
Garden program: GUI with three buttons, and mouse events, and objects of a class

from tkinter import *

#--

#Define the class of flowers

#A flower object contains

its position (x and y)

its height, and

whether it is blooming or not

class Flower :

 # Constructor: create a new flower at the specified position

 # The constructor is always called __init__

 def __init__(self, xpos, ypos) : # first parameter is the object being created

 self.x = xpos

 self.y = ypos

 self.height = 20;

 self.blooming = False

 # draw a flower

 def draw(self) : # first parameter is the object that draw was called on

 stem = 3 # half the width of the stem

 top = self.y-self.height

 canvas.create_rectangle(self.x-stem, top, self.x+stem, self.y,

 fill="green", outline="green")

 # rectangles specified by left, top, right, bottom.
 if self.blooming :

 radius = 15 # radius and colour of the flower head
 colour = "red"

 else :

 radius = 9 # radius and colour of the bud
 colour = "green"

 canvas.create_oval(self.x-radius, top-radius, self.x+radius, top+radius,

 fill=colour, outline=colour)

 # ovals also specified by left, top, right, bottom.

 # make a flower higher
 def grow(self, increment) :

 self.height += increment

 # make a flower bloom
 def bloom(self) :

 self.blooming = True;

#--

main program
Constructs the unser interface and contains the list of all the flower objects

garden = [] # The list of flower objects in the garden

Function to set up the window and canvas to draw on
def setup() :

 global canvas # the canvas will be accessed by lots of methods. Since some of those methods are called
 # from buttons, it requires special mechanisms to pass it to all the methods that need to use it.
 # Much cleaner to make it global
 window = Tk() # make a new window
 canvas = Canvas(window, width=600, height=450, bg='white') # make a new canvas

 canvas.pack() #pack it into the window (won't show if you don't pack it)

 butGrow = Button(window, text="Grow", command=growAll) # make new button for window
 butGrow.pack() # pack it into the window

 butBloom = Button(window, text="Bloom", command=bloomAll)# make 2nd button for window
 butBloom.pack()

 Button(window, text="Clear", command=clear).pack() # make and pack button in one line

 canvas.bind("<ButtonRelease-1>", plant) # make canvas respond to left mouse button
 window.mainloop()

plant a new flower at the mouse click
def plant(event) : # parameter is a description of the mouse event that invoked this
 flower = Flower(event.x, event.y) # make the flower object

 garden.append(flower) # put the flower object in the garden

 drawGarden() # redraw the garden

make each flower in the garden grow
def growAll() :

 for flower in garden :

 flower.grow(10)

 drawGarden()

Make each flower in the garden bloom
def bloomAll() :

 for flower in garden :

 flower.bloom()

 drawGarden()

Clear all the flowers from the garden and clear the canvas
def clear() :

 global garden

 garden = []

 canvas.delete(ALL) # delete everything currently on the canvas

 canvas.update() # necessary to make the changes in the canvas visible

Draw each flower in the garden
def drawGarden() :

 canvas.delete(ALL)

 for flower in garden :

 flower.draw()

 canvas.update()

Start the program by calling setup
setup()

Bouncing Ball program: GUI with one button, objects of a simple class, and animation

from tkinter import *

from random import random

import time

Good programming practice is to make these *variables* rather than "magic numbers"

thrown into the code.

canvas_height = 600

canvas_width = 800

world_top = 20 # 20 pixels from the top of the canvas

world_ground = canvas_height - 20 # 20 pixels from bottom of the canvas

world_left = 20 # 20 pixels from the left of the canvas

world_right = canvas_width

This class represents the bouncing ball class

class BouncingBall:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 self.vx = random()+ .1

 self.vy = random()

 self.radius = (random() *10) + 4

 self.color = "black"

 #Get the x position of the ball

 def getX(self):

 return self.x

 def move(self):

 #Set the new x and y

 self.x += self.vx

 self.y += self.vy

 #Is y now below the ground?

 if self.y + self.radius >= world_ground:

 self.y = world_ground - self.radius#Sit it on ground level

 self.vy = self.vy * -1 #Reverse the y velocity

 #Is y above the top of the world?

 if self.y - self.radius <= world_top:

 self.y = world_top + self.radius #Make it so it is touching the top

 self.vy = self.vy * -1 #Reverse the y velocity

 # Draw the ball in the given canvas
 def draw(self):

 left = self.x - self.radius

 right= self.x + self.radius

 top = self.y - self.radius

 bot = self.y + self.radius

 canvas.create_oval(left, top, right, bot, fill=self.color)

#Code that controls the world that the bouncing balls are in

#The world (but maybe not GUI) could be a class as well, although at this stage it isn't.

bouncing_balls = []

def initialise_gui():

 global canvas, number_of_balls_field

 window = Tk()

 Label(window, text="How many balls?").pack()

 number_of_balls_field = Entry(window)

 number_of_balls_field.pack()

 Button(window, text="Reset", command=start_animation).pack()

 canvas = Canvas(window, height=canvas_height, width=canvas_width, bg="white")

 canvas.pack()

 draw_world_outline()
 window.mainloop()

#Makes new random bounching balls objects and puts them into the list

def list_of_balls(number_of_balls):

 balls = [] #Reset the bouncing balls list

 for i in range(number_of_balls):

 height = world_top+(world_ground-world_top)*random()

 ball = BouncingBall(world_left, height)

 balls.append(ball)

 return balls

def start_animation():

 #Read how many balls are needed

 count = int(number_of_balls_field.get())

 balls = list_of_balls(count)

 while balls: # While there are still balls in the list (balls are removed when they go over the edge of the screen)
 #time.sleep-(1)

 remaining = []

 for ball in balls:

 ball.move()

 if ball.getX() < world_right:

 remaining.append(ball)

 balls = remaining

 redraw_world(balls)

def redraw_world(balls):

 canvas.delete(ALL)

 draw_world_outline()

 for ball in balls:

 ball.draw()

 canvas.update()

def draw_world_outline():

 canvas.create_line(world_right, world_top, world_left, world_top, world_left,

 world_ground, world_right, world_ground) #Line along the bottom

This is the "main" method. I think this is all we need to do, as the rest of the program is event driven input
initialise_gui()

Banquet Table program: GUI with a label, one button, objects of a simple class, and mouse clicks that select
objects

from tkinter import *

lets the user place and rearrange tables

Represents a table with four chairs around it.

class Table() :

 def __init__(self, x, y) :

 self.xPos = x

 self.yPos = y

 self.rad = 30

 self.chairRad = 12

 def posOn(self, x, y) :

 return (self.xPos-self.rad <= x and x <= self.xPos+self.rad and

 self.yPos-self.rad <= y and y <= self.yPos+self.rad)

 def setPos(self, x, y) :

 self.xPos = x

 self.yPos = y

 def draw(self, canvas) :

 left = self.xPos - self.rad

 right= self.xPos + self.rad

 top = self.yPos - self.rad

 bot = self.yPos + self.rad

 self.drawChair(canvas, left, self.yPos)

 self.drawChair(canvas, right, self.yPos)

 self.drawChair(canvas, self.xPos, top)

 self.drawChair(canvas, self.xPos, bot)

 canvas.create_rectangle(left, top, right, bot, fill="brown")

 def drawChair(self, canvas, x, y) :

 left = x - self.chairRad

 right= x + self.chairRad

 top = y - self.chairRad

 bot = y + self.chairRad

 canvas.create_oval(left, top, right, bot, fill="black")

set up the window

def main() :

 global canvas

 global tables

 window= Tk()

 Label(window, text="Click to move or place tables").pack()

 Button(window, text="Restart", command = restart).pack()

 canvas = Canvas(window, width=500, height=450, bg = 'white')

 canvas.bind("<Button-1>", mousepress)

 canvas.bind("<ButtonRelease-1>", mouserelease)

 canvas.pack()

 tables = []

 window.mainloop()

def restart() :

 global tables

 tables = []

 canvas.delete(ALL)

 canvas.update()

def mousepress(event):

 global selected

 for table in tables :

 if table.posOn(event.x, event.y) :

 selected = table

 return

 selected = None

def mouserelease(event):

 global selected

 if selected is None :

 tables.append(Table(event.x, event.y))

 else :

 selected.setPos(event.x, event.y)

 redrawTables()

def redrawTables() :

 canvas.delete(ALL)

 for table in tables :

 table.draw(canvas)

 canvas.update()

main()

