

speed : The speed in m/s

c1Speed : The rate of change of the first coordinate in the distance units of the
terrain coordinate system, per second

c2Speed : The rate of change of the second coordinate in the distance units of the
terrain coordinate system, per second

c3Speed : The rate of change of the third coordinate in the distance units of the
terrain coordinate system, per second

• EXTERNAL_ConfigStringPresent: This function checks the configuration file for a string. Typically,
this is used during interface registration to see if an interface name is included in the configuration file.
This function only checks for the presence of a string and not the value associated with that string.

Syntax:

BOOL EXTERNAL_ConfigStringPresent(
 NodeInput *nodeInput,
 char *string);

Parameters:

nodeInput : The configuration file

string : The string to check for

Return Value:

TRUE, if the string is present; FALSE, otherwise

• EXTERNAL_ConfigStringIsYes: This function checks the configuration file for a string and returns
TRUE if that string is equal to “YES”. Typically, this is used during interface registration to see if an
interface name is included in the configuration file.

Syntax:

BOOL EXTERNAL_ConfigStringIsYes(
 NodeInput *nodeInput,
 char *string);

Parameters:

nodeInput : The configuration file

string : The string to check for

Return Value:

TRUE, if the string is present and set to “YES”; FALSE, otherwise

6.3.3 Operating System-specific Utility Functions for Sockets

The file QUALNET_HOME/include/external_socket.h contains functions that are useful for a socket
programmer. The first set of functions are for operations on an array of variable size. The next set of
functions implements host-to-network byte ordering. The final set of functions implements the socket code.
QualNet 5.2 Programmer’s Guide 488

Utility Functions Chapter 6
6.3.3.1 Functions for Variable-sized Array Operations
The file QUALNET_HOME/include/external_socket.h defines a structure called EXTERNAL_VarArray,
which is an array of variable size. The file external_socket.h also defines the following functions for
operations on EXTERNAL_VarArray:

• EXTERNAL_VarArrayInit: This function initializes an array of type EXTERNAL_VarArray and
allocates memory for the array.

Syntax:

void EXTERNAL_VarArrayInit(
 EXTERNAL_VarArray *array,
 Unsigned int size = EXTERNAL_DEFAULT_VAR_ARRAY_SIZE);

Parameters:

array : Pointer to the uninitialized array

size : The initial size of the array in bytes. Defaults to
EXTERNAL_DEFAULT_VAR_ARRAY_SIZE

• EXTERNAL_VarArrayAccomodateSize: This function increases the maximum size of an array of type
EXTERNAL_VarArray to at least the specified size.

Syntax:

void EXTERNAL_VarArrayAccomodateSize(
 EXTERNAL_VarArray *array,
 unsigned int size);

Parameters:

array : Pointer to the array

size : The new minimum size of the array

• EXTERNAL_VarArrayAppendData: This function adds data to the end of an array of type
EXTERNAL_VarArray. The size of the array is increased if necessary.

Syntax:

void EXTERNAL_VarArrayAppendData(
 EXTERNAL_VarArray *array,
 char *data,
 unsigned int size);

Parameters:

array : Pointer to the array

data : Pointer to the data to add

size : The size of the data to add

• EXTERNAL_VarArrayConcatString: This function adds a string to the end of an array of type
EXTERNAL_VarArray, including the terminating NULL character. This function assumes that the
previous data in the array is also a string, i.e., several bytes of data terminated with a NULL character. If
this is not the case, then the function EXTERNAL_VarArrayAppendData should be used instead.

Syntax:

void EXTERNAL_VarArrayConcatString(
 EXTERNAL_VarArray *array,
 char *string);
489 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
Parameters:

array : Pointer to the array

string : The string

• EXTERNAL_VarArrayFree: This function frees all memory allocated to an array of type
EXTERNAL_VarArray. This function must be called once the use of the array is over.

Syntax:

void EXTERNAL_VarArrayFree(EXTERNAL_VarArray *array);

Parameters:

array : Pointer to the array

6.3.3.2 Host-to-Network Byte Order Functions

These functions, implemented in the file QUALNET_HOME/include/external_socket.h, reverse the byte
order of variables from host to network order and vice versa.

• EXTERNAL_hton: This function converts data from host byte order to network byte order.

Syntax:

void EXTERNAL_hton(void* ptr, unsigned int size);

Parameters:

ptr : Pointer to the data

size : Size of the data

• EXTERNAL_ntoh: This function converts data from network byte order to host byte order

Syntax:

void EXTERNAL_ntoh(void* ptr, unsigned int size);

Parameters:

ptr : Pointer to the data

size : Size of the data

6.3.3.3 External Socket Functions
The external socket functions implement a socket. These functions are implemented in the file
QUALNET_HOME/include/external_socket.h.

• EXTERNAL_SocketInit: This function initializes a socket. This function must be called before any
other socket API calls on the individual socket.

Syntax:

void EXTERNAL_SocketInit(EXTERNAL_Socket *s,

 BOOL blocking = TRUE,

 BOOL threaded = FALSE);

Parameters:

s : Pointer to the socket

blocking : Flag that indicates whether blocking is enabled

threaded : Flag that indicates whether multithreading is enabled

• EXTERNAL_SocketValid: This function checks if a socket connection is valid, i.e., the socket is open
and no errors have occurred.
QualNet 5.2 Programmer’s Guide 490

Utility Functions Chapter 6
Syntax:

BOOL EXTERNAL_SocketValid(EXTERNAL_Socket *socket);

Parameters:

s : Pointer to the socket

Return Value:

TRUE, if the socket is valid; FALSE, if invalid

• EXTERNAL_SocketListen: This function listens for connections on a socket. It accepts a socket
structure, listenSocket, and a port number, port, as parameters. listenSocket is used to listen
for an incoming connection. If a successful socket connection is created, the socket parameter
connectSocket is assigned the newly created socket connection, which is set to non-blocking mode.
If listenSocket has already been initialized by an earlier call to EXTERNAL_SocketListen, the port
parameter is ignored.

Syntax:

EXTERNAL_SocketErrorType EXTERNAL_SocketListen(
 EXTERNAL_Socket *listenSocket,
 int port,
 EXTERNAL_Socket *connectSocket);

Parameters:

listenSocket : Pointer to the socket to listen on

port : The port to listen on

connectSocket : Pointer to the socket that receives the established connection

Return Value:

EXTERNAL_NoError, if successful; an error indication, if not successful

• EXTERNAL_SocketConnect: This function connects to a listening socket. The socket is set to non-
blocking mode.

Syntax:

EXTERNAL_SocketErrorType EXTERNAL_SocketConnect(
 EXTERNAL_Socket *socket,
 char *address,
 int port,
 int maxAttempts);

Parameters:

socket : Pointer to the socket

address : String representation of the address to connect to

port : The port to connect to

maxAttempts : Number of times to attempt connecting before an error is returned

Return Value:

EXTERNAL_NoError, if successful; an error indication, if not successful

• EXTERNAL_SocketSend: This function sends data on a connected socket. It is possible that the send
would result in a block: If the block parameter is FALSE, then EXTERNAL_DataNotSent is returned,
and no data is sent. If the block parameter is TRUE, then the function blocks until the data can be sent.
491 QualNet 5.2 Programmer’s Guide

Chapter 6 Utility Functions
Syntax:

EXTERNAL_SocketErrorType EXTERNAL_SocketSend(
 EXTERNAL_Socket *s,
 char *data,
 unsigned int size,
 BOOL block = TRUE);

Parameters:

socket : Pointer to the socket

data : Pointer to the data

size : Size of the data

block : Indication whether this call may block. Defaults to TRUE.

Return Value:

EXTERNAL_NoError, if successful; an error indication, if not successful

• EXTERNAL_SocketSend: This is a wrapper for the above overloaded function.

Syntax:

EXTERNAL_SocketErrorType EXTERNAL_SocketSend(
 EXTERNAL_Socket *s,
 EXTERNAL_VarArray *data,
 BOOL block = TRUE);

Parameters:

socket : Pointer to the socket

data : Pointer to the array to send

block : Indication whether this call may block. Defaults to TRUE.

Return Value:

EXTERNAL_NoError, if successful; an error indication, if not successful

• EXTERNAL_SocketRecv: This function receives data on a connected socket. It is possible that the
send would result in a block: If the block parameter is FALSE, the receiveSize parameter is set to
the amount of data received before the block. This amount could be any value between 0 and size - 1.

Syntax:

EXTERNAL_SocketErrorType EXTERNAL_SocketRecv(
 EXTERNAL_Socket *s,
 char *data,
 unsigned int size,
 unsigned int *receiveSize,
 BOOL block = TRUE);

Parameters:

socket : Pointer to the socket

data : Pointer to the destination

size : The amount of data to receive in bytes

receiveSize : The number of bytes received. This could be less than the specified size if an
error occurred or if the block parameter is FALSE.

block : TRUE if the call can block, FALSE if non-blocking. Defaults to TRUE.

Return Value:

EXTERNAL_NoError, if successful; an error indication, if not successful
QualNet 5.2 Programmer’s Guide 492

Utility Functions Chapter 6
• EXTERNAL_SocketClose: This function closes a socket. This function must be called for each socket
that is listening or connected.

Syntax:

EXTERNAL_SocketErrorType EXTERNAL_SocketClose(EXTERNAL_Socket *s);

Parameters:

s : Pointer to the socket

Return Value:

EXTERNAL_NoError, if successful; an error indication, if not successful
493 QualNet 5.2 Programmer’s Guide

7 Dynamic API

The dynamic API allows users and programs to dynamically modify and monitor a QualNet simulation.
Using the dynamic API, a user or program can change values of variables and can be notified when
statistics change during execution. The dynamic API operates between the external interface API and the
simulation. The external interface API is responsible for communicating with the external program and
sending commands from the external program to the dynamic API. The dynamic API interacts with the
QualNet simulation, giving results of commands back to the external interface API, which in turn sends
results back to the external program. This modular design allows different front-ends to use the dynamic
API. Therefore each external program can use the most appropriate interface. Figure 7-1 illustrates the
dynamic API’s relation to QualNet.

FIGURE 7-1. Dynamic API

Section 7.1 describes the implementation of the dynamic API in QualNet. Section 7.2 describes how the
dynamic API is used by an external program. Section 7.3 describes how to enable a protocol for dynamic
manipulation. Section 7.4 describes how to define new dynamic data types.

External
Program

External
Interface

API

Dynamic
API

QualNet
Simulation
QualNet
 5.2 Programmer’s Guid
e
 494

Implementation of the Dynamic API Chapter 7
.
7.1 Implementation of the Dynamic API

This section describes the implementation of the dynamic API in QualNet.

7.1.1 Dynamic Objects

The dynamic API uses the object oriented features of C++. The dynamic API is implemented by means of
dynamic objects which are derived from the base class D_Object. The D_Object class is defined in
QUALNET_HOME/include/dynamic.h and has the following characteristics:

• Type: Variable, statistic or command

• Level: The object’s location in the hierarchy (see Section 7.1.3)

• Permissions: Readable, writable, executable

• Listeners: If listening is enabled (see Section 7.1.4), an array of all listeners attached to this object

• Action functions: Functions to read a variable’s value, modify a variable’s value, or execute a
command. Not all data types implement all action functions.

7.1.2 Built-in Dynamic Objects

The following dynamic objects are pre-defined in QualNet. These objects are defined in
QUALNET_HOME/include/dynamic_vars.h.

• D_Int32: A 4-byte integer

• D_UInt32: A 4-byte unsigned integer

• D_Int64: An 8-byte signed integer

• D_Float32: A-4 byte floating point number

• D_Float64: An 8-byte floating point number

• D_NodeAddress: A node address or node identifier

• D_String: A string

• D_Clocktype: A clocktype, 8-byte integer

7.1.3 Hierarchy of Objects

The dynamic objects are organized in a hierarchy structure. This hierarchy structure is similar to the
directory structure used by a computer’s operating system. All dynamic objects are organized in the
hierarchy based on levels which form a path. For instance, the dynamic object corresponding to the AODV
variable numRequestsInitiated for node 129 and interface address 192.168.0.129 is located at the
following path: /node/129/interface/192.168.0.129/aodv/numRequestsInitiated.

The hierarchy is implemented using the D_Hierarchy class defined in QUALNET_HOME/include/
dynamic.h.

7.1.4 Listening

A dynamic object may have one or more listeners attached to it. A listener is a function that is automatically
notified when the value of the data component of the dynamic object (see Section 7.1.5) changes. The
listener can implement a filter for the updates, thereby determining the thresholds for notification.

Note: By default, listening is enabled for all variables. Listening can be disabled upon customer
request, but this would require a customized distribution of QualNet.
495 QualNet 5.2 Programmer’s Guide

Chapter 7 Implementation of the Dynamic API
7.1.5 Data Component of a Dynamic Object

Some dynamic objects, such as variables and statistics, have a data component. The data component of
an object and the dynamic object are internally treated as two separate entities. The data component is
contained within the protocol’s data structure. For example, the AODV variable
numRequestsInitiated, discussed in Section 7.1.3, would have a data component that is an integer.
This integer contains the value of the dynamic variable and is part of the AODV data structure. The object
(including the path /node/129/interface/192.168.0.129) is part of the dynamic hierarchy.

If listening is disabled the data component is a simple variable. For example, if listening is disabled, the
built-in dynamic data type D_Int32 is equivalent to an Int32. The dynamic data type D_Int32 is defined
in QUALNET_HOME/include/dynamic_vars.h. If listening is enabled the data component is a class
wrapper for the simple variable. The class wrapper signals the dynamic API when the variable’s value is
modified. The dynamic object is located in the hierarchy (see Section 7.1.3) and contains a pointer to the
data component.

Figure 7-2 illustrates the relationship between a dynamic object and its data component. The CBR protocol
has a dynamically enabled variable interval of type D_Clocktype. This variable is identified with an
un-named dynamic object of type D_ClocktypeObj. The D_ClockTypeObj object acts as an
intermediary between the clocktype data and the dynamic API hierarchy. The D_ClocktypeObj is
added to the hierarchy at the appropriate position, in this case under …/cbr/1024/interval. The 1024
level indicates that the CBR source port is 1024.

FIGURE 7-2. Data Components and Hierarchy of Objects

7.1.6 Dynamic Commands

Dynamic commands are similar in implementation to dynamic data types except that a dynamic command
does not have a built-in data component. For this reason it is useful to define member variables within the
command.

CBR

D_ClocktypeObj

Address localAddr
Address remoteAddr

D_Clocktype interval

clocktype sessionStart

interval

1024

Hierarchy

cbr
QualNet 5.2 Programmer’s Guide 496

Implementation of the Dynamic API Chapter 7
Dynamic commands are derived from the base class D_Command, which is defined in QUALNET_HOME/
include/dynamic.h. As an example, Figure 7-3 shows the declaration of the dynamic command object
D_QshChangeModeCommand in the qsh addon file QUALNET_HOME/interfaces/qsh/src/qsh_interface.h.
This command is used for changing qsh’s execution mode between real-time, time-managed, and none.

The D_QshChangeModeCommand object records which interface it belongs to in the variable iface and
sets the interface using the constructor. The function ExecuteAsString is the action function for this object.
Function ExecuteAsString, shown in Figure 7-4, reads the incoming parameters passed as the input
parameter in, changes qsh’s execution mode, and sends back results in the output parameter out.
Function ExecuteAsString of the object D_QshChangeModeCommand is implemented in
QUALNET_HOME/interfaces/qsh/src/qsh_interface.cpp.

class D_QshChangeModeCommand : public D_Command
{
 private:
 EXTERNAL_Interface* iface;

 public:
 D_QshChangeModeCommand(EXTERNAL_Interface* newIface)
 {
 iface = newIface;
 }

 virtual void ExecuteAsString(const std::string& in, std::string& out);
};

FIGURE 7-3. Example Dynamic Command

void D_QshChangeModeCommand::ExecuteAsString(
 const std::string& in,
 std::string& out)
{
 QshData* data = (QshData*) iface->data;
 D_Hierarchy* h = &iface->partition->dynamicHierarchy;

 if (in == "real-time")
 {
 ...
 }
 else if (in == "time-managed")
 {
 ...
 }
 else if (in == "none")
 {
 ...
 else
 {
 out = std::string("FAILURE -- Unknown mode \") + in +
 ”\” (must be \"real-time\", \"time-managed\" or \"none\")");
 }
}

FIGURE 7-4. Action Function of a Dynamic Command
497 QualNet 5.2 Programmer’s Guide

Chapter 7 Using the Dynamic API from an External Interface
.
7.2 Using the Dynamic API from an External Interface

An external interface may access the dynamic hierarchy through the partition structure. An external
interface uses the dynamic API through the following functions of the D_Hierarchy class, which is
defined in QUALNET_HOME/include/dynamic.h:

• ReadAsString: This function reads the value of the object with the given path. The function throws an
exception if the path does not exist or if the path does not resolve to an object. that is readable.

• WriteAsString: This function writes the value to the object with the given path. The function throws an
exception if the path does not exist or if the path does not resolve to an object. that is writable.

• ExecuteAsString: This function executes the object with the given path. The function throws an
exception if the path does not exist or if the path does not resolve to an object. that is executable.

• AddListener: This function adds a new listener to the object with the given path. The function throws an
exception if the path does not resolve to an object. The function is defined only if listening is enabled.

• RemoveListeners: This function removes all listeners from an object and frees their memory. The
function is defined only if listening is enabled.

A typical external interface uses the dynamic API by calling functions ReadAsString, WriteAsString and
ExecuteAsString. Figure 7-5 shows a sample code segment that makes a call to the function
ReadAsString. In this example, the interface reads the value of node/1/cbr/1024/numPktsSent and
prints the result. If the path is invalid or the object cannot be read, an exception is thrown, causing an error
message to be printed.

...
std::string value;
std::string errString;
try
{
 interface->partition->dynamicHierarchy.ReadAsString(
 “node/1/cbr/1024/numPktsSent”, value);
 printf(“The value is \”%s\”\n”, value.c str());
}
catch (D_Exception &e)
{
 e.GetFullErrorString(errString);
 printf(“Error: \”%s\”\n”, errString.c str());
}
...

FIGURE 7-5. Example Code to Use Function ReadAsString

Functions WriteAsString and ExecuteAsString work in a similar way.

If listening is enabled, the AddListener and RemoveListeners member functions of the D_Hierarchy
class are also available. New D_Listener and D_ListenerCallback objects should be created for
each listener that is added. Figure 7-6 shows a sample code segment that makes a call to the function
AddListener. In this example, a ListenerCallback class is defined. It overloads the () operator. In the
second part of the code segment, a listener is added to the object node/1/cbr/1024/numPktsSent.
The listener is D_ListenerPercent, which invokes the callback function whenever the variable changes
by 10% compared to the last time the callback function was invoked. A sample string printed by the
callback function is: “The value of node/1/cbr/1024/numPktsSent changed to 350”.
QualNet 5.2 Programmer’s Guide 498

Using the Dynamic API from an External Interface Chapter 7
...
class ListenerCallback : public D_ListenerCallback
{
 public:
 virtual void operator () (const std::string& newValue)
 {
 printf("The variable changed to \”%s\”\n", newValue.c str());
 }
};
...
std::string errString;
try
{
 interface->partition->dynamicHierarchy.AddListener(
 “node/1/cbr/1024/numPktsSent”, // path
 const std::string& listenerType,
 “0.10”, // arguments
 “qsh” // listener tag
 new QshListenerCallback());
}
catch (D_Exception &e)
{
 e.GetFullErrorString(errString);
 printf(“Error: \”%s\”\n”, errString.c str());
}

FIGURE 7-6. Example Code to Use Function AddListener

The external interface may remove listeners by calling function RemoveListeners of D_Hierarchy class.
Figure 7-7 shows a sample code segment that makes a call to the function RemoveListeners. In this
example, all listeners of the object node/1/cbr/1024/numPktsSent are removed.

std::string errString;
try
{
 interface->partition->dynamicHierarchy.RemoveListeners(
 “node/1/cbr/1024/numPktsSent”,
 “qsh”); // listener tag
}
catch (D_Exception &e)
{
 e.GetFullErrorString(errString, “qsh”);
 printf(“Error: \”%s\”\n”, errString.c str ());
}

FIGURE 7-7. Sample Code to Use Function RemoveListeners
499 QualNet 5.2 Programmer’s Guide

Chapter 7 Dynamically Enabling a Protocol
.
7.3 Dynamically Enabling a Protocol

This section describes how to enable a dynamic variable and mentions issues to be aware of. Keep in
mind that a dynamic variable becomes an object when listening is enabled.

To dynamically enable a protocol, do the following:

1. Change the type of the variables to the corresponding dynamic data types (see Section 7.3.1).

2. Add a dynamic object in the hierarchy for each dynamic variable (see Section 7.3.2).

3. Set the permissions (readable, writable, executable) of the dynamic objects (see Section 7.3.3).

4. Allocate memory for the dynamically enabled protocol data structure (see Section 7.3.4).

7.3.1 Declare Dynamic Variables

To make a protocol variable dynamically accessible, change the type of the variable to the corresponding
dynamic data type. The built-in dynamic data types of QualNet are listed in Section 7.1.2. For example, in
the CBR client data structure AppDataCbrClient shown below, variables interval and
numBytesSent are dynamically enabled and the rest of the variables are not dynamically enabled.
AppDataCbrClient is defined in QUALNET_HOME/libraries/developer/src/app_cbr.h.

typedef struct struct_app_cbr_client_str
{
 Address localAddr;
 Address remoteAddr;
 D_Clocktype interval;
 clocktype sessionStart;
 clocktype sessionFinish;
 clocktype sessionLastSent;
 clocktype endTime;
 BOOL sessionIsClosed;
 D_Int64 numBytesSent;
 UInt32 numPktsSent;
 UInt32 itemsToSend;
 UInt32 itemSize;
 short sourcePort;
 Int32 seqNo;
 D_UInt32 tos;
}AppDataCbrClient;

7.3.2 Adding a Dynamic Object to the Hierarchy

For each dynamically enabled variable, add a dynamic object to the hierarchy by doing the following:

1. Create the path for the object.

2. Add the object at the appropriate path.

A path is created by calling an appropriate member function of class D_Hierarchy, which is defined in
QUALNET_HOME/include/dynamic.h. The functions used to create a path at different levels are:

• CreatePartitionPath: This function creates a path at the partition level.

• CreateNodePath: This function creates a path at the node level.
QualNet 5.2 Programmer’s Guide 500

Dynamically Enabling a Protocol Chapter 7
• CreateExternalInterfacePath: This function creates a path at the external interface level.

• CreateApplicationPath: This function creates a path at the application level.

• CreateTransportPath: This function creates a path at the transport level.

• CreateNetworkPath: This function creates a path at the network level.

• CreateRoutingPath: This function creates a path at the routing level.

• CreateMacPath: This function creates a path at the MAC level.

• CreatePhynPath: This function creates a path at the PHY level.

Each function takes arguments necessary to determine the path. If an object can be added at that path the
function returns TRUE. An object can not be added at a given path if the path already exists or if the
protocol is not configured to be dynamically enabled.

After the path has been created the object can be added by calling the D_Hierarchy function AddObject.
As an example, consider the CBR function AppCbrClientNewCbrClient shown in Figure 7-8. Function
AppCbrClientNewCbrClient first creates a path for the object interval by calling function
CreateApplicationPath. If given permission by the hierarchy, i.e., if CreateApplicationPath returns TRUE,
AppCbrClientNewCbrClient adds an object to the newly created path by calling the function AddObject.
Note that a new object of class D_ClocktypeObj is added to the hierarchy that references the variable
cbrClient->interval. Similarly, a path is created for the object numBytesSent and a new object of
class D_Int64Obj is added to the hierarchy that references the variable cbrClient->numBytesSent.

Function AppCbrClientNewCbrClient is implemented in QUALNET_HOME/libraries/developer/src/
app_cbr.cpp. D_ClocktypeObj, D_Int64Obj and the other classes implementing dynamic objects are
defined in QUALNET_HOME/include/dynamic_vars.h.
501 QualNet 5.2 Programmer’s Guide

Chapter 7 Dynamically Enabling a Protocol
AppDataCbrClient *
AppCbrClientNewCbrClient(Node *node,
 Address localAddr,
 Address remoteAddr,
 Int32 itemsToSend,
 Int32 itemSize,
 clocktype interval,
 clocktype startTime,
 clocktype endTime,
 TosType tos)
{
 AppDataCbrClient *cbrClient;
 cbrClient = (AppDataCbrClient *) MEM_malloc(sizeof(AppDataCbrClient));
 memset(cbrClient, 0, sizeof(AppDataCbrClient));
 /*
 * fill in cbr info.
 */
 memcpy(&(cbrClient->localAddr), &localAddr, sizeof(Address));
 memcpy(&(cbrClient->remoteAddr), &remoteAddr, sizeof(Address));
 cbrClient->interval = interval;
 ...
 // Add CBR variables to hierarchy

 std::string path;
 D_Hierarchy *h = &node->partitionData->dynamicHierarchy;

 if (h->CreateApplicationPath(
 node, // node
 "cbrClient", // protocol name
 cbrClient->sourcePort, // port
 "interval", // object name
 path)) // path (output)
 {
 h->AddObject(
 path,
 new D_ClocktypeObj(&cbrClient->interval));
 }
 if (h->CreateApplicationPath(
 node,
 "cbrClient",
 cbrClient->sourcePort,
 "numBytesSent",
 path))
 {
 h->AddObject(
 path,
 new D_Int64Obj(&cbrClient->numBytesSent));
 }
 ...
}

FIGURE 7-8. Adding Objects to the Hierarchy
QualNet 5.2 Programmer’s Guide 502

Dynamically Enabling a Protocol Chapter 7
Pitfalls to Avoid

• Dynamic variables are C++ objects if listening is enabled (by default, listening is enabled). Several
complications can arise from this:

- The struct/class containing the variable should be allocated using a new call instead of
MEM_malloc. This allows the dynamic object to be instantiated.

- Dynamic objects can no longer be passed directly to the printf family of functions. Instead, they
should be cast to their underlying data type. For example, a D_Int32 variable should be cast to an
Int32 before printing.

- Always test the protocol with listening enabled and disabled.

• Dynamic variables may change at any time. Before dynamically enabling a variable make sure that a
changing variable will not interfere with the protocol. If not, set the variable as not writable (see
Section 7.3.3).

7.3.3 Object Permissions

Objects may be read, written and executed. Object permissions are set automatically when the object is
created. Variables may be read and written. Commands may be executed.

Objects may change their permissions by calling the D_Hierarchy functions SetReadable, SetWriteable
and SetExecutable. As an example, the following code segment creates a path for the object numNodes,
adds an object of class D_Int32Obj at the newly created path, and sets the permission for the newly
created object to be non-writable.

 if (h->CreatePartitionPath(
 partitionData,
 "numNodes",
 path))
 {
 h->AddObject(
 path,
 new D_Int32Obj(&partitionData->numNodes));
 h->SetWriteable(
 path,
 FALSE);
 }

7.3.4 Initializing a Dynamically Enabled Protocol

A dynamically enabled protocol that is allocated using MEM_malloc must have the entire data structure set
to 0 using the function memset. It is not enough to set each dynamic object to 0. This is necessary
because there is extra data for each dynamic object that must be initialized.

If the dynamic protocol is allocated using the C++ memory management function new then the data
structure may be set to 0 using the function, memset although it is not required.
503 QualNet 5.2 Programmer’s Guide

Chapter 7 Defining New Dynamic Data Types
7.3.5 Dynamic Strings

If listening is enabled, i.e., D_LISTENING_ENABLED is defined, then dynamic objects cannot be passed
directly to the function printf. They must be cast to the appropriate type. As an example, consider printing a
D_Int32 object aodv->numRequestsInitiated. The value of this object can be printed by using the
following line:

printf(“numRequestsInitiated = %d\n”, (int) aodv->numRequestsInitiated);

.
7.4 Defining New Dynamic Data Types

New dynamic data types may be defined by the user. This is accomplished by creating a new class that
inherits from the most appropriate base class. Defining a new data type comprises two steps: defining the
data component (see Section 7.4.1) and defining the object component (see Section 7.4.2). We illustrate
these steps by studying the implementation of the dynamic data type D_Int32.

7.4.1 Defining the Data Component

Figure 7-9 shows the definition of the data component of D_Int32. If listening is disabled, i.e.,
D_LISTENING_ENABLED is not defined, then D_Int32 is equivalent to the type int. If listening is
enabled, then D_Int32 is derived from the class D_SimpleObject. D_SimpleObject is a small class
that is used to link the data of an object to the object that is stored in the hierarchy. D_SimpleObject
implements the changed function that notifies the dynamic API when the object’s value changes.

D_Int32 and D_SimpleObject are declared in QUALNET_HOME/include/dynamic_vars.h.
QualNet 5.2 Programmer’s Guide 504

Defining New Dynamic Data Types Chapter 7
ifdef D_LISTENING_ENABLED
class D_Int32 : public D_SimpleObject
{
 private:
 Int32 value;

 public:
 Int32& operator = (Int32 newValue)
 {
 value = newValue;
 Changed();
 return value;
 }

 Int32& operator ++(Int32)
 {
 value++;
 Changed();
 return value;
 }
 operator Int32()
 {
 return value;
 }
 operator Int32() const
 {
 return value;
 }
};
#else // D_LISTENING_ENABLED
typedef Int32 D_Int32;
#endif // D_LISTENING_ENABLED

FIGURE 7-9. Data Component of D_Int32

7.4.2 Defining the Object Component

Figure 7-10 shows the definition of the object component corresponding to D_Int32, which is called
D_Int32Obj. The object contains a pointer to the data component that is named value. The constructor
function links this object to the data component. If listening is enabled, the data component is linked back
to this object. The functions IsNumeric and GetDouble over-ride virtual D_Variable functions. Function
IsNumeric states that this variable is numeric and function GetDouble provides a numeric value for this
variable. The final two functions ReadAsString and WriteAsString also over-ride virtual D_Object
functions. They are the action functions for this object that determine this object’s behavior. In this case
they simply convert the object’s value to and from a string.

D_Int32Obj is declared in QUALNET_HOME/include/dynamic_vars.h. D_Variable and D_Object are
declared in QUALNET_HOME/include/dynamic.h.
505 QualNet 5.2 Programmer’s Guide

Chapter 7 Defining New Dynamic Data Types
class D_Int32Obj : public D_Variable
{
 private:
 D_Int32* value;

 public:
 D_Int32Obj(D_Int32* newValue)
 {
 value = newValue;
#ifdef D_LISTENING_ENABLED
 value->SetObject(this);
#endif // D_LISTENING_ENABLED
 }

 virtual BOOL IsNumeric()
 {
 return TRUE;
 }
 virtual double GetDouble()
 {
 return (double) *value;
 }

 void ReadAsString(std::string& out)
 {

 std::ostringstream oss;
 oss << (Int32) *value;
 out = oss.str();
 }

 void WriteAsString(const std::string& in)
 {

 std::istringstream iss(in);
 Int32 intVal;
 iss >> intVal;
 *value = intVal;
 }
};

FIGURE 7-10. Object Component D_Int32Obj
QualNet 5.2 Programmer’s Guide 506

A Coding Guidelines for 64-bit Platforms

This appendix provides coding guidelines for developing QualNet models for 64-bit platforms. It also
discusses some compatibility issues when converting models between 32-bit and 64-bit platforms.

.
A.1 Introduction

The major differences between the 32-bit and the 64-bit QualNet development environments arise from the
fact that the 32-bit QualNet implementation is based on the ILP32 data model, whereas the 64-bit QualNet
implementation is based on the LP64 data model (for Linux systems) or the P64 data model (for Windows
systems). In the ILP32 data model, long and pointer types are 32 bits long, where as in the LP64 and P64
data models, long and pointer types are 64 bits long. The other fundamental data types have the same
length in the 32-bit and 64-bit data models.

Table A-1 lists the size of common data types in the three data models.

.
A.2 Coding Guidelines and Compatibility Issues

This section gives some coding guidelines and lists some compatibility issues for developing QualNet
models for 64-bit platforms.

TABLE A-1. Size of Common Data Types

Type ILP32 Size
(bytes)

LP64 Size
 (bytes)

P64 Size
(bytes)

int 4 4 4

long 4 8 8

Pointers 4 8 8

size_t 4 8 8

time_t 4 8 8
QualNet 5.2 Programmer’s Guide 507

Appendix A Coding Guidelines and Compatibility Issues
1. Use data types defined in QualNet.

QualNet has defined some data types which have the same size on all platforms. Use these data types
in order to avoid problems arising from data types having different sizes on different platforms. These
data types are defined in QUALNET_HOME/include/types.h and are listed in Table A-2.

Polymorphic Data Type IntPtr

In addition to the above fixed-size data types, QualNet also defines the polymorphic type IntPtr for
pointer arithmetic. IntPtr is 32 bits long on 32-bit platforms and 64 bits long on 64-bit platforms.

2. Use Int32 or Int64 instead of long.

The data types long and unsigned long have different lengths on 32-bit and 64-bit platforms. Avoid
using these data types. Use Int32 (or int) and UInt32 (or unsigned int) for signed and unsigned
32-bit integers, respectively. Use Int64 and UInt64 for signed and unsigned 64-bit integers,
respectively.

3. Avoid assignment among variables of different sizes.

Truncation problems can arise when assignments are made between 64-bit and 32-bit data items.
Since int, long, and pointer data types are all 32 bits long in the ILP32, mixed assignments between
these data types do not present any special problems. However, in the LP64 and P64 data models,
these data types have different sizes and assignment among them may result in truncation errors, for
instance, when a pointer variable is assigned to an int variable.

To avoid problems arising from different lengths of data types:

• Do not use int and long types interchangeably, since this may lead to truncation of significant
digits or unexpected results.

• Do not pass an argument of type long or a pointer to functions expecting a type int argument, as
this may lead to truncation.

• Do not exchange pointers and int types, since this may cause segmentation faults.

• Do not assign a long type to a float, since this may cause loss of accuracy.

• Do not cast pointers to int or unsigned int, since they may have unequal sizes on some
platforms.

TABLE A-2. Fixed-size Data Types Defined in QualNet

Data Type Size

Int8 8-bit integer

UInt8 8-bit unsigned integer

Int16 16-bit integer

UInt16 16-bit unsigned integer

Int32 32-bit integer

UInt32 32-bit unsigned integer

Int64 64-bit integer

UInt64 64-bit unsigned integer

Float32 32-bit float

Float64 64-bit float
QualNet 5.2 Programmer’s Guide 508

Coding Guidelines and Compatibility Issues Appendix A
Keep in mind that the sizeof() function returns an unsigned long. Do not pass sizeof() to a
function expecting an argument of type int or assign or cast it to an int since this may cause
truncation and loss of data.

4. Be aware of changes in struct size because of different paddings.

Compilers introduce padding in structures in order to align the structure members. Because some data
types have different lengths on 32-bit and 64-bit platforms, the size of the padding introduced to align
structure members may be different on 32-bit and 64-bit platforms.

Consider the following example of a struct definition:

struct myStruct
{
 long myLong;
 char myChar;
 struct myStruct* left;
 short myShort;
 struct myStruct* right;
}

In this example, the same structure definition has different sizes and the structure members have
different offsets in different data models. In the ILP32 data model, this data structure contains 20 bytes,
as shown in Figure A-1.

FIGURE A-1. Structure Alignment in ILP32 Data Model

In the LP64 data model, this data structure contains 40 bytes, as shown in Figure A-2.

FIGURE A-2. Structure Alignment in LP64 Data Model
509 QualNet 5.2 Programmer’s Guide

Appendix A Coding Guidelines and Compatibility Issues
5. Be aware of alignment effects of bit fields.

In the LP64 data model, unqualified bit fields are unsigned by default. In the ILP32 data model,
unqualified bit fields are signed by default. Bit fields of enumerated types are signed if the enumeration
base type is signed and unsigned if the enumeration base type is unsigned.

In the LP64 data model, unnamed, non-zero length bit fields do not affect the alignment of a structure or
union. In the ILP32 data model, unnamed, non-zero length bit fields affect the alignment of structures
and unions.

Also keep in mind that if you use long bit fields in 64-bit mode, their exact alignment may change in
future versions of the compiler, even if the bit field is less than 32 bits in length.

6. The data model determines whether enumerated types are signed or unsigned.

In the LP64 data model, enumerated types are signed only if one or more of the enumeration constants
defined for that type is negative. If all enumeration constants are non-negative, the type is unsigned.

In the ILP32 data model, enumerated types are always signed.

7. Be aware of data type used for intermediate results of operations.

Consider the operation:

 a = b operation c

The data type used for the intermediate results of the operation depends on the types of b and c. The
intermediate result is then promoted to the type of a. Assuming that the intermediate result has the
same data type as the type of a may result in erroneous or unexpected results. This is particularly true
when dealing with bit shifts and bit masks because programmers often assume that the operations are
performed in variables that have the same data type as the result.

In the above example, if c is a 64-bit data type, but b and c are 32-bit data types, then a 32-bit data type
is used for the intermediate result. This may result in an overflow or truncation before the intermediate
result is assigned to a.

In the following example, the left operand, 1, is a numeric constant, which the compiler treats as a 32-bit
value in both ILP32 and LP64 data models:

UInt64 y;
y = (1 << 32);

The bit shift operation results in an overflow in both ILP32 and LP64 data models because a 32-bit data
type is used for the intermediate result in both data models. In 64-bit mode, the final result is undefined.

Use suffixes such as L and UL for long and unsigned long if you need long constants. For example, in
64-bit mode, the above code fragment can be changed to:

UInt64 y;
y = (1L << 32);

In 64-bit mode, y is assigned 2^32 as a result of the above operation.

8. Use platform-independent formats for printing and reading 64-bit values.

There is a special printf/scanf formatting string for 64-bit values. However, Windows and Linux
platforms define different formatting strings: “I64” in Windows and “ll” in Linux. QualNet defines a
QualNet 5.2 Programmer’s Guide 510

References Appendix A
platform-independent formatting string, TYPES_64BITFMT, for 64-bit values. It is recommended that
you use TYPES_64BITFMT instead of “I64” or “ll”.

Example:

printf ("%I64d", clock); // AVOID!
printf ("%lld", clock); // AVOID!

printf ("%" TYPES_64BITFMT "d", clock); // Correct

9. Use data declaration macros for 64-bit immediate values.

Use data declaration macros for defining a 64-bit immediate value. QualNet provides the following
platform-independent macros for declaring 64-bit immediate values:

• TYPES_ToInt64(n)

• TYPES_ToUInt64(n)

• TYPES_ToIntPtr(n)

Example:
The following two declarations declare the same 64-bit constant. However, the first definition is
valid only on Linux platforms while the second declaration is valid on all platforms.

#define CLOCKTYPE_MAX 0x7fffffffffffffffLL //AVOID!
#define CLOCKTYPE_MAX TYPES_ToInt64(0x7fffffffffffffff) //Correct

10.Be aware that the default return type of a function is int.

By default, a function without an explicit return type returns an int. On 64-bit platforms, the int and
pointer types have different sizes. Therefore, any function that returns a pointer should be declared with
an explicit return type when compiling in 64-bit mode. Otherwise, the compiler will assume the function
returns an int and truncate the resulting pointer, even if the returned value is assigned to a valid
pointer.

Example:
Function calloc is defined in malloc.h with an implicit return type. The following assignment
works on 32-bit platforms (because int and pointer types have the same size) but will cause an
error on 64-bit platforms because the pointer returned by calloc is truncated.

a =(char *) calloc(25);

Even the type casting does not avoid this problem because the pointer returned by calloc is
truncated before the type casting operation.

.
A.3 References

The following sites provide further guidelines on coding for 64-bit platforms:

• http://developers.sun.com/prodtech/solaris/reference/techart/index.html

• http://docs.hp.com/en/5966-9844/
511 QualNet 5.2 Programmer’s Guide

http://developers.sun.com/prodtech/solaris/reference/techart/index.html
http://docs.hp.com/en/5966-9844/

B Coding Guidelines for Multi-Processor

Platforms

This appendix provides coding guidelines for developing QualNet models that run correctly on a
multiprocessor (parallel) architecture.

Section B.1 gives some general guidelines for developing parallel-safe models. Section B.2 lists some
issues that arise when developing parallel-safe models that are intended to work with external interfaces.

.
B.1 General Guidelines

The following rules should be followed when developing parallel-safe models:

1. Do not use global variables (see Section B.1.1).

2. Nodes should not access other nodes (see Section B.1.2).

3. Provide lookahead in MAC protocols (see Section B.1.3).

4. Do not violate inter-layer APIs (see Section B.1.4).

B.1.1 Global Variables

Do not use static or global variables for the following reasons.

1. Data in a parallel simulation must be accessed in time sequence, but since shared variables are outside

the control of the simulation engine, time sequencing cannot be maintained even if the data is protected

by mutex locks. (Independent of timing issues, locking of data via mutex locks or semaphores is slow

and effectively makes the parallel processes sequential.)

2. It is usually safe to use global data that are written once (during initialization) and are subsequently

read-only, provided that the initialization is properly sequenced and the same data made available to all

processors. However, making the same data available to all processors may be non-trivial in a

distributed environment.
QualNet 5.2 Programmer’s Guide 512

General Guidelines Appendix B
3. Since real systems do not use shared data, protocol models that rely on shared data may not be

accurate representation of the real system. Such models may provide inaccurate simulation results and

should be avoided.

If your model depends on global state, make sure that the state is consistent on all partitions. If the state
does not change after initialization (or is only used during initialization), try to have all partitions generate
the same state deterministically. One way to achieve this is to use information contained in the
configuration file.

B.1.2 Accessing Other Nodes

A node should not access another node’s data structure because the two nodes may be in different
partitions. In particular, programmers may be tempted to have one node update another node’s statistics or
applications. This should be avoided: statistics should be updated by the node to which the statistics
belong.

If, for some reason. a node is required to access another node’s data structure, then the code should
check if the two nodes are in different partitions and take appropriate action if they are.

Consider the code segment in Figure B-1, which could be part of the function that initializes applications.
This code segment checks if the originating node (with node identifier sourceNodeId) is on the local
partition and aborts if it is not.

 ...
 node = MAPPING_GetNodePtrFromHash(nodeHash, sourceNodeId)
 if (node == NULL)
 {
 sprintf(errorString,
 "%s: Node %d does not exist",
 appInput.inputStrings[i],
 sourceNodeId);
 ERROR_ReportError(errorString);
 }
 ...

FIGURE B-1. Handling Nodes in a Remote Partition: Incorrect Way

However, it is more appropriate to not abort if the originating node is not in the local partition and to
continue processing as long as the node exists in a remote partition. Figure B-2 shows how this is done in
function APP_InitializeApplications by using function PARTITION_NodeExists to check whether the node
exists at all. If the node exists but is in another partition, then the function continues without taking any
action. APP_InitializeApplications is implemented in QUALNET_HOME/main/application.cpp.
513 QualNet 5.2 Programmer’s Guide

Appendix B General Guidelines
void
APP_InitializeApplications(
 Node *firstNode,
 const NodeInput *nodeInput)
{
 ...
 if (firstNode == NULL)
 return; // this partition has no nodes.

 nodeHash = firstNode->partitionData->nodeIdHash;
 ...
 for (i = 0; i < appInput.numLines; i++)
 {
 sscanf(appInput.inputStrings[i], "%s", appStr);
 ...
 if (strcmp(appStr, "FTP") == 0)
 {
 ...
 }
 else if (strcmp(appStr, "GSM") == 0)
 {
 ...
 // Call Originating(MO) node
 if (PARTITION_NodeExists(firstNode->partitionData, sourceNodeId)
 == FALSE)
 {
 sprintf(errorString,
 "%s: Node %d does not exist",
 appInput.inputStrings[i],
 sourceNodeId);
 ERROR_ReportError(errorString);
 }
 node = MAPPING_GetNodePtrFromHash(nodeHash, sourceNodeId);
 if (node == NULL)
 {
 // not on this partition
 continue;
 }
 ...
 }
 ...
 }
 ...
}

FIGURE B-2. Handling Nodes in a Remote Partition: Correct Way

In Figure B-2, the fist parameter of function MAPPING_GetNodeFromHash is set to firstNode-
>partitionData->nodeIdHash. firstNode->partitionData->nodeIdHash contains pointers to
nodes that are in this partition.

The first parameter of function MAPPING_GetNodeFromHash can alternatively be set to firstNode-
>partitionData->remoteNodeIdHash. firstNode->partitionData->remoteNodeIdHash
contains pointers to reference nodes which are shadow copies of nodes in other partitions. The reference
nodes are used during MAC initialization to ensure that IP addresses are assigned properly. The user
should never assume that the reference nodes contain any useful data.
QualNet 5.2 Programmer’s Guide 514

General Guidelines Appendix B
Instead of function MAPPING_GetNodePtrFromHash, function PARTITION_ReturnNodePointer can be
used. PARTITION_ReturnNodePointer returns a pointer to the node if the node exists and returns NULL if
it does not. To use this function, replace the following line in Figure B-2:

 node = MAPPING_GetNodePtrFromHash(nodeHash, sourceNodeId);

with the following line:

 PARTITION_ReturnNodePointter(partitionData, &node, sourceNodeId);

B.1.3 MAC Lookahead

QualNet uses a conservative parallel algorithm. To gain efficiency from parallel execution, protocols
estimate a lookahead interval, which is a time interval during which nodes on different processors are
guaranteed not to interfere with each other. The longer the lookahead interval, the better the parallel
performance.

Some MAC protocols, such as the IEEE 802.11 MAC, set a small lookahead based on the time it takes the
physical radio device to change from receiving mode to transmitting mode.

Some MAC protocols, such as the point-to-point link protocol, use the transmission delay as the
lookahead.

MAC protocols that are very predictable, such as the TDMA MAC protocol, can make good use of
lookahead. TDMA protocols can predict the times of message transmissions exactly because
transmissions occur in pre-assigned time slots. This exact time is called the earliest output time (EOT).

A MAC protocol should either set a minimum lookahead for each interface or should indicate that it is not
EOT-capable. The minimum lookahead is the smallest delay that is passed to function
PHY_StartTransmittingSignal. For optimal performance, the minimum lookahead should be set to the
largest possible value that the correct functioning of the protocol allows (which may be 0 in some cases).

The lookahead functions that programmers can use are listed in Table B-1. The prototypes for these
functions are contained in QUALNET_HOME/include/parallel.h.

TABLE B-1. Lookahead Functions

Function Description

PARALLEL_SetMinimumLookaheadForInterface This function sets the minimum delay between
messages going out on an interface. This is
usually the minimum delay before transmission
(ram-up delay) for wireless interfaces, or the
transmission delay for wired interfaces.

PARALLEL_SetProtocolIsNotEOTCapable This function is used to indicate that the
protocol is not capable of setting a specific EOT.

PARALLEL_AddLookaheadHandleToLookaheadCalculator This function adds a new lookahead handle to
the lookahead calculator.

PARALLEL_SetLookaheadHandleEOT This function updates the earliest output time.
515 QualNet 5.2 Programmer’s Guide

Appendix B General Guidelines
Figure B-3 shows how the minimum lookahead is set in the IEEE 802.11 MAC protocol function
MacDot11Init, which is implemented in QUALNET_HOME/libraries/wireless/src/mac_dot11.cpp.

void MacDot11Init(
 Node* node,
 int interfaceIndex,
 const NodeInput* nodeInput,
 PhyModel phyModel,
 SubnetMemberData* subnetList,
 int nodesInSubnet,
 int subnetListIndex,
 NodeAddress subnetAddress,
 int numHostBits,
 BOOL isQosEnabled,
 NetworkType networkType,
 in6_addr *ipv6SubnetAddr,
 unsigned int prefixLength)
{
 BOOL wasFound;
 ...
 MacDot11TraceInit(node, nodeInput, dot11);

#ifdef PARALLEL //Parallel
 PARALLEL_SetProtocolIsNotEOTCapable(node);
 PARALLEL_SetMinimumLookaheadForInterface(node,
 dot11->delayUntilSignalAirborn);
#endif //endParallel
 ...
}

FIGURE B-3. Setting Minimum Lookahead
QualNet 5.2 Programmer’s Guide 516

General Guidelines Appendix B
If your model’s behavior is very predictable, or if the earliest time at which your protocol will send a
response changes during the protocol’s operation, you must allocate a lookahead handle and then
repeatedly set the earliest output time.We show how this is done for the TDMA MAC protocol in Figure B-4
and Figure B-5. The lookahead handle is allocated in the function TDMA initialization function,
MacTdmaInit, as shown in Figure B-4. Every time function MacTdmaInitializeTimer is called, the earliest
output time is updated, as shown in Figure B-5. Functions MacTdmaInit and MacTdmaInitializeTimer are
implemented in QUALNET_HOME/libraries/wireless/src/mac_tdma.cpp.

void MacTdmaInit(Node* node,
 int interfaceIndex,
 int interfaceAddress,
 const NodeInput* nodeInput,
 const int subnetListIndex,
 const int numNodesInSubnet)
{
 BOOL wasFound;
 ...
#ifdef PARALLEL //Parallel
 tdma->lookaheadHandle = PARALLEL_AllocateLookaheadHandle (node);
 PARALLEL_AddLookaheadHandleToLookaheadCalculator(
 node, tdma->lookaheadHandle, 0);
#endif //endParallel

 MacTdmaInitializeTimer(node, tdma);
}

FIGURE B-4. Setting Lookahead Handle

static
void MacTdmaInitializeTimer(Node* node, MacDataTdma* tdma) {
 int i;
 ...
 if (i == tdma->numSlotsPerFrame) {
 ...
 }
 else {
 Message *timerMsg;
 clocktype delay;
 delay = (tdma->slotDuration + tdma->guardTime) * i
 + tdma->interFrameTime;
 ...
#ifdef PARALLEL //Parallel
 PARALLEL_SetLookaheadHandleEOT(node,
 tdma->lookaheadHandle,
 getSimTime(node) + delay + 5000);
#endif //endParallel
 ...
 }
}

FIGURE B-5. Setting Earliest Output Time
517 QualNet 5.2 Programmer’s Guide

Appendix B External Interface Issues
B.1.4 Inter-Layer APIs

Circumventing the inter-layer APIs (see Section 4.11) violates the minimum lookahead settings. For this
reason, do not violate protocol layer APIs by sending messages directly to other nodes. Use the protocol
stack to send the message through the network.

.
B.2 External Interface Issues

This section lists some issues which often arise when developing parallel-safe code for use with external
interfaces.

B.2.1 Node Lists

If a program uses code that iterates among all nodes (e.g., by using the field firstNode of
partitionData), then in a sequential run the code will iterate through all nodes in sequence (assuming
default partitioning). In parallel execution, each partition has a subset of the complete list of nodes. So, if
the code acquires nodes by examining or iterating through the list of nodes, the results from a sequential
run may be very different from results from a parallel run.

B.2.2 Loose Events

Certain events to be scheduled for a node (which may be on a different partition) can be scheduled with a
best-effort time delay.

We illustrate this by taking as an example the implementation of the Forward application. A Forward
application instance at both the source node and the destination node needs to be created before the real
TCP packets arrive at the destination. To accomplish this, the Forward application at the source node
sends an application instantiation message to the destination node before sending any real TCP packets.
This message is not real network traffic and serves to trigger the destination node to create a Forward
application instance. This instantiation message is sent with a 0 delay value and a loose, or best-effort,
scheduling requirement. The Forward application is implemented in files app_forward.h and
app_forward.cpp in QUALNET_HOME/libraries/developer/src.
QualNet 5.2 Programmer’s Guide 518

External Interface Issues Appendix B
Figure B-6 shows an example of how the instantiation message is sent in function
AppLayerForwardBeginExternalDataTCP, which is implemented in file app_forward.cpp.

void AppLayerForwardBeginExternalDataTCP(
 NodeAddress from,
 Node * nodeA,
 NodeAddress nodeIdA,
 NodeAddress addressA,

 NodeAddress to,
 Node * nodeB,
 NodeAddress nodeIdB,
 NodeAddress addressB,

 char *data,
 int dataSize,
 int interfaceId,
 char * interfaceName
)
{
 AppDataForward *forward;
 ...
 forward = AppLayerGetForward(
 nodeA,
 addressA,
 addressB,
 interfaceId);
 if (forward == NULL)
 {
 Message* instantiateMessage;
 EXTERNAL_ForwardInstantiate *instantiate;
 ...
 instantiateMessage = MESSAGE_Alloc(
 nodeB,
 APP_LAYER,
 APP_FORWARD,
 MSG_EXTERNAL_ForwardInstantiate);
 ...
 // Send the message with no delay
 EXTERNAL_MESSAGE_SendAnyNode (nodeB->partitionData, nodeB,
 instantiateMessage, 0, EXTERNAL_SCHEDULE_LOOSELY);
 }
 ...
}

FIGURE B-6. Scheduling Loose Events
519 QualNet 5.2 Programmer’s Guide

Appendix B External Interface Issues
B.2.3 Partition Communication

Partition communication allows one partition to send a message to a different partition. To use partition
communication, the external interface code registers a communication handle as part of its initialization
work. A name and a function that will be called for processing communication messages are provided
when the registration function is called by the external interface. In contrast to a normal message, these
partition communication messages can then be sent to the function that was registered.

The partition communication functions that programmers can use are listed in Table B-2. The prototypes
for these functions are contained in QUALNET_HOME/include/partition.h.

B.2.4 Forwarding Packets to External Interfaces

Function EXTERNAL_RemoteForwardData is similar to the function EXTERNAL_ForwardData, except
that it forwards the message to an external interface that is on a remote partition. Each partition has its own
set of interfaces and a message can be forwarded back to an external interface on a different partition. In
this case, the message to be forwarded is copied to the specified partition and then the interface’s forward
function is invoked on that partition. The message to be forwarded must be flat, i.e., it can not contain
pointers because those areas of memory are only present on the original partition.

Functions EXTERNAL_ForwardData and EXTERNAL_RemoteForwardData are implemented in files
QUALNET_HOME/include/external.h and QUALNET_HOME/main/external.cpp.

TABLE B-2. Partition Communication Functions

Function Description

PARTITION_COMMUNICATION_RegisterCommunicator This function allocates a message identifier and
registers the handler that is invoked to receive
callbacks when messages with that identifier
are sent.

PARTITION_COMMUNICATION_FindCommunicator This function locates an already registered
communicator.

PARTITION_COMMUNICATION_SendToPartition This function transmits a message to a specific
partition.

PARTITION_COMMUNICATION_SendToAllPartitions This function transmits a message to all
partitions.
QualNet 5.2 Programmer’s Guide 520

	QualNet 5.2 Programmer’s Guide
	Table of Contents
	Preface
	1 Introduction
	1.1 QualNet Components
	1.2 QualNet Protocol Stack
	1.2.1 Application Layer
	1.2.2 Transport Layer
	1.2.3 Network Layer
	1.2.4 Link (MAC) Layer
	1.2.5 Physical Layer
	1.2.6 Communication Medium
	1.2.7 Node Mobility

	2 QualNet File Organization, Compilation and Debugging
	2.1 File Organization
	2.2 Compiling QualNet on Windows
	2.2.1 C++ Compiler
	2.2.2 Executable Files
	2.2.3 Compiling QualNet
	2.2.3.1 Compiling from Command Line
	2.2.3.2 Compiling from Visual Studio 2008 IDE

	2.3 Compiling QualNet on Linux
	2.3.1 Third party Software
	2.3.1.1 Expat Development Library
	2.3.1.2 C/C++ Compiler

	2.3.2 Executable Files
	2.3.3 Compiling QualNet

	2.4 Compiling QualNet on Mac OS X
	2.4.1 C/C++ Compilers
	2.4.2 Executable Files
	2.4.3 Compiling QualNet

	2.5 Activating and Deactivating Addons
	2.5.1 Activating and Deactivating Addons on Windows
	2.5.2 Activating Addons on Linux
	2.5.2.1 Activating Addons Manually
	2.5.2.2 Activating Addons using the Script

	2.5.3 Activating Addons on Mac OS X

	2.6 Advanced Compilation Options
	2.7 Debugging QualNet
	2.7.1 Debugging on Windows
	2.7.2 Debugging on Linux and Mac OS X Systems

	3 Simulator Basics
	3.1 Overview of Discrete-event Simulation
	3.2 Modeling Protocols in QualNet
	3.3 Discrete-event Simulation in QualNet
	3.3.1 Events and Messages
	3.3.1.1 Message Class
	3.3.1.1.1 Message infoArray Member
	3.3.1.1.2 Message packet Field

	3.3.1.2 Message APIs

	3.3.2 Types of Events
	3.3.2.1 Packet Events
	3.3.2.1.1 Sending Packets Using Layer-specific APIs
	3.3.2.1.2 Sending Packets Using Message APIs

	3.3.2.2 Timer Events
	3.3.2.2.1 Setting Timers
	3.3.2.2.2 Canceling Timers

	3.4 QualNet Simulator Architecture
	3.4.1 Initialization Hierarchy
	3.4.2 Event Handling Hierarchy
	3.4.3 Finalization Hierarchy

	4 Developing Protocol Models in QualNet
	4.1 General Programming Utility Functions
	4.1.1 Reading Input from a Configuration File
	4.1.2 Programming with Message Info Fields
	4.1.2.1 Info Field Type
	4.1.2.2 APIs for Info Field Operations
	4.1.2.3 Using Info Fields
	4.1.2.3.1 Declaring User-defined Info Field Type
	4.1.2.3.2 Adding an Info Field
	4.1.2.3.3 Accessing an Info Field
	4.1.2.3.4 Removing an Info Field

	4.1.2.4 Persistence of Info Fields

	4.1.3 Random Number Generation
	4.1.3.1 Basic Functions for Random Number Generation
	4.1.3.2 Built-in Random Number Distributions
	4.1.3.2.1 Using the RandomDistribution Class
	4.1.3.2.2 Using the File Parsing Function

	4.2 Application Layer
	4.2.1 Application Layer Protocols in QualNet
	4.2.1.1 Traffic-generating Protocols
	4.2.1.2 Routing Protocols

	4.2.2 Application Layer Organization: Files and Folders
	4.2.3 Application Layer Data Structures
	4.2.4 Application Layer APIs and Inter-layer Communication
	4.2.4.1 Application Layer to Transport Layer Communication
	4.2.4.2 Transport Layer to Application Layer Communication
	4.2.4.3 Application Layer Utility APIs

	4.2.5 Adding a Traffic-generating Application Protocol
	4.2.5.1 Naming Guidelines
	4.2.5.2 Creating Files
	4.2.5.3 Including MYPROTOCOL in List of Application Layer Protocols
	4.2.5.4 Defining Data Structures
	4.2.5.5 Initialization
	4.2.5.5.1 Determining the Protocol Configuration Format
	4.2.5.5.2 Reading Configuration Parameters and Calling the Protocol Initialization Function
	4.2.5.5.3 Implementing the Client Initialization Function
	4.2.5.5.3.1 Creating an Instance and Initializing the State
	4.2.5.5.3.2 Registering the Application
	4.2.5.5.3.3 Initializing Timers

	4.2.5.5.4 Implementing the Server Initialization Function

	4.2.5.6 Implementing the Event Dispatcher
	4.2.5.6.1 Modifying the Application Layer Event Dispatcher
	4.2.5.6.2 Implementing the Client Event Dispatcher
	4.2.5.6.3 Implementing the Server Event Dispatcher

	4.2.5.7 Collecting and Reporting Statistics
	4.2.5.7.1 Declaring Statistics Variables
	4.2.5.7.2 Initializing Statistics
	4.2.5.7.3 Updating Statistics
	4.2.5.7.4 Printing Statistics
	4.2.5.7.5 Adding Dynamic Statistics

	4.2.5.8 Finalization
	4.2.5.8.1 Modifying the Application Layer Finalization Function
	4.2.5.8.2 Implementing the Client Finalization Function
	4.2.5.8.3 Implementing the Server Finalization Function

	4.2.5.9 Including and Compiling Files
	4.2.5.10 Integrating the Protocol into the GUI

	4.2.6 Adding an Application Layer Routing Protocol
	4.2.6.1 Including MYPROTOCOL in List of Application Layer Protocols
	4.2.6.2 Modify AppData to include MYPROTOCOL State Information
	4.2.6.3 Including MYPROTOCOL in Network Layer Declarations
	4.2.6.4 Initialization
	4.2.6.4.1 Determining the Protocol Configuration Format
	4.2.6.4.2 Calling the Protocol Initialization Function
	4.2.6.4.3 Implementing the Protocol Initialization Function
	4.2.6.4.3.1 Creating an Instance and Reading Configuration Parameters
	4.2.6.4.3.2 Initializing Timers
	4.2.6.4.3.3 Initializing Tables

	4.2.6.5 Integrating with the Network Layer
	4.2.6.6 Implementing the Event Dispatcher
	4.2.6.6.1 Modifying the Application Layer Event Dispatcher
	4.2.6.6.2 Implementing the Routing Protocol Event Dispatcher

	4.2.6.7 Collecting and Reporting Statistics
	4.2.6.8 Finalization
	4.2.6.8.1 Modifying the Application Layer Finalization Function
	4.2.6.8.2 Implementing the Routing Protocol Finalization Function

	4.2.6.9 Including and Compiling Files

	4.2.7 Special Issues for Application Layer Protocols
	4.2.7.1 Port Numbers In QualNet
	4.2.7.1.1 Overriding AppType as Destination Port

	4.2.7.2 Setting Address for Broadcast Messages

	4.3 Transport Layer
	4.3.1 Transport Layer Protocols in QualNet
	4.3.1.1 User Datagram Protocol (UDP)
	4.3.1.2 Transmission Control Protocol (TCP)
	4.3.1.3 Reservation Protocol with Traffic Engineering (RSVP-TE)

	4.3.2 Transport Layer Organization: Files and Folders
	4.3.3 Transport Layer Data Structures
	4.3.4 Transport Layer APIs and Inter-layer Communication
	4.3.4.1 Application Layer to Transport Layer Communication
	4.3.4.2 Transport Layer to Application Layer Communication
	4.3.4.3 Transport Layer to Network Layer Communication
	4.3.4.4 Network Layer to Transport Layer Communication

	4.3.5 Adding a Transport Layer Protocol
	4.3.5.1 Naming Guidelines
	4.3.5.2 Creating Files
	4.3.5.3 Including MYPROTOCOL in List of Transport Protocols
	4.3.5.4 Defining Data Structures
	4.3.5.5 Initialization
	4.3.5.5.1 Determining the Protocol Configuration Format
	4.3.5.5.2 Reading Configuration Parameters and Calling the Protocol Initialization Function
	4.3.5.5.3 Implementing the Protocol Initialization Function
	4.3.5.5.3.1 Creating an Instance and Initializing the State
	4.3.5.5.3.2 Initializing Timers

	4.3.5.6 Implementing the Event Dispatcher
	4.3.5.6.1 Modifying the Transport Layer Event Dispatcher
	4.3.5.6.2 Implementing the Protocol Event Dispatcher
	4.3.5.6.2.1 UDP Event Dispatcher
	4.3.5.6.2.2 RSVP-TE Event Dispatcher

	4.3.5.7 Integrating with the Application Layer
	4.3.5.8 Integrating with the Network Layer
	4.3.5.9 Collecting and Reporting Statistics
	4.3.5.9.1 Declaring Statistics Variables
	4.3.5.9.2 Initializing Statistics
	4.3.5.9.3 Updating Statistics
	4.3.5.9.4 Printing Statistics
	4.3.5.9.5 Adding Dynamic Statistics

	4.3.5.10 Finalization
	4.3.5.10.1 Modifying the Transport Layer Finalization Function
	4.3.5.10.2 Implementing the Protocol Finalization Function

	4.3.5.11 Including and Compiling Files
	4.3.5.12 Integrating the Protocol into the GUI

	4.3.6 Special Issues for Transport Layer Protocols
	4.3.6.1 Setting Address for Broadcast Messages

	4.4 Network Layer
	4.4.1 Network Layer Protocols in QualNet
	4.4.1.1 Network Protocols
	4.4.1.2 Routing Protocols
	4.4.1.3 Queues
	4.4.1.4 Schedulers

	4.4.2 Network Layer Organization: Files and Folders
	4.4.3 Network Layer Data Structures
	4.4.4 Network Layer APIs and Inter-layer Communication
	4.4.4.1 Transport Layer to Network Layer Communication
	4.4.4.2 Network Layer to Transport Layer Communication
	4.4.4.3 Network Layer to MAC Layer Communication
	4.4.4.4 MAC Layer to Network Layer Communication
	4.4.4.5 Network Layer Utility APIs

	4.4.5 Adding a Network Layer Unicast Routing Protocol
	4.4.5.1 Naming Guidelines
	4.4.5.2 Creating Files
	4.4.5.3 Including MYPROTOCOL in List of Routing Protocols
	4.4.5.4 Defining Data Structures
	4.4.5.5 Initialization
	4.4.5.5.1 Determining the Protocol Configuration Format
	4.4.5.5.2 Calling the Protocol Initialization Function
	4.4.5.5.3 Implementing the Protocol Initialization Function
	4.4.5.5.3.1 Creating an Instance and Reading Configuration Parameters
	4.4.5.5.3.2 Initializing State Variables and Routing Table
	4.4.5.5.3.3 Registering Callback Functions with IP
	4.4.5.5.3.4 Initializing Timers

	4.4.5.6 Implementing the Event Dispatcher
	4.4.5.6.1 Modifying the IP Event Dispatcher
	4.4.5.6.2 Implementing the Protocol Event Dispatcher

	4.4.5.7 Modifying IP Functions
	4.4.5.8 Processing Routing Packets
	4.4.5.8.1 Modifying IP Packet Handler
	4.4.5.8.2 Implementing the Protocol Packet Handler

	4.4.5.9 Implementing Callback Functions
	4.4.5.10 Collecting and Reporting Statistics
	4.4.5.10.1 Declaring Statistics Variables
	4.4.5.10.2 Initializing Statistics
	4.4.5.10.3 Updating Statistics
	4.4.5.10.4 Printing Statistics
	4.4.5.10.5 Adding Dynamic Statistics

	4.4.5.11 Finalization
	4.4.5.11.1 Modifying the IP Finalization Function
	4.4.5.11.2 Implementing the Protocol Finalization Function

	4.4.5.12 Including and Compiling Files
	4.4.5.13 Integrating the Protocol into the GUI

	4.4.6 Adding a Network Layer Multicast Routing Protocol
	4.4.6.1 Creating Files
	4.4.6.2 Including MYPROTOCOL in List of Routing Protocols
	4.4.6.3 Defining Data Structures
	4.4.6.4 Initialization
	4.4.6.4.1 Determining the Protocol Configuration Format
	4.4.6.4.2 Calling the Protocol Initialization Function
	4.4.6.4.3 Implementing the Protocol Initialization Function
	4.4.6.4.3.1 Creating an Instance and Reading Configuration Parameters
	4.4.6.4.3.2 Initializing State Variables, Groups, and Forwarding Table
	4.4.6.4.3.3 Registering Callback Functions with IP and IGMP
	4.4.6.4.3.4 Initializing Timers

	4.4.6.5 Implementing the Event Dispatcher
	4.4.6.5.1 Modifying the IP Event Dispatcher
	4.4.6.5.2 Implementing the Protocol Event Dispatcher

	4.4.6.6 Processing Routing Packets
	4.4.6.6.1 Modifying IP Packet Handler
	4.4.6.6.2 Implementing the Protocol Packet Handler

	4.4.6.7 Implementing Callback Functions
	4.4.6.8 Collecting and Reporting Statistics
	4.4.6.9 Finalization
	4.4.6.10 Including and Compiling Files
	4.4.6.11 Integrating the Protocol into the GUI

	4.4.7 QualNet Queuing Protocols
	4.4.7.1 Data Structures and Classes
	4.4.7.2 Interface Functions
	4.4.7.3 Using the Queue Class
	4.4.7.3.1 Creating and Initializing a Queue
	4.4.7.3.2 Performing Queue Operations

	4.4.7.4 Adding a New Queue Model
	4.4.7.4.1 Creating Files
	4.4.7.4.2 Defining Data Structures
	4.4.7.4.3 Determining the Queue Configuration Format
	4.4.7.4.4 Reading Configuration Parameters
	4.4.7.4.5 Deriving New Queue Class from Base Queue Class
	4.4.7.4.6 Implementing Interface Functions
	4.4.7.4.7 Modifying the Queue Setup Function
	4.4.7.4.8 Including and Compiling Files
	4.4.7.4.9 Integrating the Model into the GUI

	4.4.8 QualNet Schedulers
	4.4.8.1 Data Structures and Classes
	4.4.8.2 Interface Functions
	4.4.8.3 Using the Scheduler Class
	4.4.8.3.1 Creating and Initializing a Scheduler
	4.4.8.3.2 Performing Scheduler Operations

	4.4.8.4 Adding a New Scheduler
	4.4.8.4.1 Creating Files
	4.4.8.4.2 Defining Data Structures
	4.4.8.4.3 Deriving New Scheduler Class from Base Scheduler Class
	4.4.8.4.4 Implementing Interface Functions
	4.4.8.4.5 Modifying the Scheduler Setup Function
	4.4.8.4.6 Including and Compiling Files
	4.4.8.4.7 Integrating the Model into the GUI

	4.5 MAC Layer
	4.5.1 MAC Layer Protocols in QualNet
	4.5.2 MAC Layer Organization: Files and Folders
	4.5.3 MAC Layer Data Structures
	4.5.4 MAC Layer APIs and Inter-layer Communication
	4.5.4.1 Network Layer to MAC Layer Communication
	4.5.4.2 MAC Layer to Network Layer Communication
	4.5.4.3 MAC Layer to Physical Layer Communication
	4.5.4.4 Physical Layer to MAC Layer Communication
	4.5.4.5 MAC Layer Utility APIs

	4.5.5 Adding a Wired MAC Protocol
	4.5.5.1 Naming Guidelines
	4.5.5.2 Creating Files
	4.5.5.3 Including MYPROTOCOL in List of MAC Layer Protocols
	4.5.5.4 Defining Data Structures
	4.5.5.5 Initialization
	4.5.5.5.1 Determining the Protocol Configuration Format
	4.5.5.5.2 Reading Configuration Parameters and Calling the Protocol Initialization Function
	4.5.5.5.3 Initializing MAC Address
	4.5.5.5.4 Implementing the Protocol Initialization Function
	4.5.5.5.4.1 Creating an Instance and Initializing the State
	4.5.5.5.4.2 Initializing Send and Receive Function Pointers
	4.5.5.5.4.3 Initializing Neighbor List
	4.5.5.5.4.4 Initializing Timers

	4.5.5.6 Implementing Address Translation Functions
	4.5.5.6.1 IP to MAC Address Translation Function
	4.5.5.6.2 MAC to IP Address Translation Function

	4.5.5.7 Implementing the Event Dispatcher
	4.5.5.7.1 Modifying the MAC Layer Event Dispatcher
	4.5.5.7.2 Implementing the Protocol Event Dispatcher

	4.5.5.8 Modifying MAC Layer Functions
	4.5.5.9 Interfacing with Network Layer
	4.5.5.9.1 Processing Outgoing Packets
	4.5.5.9.2 Processing Incoming Packets
	4.5.5.9.3 Sending Indications to Network Layer

	4.5.5.10 Collecting and Reporting Statistics
	4.5.5.10.1 Declaring Statistics Variables
	4.5.5.10.2 Initializing Statistics
	4.5.5.10.3 Updating Statistics
	4.5.5.10.4 Printing Statistics
	4.5.5.10.5 Adding Dynamic Statistics

	4.5.5.11 Finalization
	4.5.5.11.1 Modifying the MAC Layer Finalization Function
	4.5.5.11.2 Implementing the Protocol Finalization Function

	4.5.5.12 Including and Compiling Files
	4.5.5.13 Integrating the Protocol into the GUI

	4.5.6 Adding a Wireless MAC Protocol
	4.5.6.1 Defining Data Structures
	4.5.6.2 Initialization
	4.5.6.2.1 Determining the Protocol Configuration Format
	4.5.6.2.2 Calling the Protocol Initialization Function
	4.5.6.2.3 Initializing MAC Address
	4.5.6.2.4 Implementing the Protocol Initialization Function
	4.5.6.2.4.1 Creating an Instance and Reading Configuration Parameters
	4.5.6.2.4.2 Initializing Timers

	4.5.6.3 Implementing Address Translation Functions
	4.5.6.4 Implementing the Event Dispatcher
	4.5.6.4.1 Modifying the MAC Layer Event Dispatcher
	4.5.6.4.2 Implementing the Protocol Event Dispatcher

	4.5.6.5 Modifying MAC Layer Functions
	4.5.6.6 Interfacing with Network and Physical Layers
	4.5.6.6.1 Processing Outgoing Packets
	4.5.6.6.2 Processing Incoming Packets
	4.5.6.6.3 Processing Physical Layer Status Change Notification

	4.5.6.7 Collecting and Reporting Statistics
	4.5.6.8 Finalization
	4.5.6.9 Including and Compiling Files
	4.5.6.10 Integrating the Protocol into the GUI

	4.6 Physical Layer
	4.6.1 Physical Layer Models in QualNet
	4.6.2 Physical Layer Organization: Files and Folders
	4.6.3 Physical Layer Data Structures
	4.6.4 Physical Layer APIs and Inter-layer Communication
	4.6.4.1 MAC Layer to Physical Layer Communication
	4.6.4.2 Physical Layer to MAC Layer Communication
	4.6.4.3 PHY Models to Communication Medium Communication
	4.6.4.4 Communication Medium to PHY Models Communication
	4.6.4.5 PHY Model to Antenna Models Communication
	4.6.4.6 Physical Layer Utility APIs

	4.6.5 Adding a PHY Model
	4.6.5.1 Naming Guidelines
	4.6.5.2 Creating Files
	4.6.5.3 Including PHY_MYPHY in List of PHY Models
	4.6.5.4 Defining Data Structures
	4.6.5.5 Initialization
	4.6.5.5.1 Determining the PHY Configuration Format
	4.6.5.5.2 Calling the PHY Model Initialization Function
	4.6.5.5.3 Implementing the PHY Model Initialization Function

	4.6.5.6 Implementing the Event Handler
	4.6.5.7 Modifying Generic Physical Layer Functions
	4.6.5.8 Interfacing with MAC Layer and Communication Medium
	4.6.5.8.1 Processing Outgoing Packets
	4.6.5.8.2 Processing Incoming Packets

	4.6.5.9 Collecting and Reporting Statistics
	4.6.5.9.1 Declaring Statistics Variables
	4.6.5.9.2 Initializing Statistics
	4.6.5.9.3 Updating Statistics
	4.6.5.9.4 Printing Statistics
	4.6.5.9.5 Adding Dynamic Statistics

	4.6.5.10 Finalization
	4.6.5.10.1 Modifying the Physical Layer Finalization Function
	4.6.5.10.2 Implementing the PHY Model Finalization Function

	4.6.5.11 Modifying Radio-range Utility Function
	4.6.5.12 Including and Compiling Files
	4.6.5.13 Integrating the Model into the GUI

	4.6.6 Adding an Antenna Model
	4.6.6.1 Naming Guidelines
	4.6.6.2 Creating Files
	4.6.6.3 Including MYANTENNA in List of Antenna Models
	4.6.6.4 Including MYPATTERN in List of Antenna Pattern Types
	4.6.6.5 Defining Data Structures
	4.6.6.6 Initialization
	4.6.6.6.1 Determining the Configuration Format for Input Parameters
	4.6.6.6.2 Calling the Antenna Model Initialization Function
	4.6.6.6.3 Reading Configuration Parameters
	4.6.6.6.4 Reading Antenna Pattern Files
	4.6.6.6.5 Implementing the Antenna Model Initialization Function

	4.6.6.7 Modifying Generic Antenna Functions
	4.6.6.8 Implementing Antenna Functions
	4.6.6.9 Integrating with PHY Models
	4.6.6.10 Including and Compiling Files
	4.6.6.11 Integrating the Model into the GUI

	4.7 Communication Medium
	4.7.1 Communication Medium Models in QualNet
	4.7.2 Communication Medium Organization: Files and Folders
	4.7.3 Communication Medium Data Structures
	4.7.4 Communication Medium APIs and Communication with Physical Layer
	4.7.4.1 Physical Layer to Communication Medium Communication
	4.7.4.2 Communication Medium to Physical Layer Communication
	4.7.4.3 Communication Medium Utility APIs

	4.7.5 Adding a Path Loss Model
	4.7.5.1 Naming Guidelines
	4.7.5.2 Creating Files
	4.7.5.3 Including MYPATHLOSS in List of Path Loss Models
	4.7.5.4 Initialization
	4.7.5.4.1 Determining the Path Loss Model Configuration Format
	4.7.5.4.2 Calling the Path Loss Model Initialization Function
	4.7.5.4.3 Implementing the Path Loss Model Initialization Function

	4.7.5.5 Path Loss Calculation
	4.7.5.6 Including and Compiling Files
	4.7.5.7 Integrating the Model into the GUI

	4.7.6 Adding a Fading Model
	4.7.6.1 Including MYFADING in List of Fading Models
	4.7.6.2 Determining the Fading Model Configuration Format
	4.7.6.3 Initialization
	4.7.6.4 Fading Calculation
	4.7.6.5 Integrating the Model into the GUI

	4.7.7 Adding a Shadowing Model
	4.7.7.1 Including MYSHADOWING in List of Shadowing Models
	4.7.7.2 Initialization
	4.7.7.3 Shadowing Loss Calculation
	4.7.7.4 Integrating the Model into the GUI

	4.8 Node Mobility
	4.8.1 Mobility and Related Models in QualNet
	4.8.2 Mobility Models Organization: Files and Folders
	4.8.3 Mobility-related Data Structures
	4.8.4 Mobility APIs
	4.8.5 Adding a Mobility Model
	4.8.5.1 Naming Guidelines
	4.8.5.2 Creating Files
	4.8.5.3 Including MYMOBILITY in List of Mobility Models
	4.8.5.4 Determining the Mobility Model Configuration Format
	4.8.5.5 Modifying Generic Mobility Functions
	4.8.5.6 Implementing Mobility Model Functions
	4.8.5.7 Including and Compiling Files

	4.9 Adding Trace Collection
	4.9.1 Trace File Format
	4.9.2 Including MYPPROTOCOL in List of Traceable Protocols
	4.9.3 Enabling/Disabling Tracing in Protocol's Initialization Function
	4.9.4 Printing the Protocol Header
	4.9.5 Tracing a Packet
	4.9.5.1 Trace Actions
	4.9.5.2 Trace of a Packet Send
	4.9.5.3 Trace of a Packet Receive
	4.9.5.4 Trace of a Packet Drop
	4.9.5.5 Trace of a Packet Enqueuing
	4.9.5.6 Trace of a Packet Dequeuing

	4.10 Creating an Addon, Interface or Model Library
	4.10.1 Creating Directory and Files
	4.10.2 Including HELLO in List of Application Layer Protocols
	4.10.3 Developing Protocol Components
	4.10.4 Calling Protocol Functions from Application Layer Functions
	4.10.5 Integrating a New Library into QualNet
	4.10.5.1 Creating Makefiles
	4.10.5.2 Include Library Makefile in Main Makefile
	4.10.5.3 Recompiling QualNet

	4.11 Communication Between Layers
	4.11.1 Communication Between Adjacent Layers
	4.11.2 Communication Between Non-adjacent Layers
	4.11.2.1 Application Layer to Network Layer Communication
	4.11.2.2 Network Layer to Application Layer Communication

	4.11.3 Communication Among Layers Across Nodes

	5 Customizing QualNet Graphical User Interface (GUI)
	5.1 Customizing Design Mode of QualNet Architect
	5.1.1 Description of QualNet GUI Settings Files
	5.1.1.1 Structure of GUI Settings Files
	5.1.1.2 Component Files
	5.1.1.3 Shared Description Files

	5.1.2 Elements of Settings Files
	5.1.2.1 The category Element
	5.1.2.2 The subcategory Element
	5.1.2.3 The variable Element
	5.1.2.4 The option Element

	5.1.3 Using Shared Descriptions
	5.1.4 Integrating New Models into Architect
	5.1.4.1 Integrating a New Protocol
	5.1.4.2 Integrating a New Traffic Generator

	5.2 Customizing Visualize Mode of QualNet Architect
	5.2.1 Communication between QualNet Simulator and QualNet Architect
	5.2.1.1 Initializing QualNet
	5.2.1.2 Runtime Interaction
	5.2.1.3 Finalization

	5.2.2 Adding Customized Animation to a Protocol
	5.2.3 Adding Dynamic Statistics
	5.2.3.1 Defining Statistic Handles
	5.2.3.2 Initializing Statistic Handles
	5.2.3.3 Modifying the Application Layer Dynamic Statistics Function
	5.2.3.4 Writing the Dynamic Statistics Function for MYPROTOCOL

	5.3 Customizing QualNet Packet Tracer
	5.3.1 Trace File Generated by Simulator
	5.3.2 Definition Files Used by Packet Tracer
	5.3.3 Packet Tracer Display
	5.3.4 Adding Trace Capability for a New Header
	5.3.4.1 Data Type Definitions
	5.3.4.1.1 The basic Data Type
	5.3.4.1.2 The float Data Type
	5.3.4.1.3 The char and string Data Types
	5.3.4.1.4 The enum Data Type
	5.3.4.1.5 The group Data Type

	5.3.4.2 Data Display Definitions
	5.3.4.3 Protocol Header Definitions

	6 Interfacing with QualNet: External Interface API
	6.1 Tutorial
	6.1.1 The TUTORIALTESTER Program
	6.1.2 The INTERFACETUTORIAL Application Layer Protocol
	6.1.3 The Interface Tutorial External Interface

	6.2 Interface Registration
	6.2.1 Registration Functions
	6.2.2 Callback Functions

	6.3 Utility Functions
	6.3.1 External Interface API Utility Functions
	6.3.2 Functions for Injecting Traffic from External Interfaces
	6.3.3 Operating System-specific Utility Functions for Sockets
	6.3.3.1 Functions for Variable-sized Array Operations
	6.3.3.2 Host-to-Network Byte Order Functions
	6.3.3.3 External Socket Functions

	7 Dynamic API
	7.1 Implementation of the Dynamic API
	7.1.1 Dynamic Objects
	7.1.2 Built-in Dynamic Objects
	7.1.3 Hierarchy of Objects
	7.1.4 Listening
	7.1.5 Data Component of a Dynamic Object
	7.1.6 Dynamic Commands

	7.2 Using the Dynamic API from an External Interface
	7.3 Dynamically Enabling a Protocol
	7.3.1 Declare Dynamic Variables
	7.3.2 Adding a Dynamic Object to the Hierarchy
	7.3.3 Object Permissions
	7.3.4 Initializing a Dynamically Enabled Protocol
	7.3.5 Dynamic Strings

	7.4 Defining New Dynamic Data Types
	7.4.1 Defining the Data Component
	7.4.2 Defining the Object Component

	A Coding Guidelines for 64-bit Platforms
	A.1 Introduction
	A.2 Coding Guidelines and Compatibility Issues
	A.3 References

	B Coding Guidelines for Multi-Processor Platforms
	B.1 General Guidelines
	B.1.1 Global Variables
	B.1.2 Accessing Other Nodes
	B.1.3 MAC Lookahead
	B.1.4 Inter-Layer APIs

	B.2 External Interface Issues
	B.2.1 Node Lists
	B.2.2 Loose Events
	B.2.3 Partition Communication
	B.2.4 Forwarding Packets to External Interfaces

