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1. Grammars and Parsing (20 marks)

(a) Briefly, describe the following components of a compiler.

i. (2 marks) Lexer.

A lexer is responsible for grouping characters into tokens that can then be fed into the
parser.

ii. (2 marks) Parser.

A parser is responsible for reading a sequence of tokens and checking whether (or not)
they adhere to the grammar of the language in question. A parser typically produces an
abstract syntax tree representation.

iii. (2 marks) Abstract Syntax Tree.

An abstract syntax tree is a programmatic representation of source program arranged as
a tree.

(b) Consider the following grammar:

E −→ N | ( E , E )

N −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

i. (4 marks) For each of the following inputs, state whether it would be accepted or not
by the grammar:

0 YES

(0,1) YES

(00,1) NO

((0,1)) NO
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ii. (4 marks) Provide suitable Java classes for an Abstract Syntax Tree representation of
the grammar from page 2,

1 interface Expr {}
2

3 class Tuple implements Expr {
4 private final Expr lhs, rhs;
5 public Tuple(Expr l, Expr r) { lhs = l; rhs = r; }
6 }
7

8 class Number implements Expr {
9 private final int n;

10 public Number(int n) { this.n = n; }
11 }
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iii. (6 marks) Complete the following class Parser which should implement a recursive
descent parser for the grammar given on page 2:

public class Parser {
private final String input;
private int offset = 0;

public Parser(String input) { this.input = input; }

public Expr parseExpr() {
char c = input.charAt(offset);
if(c == ’(’) { return parseTuple(); }
else { return parseNumber(); }

}
public Expr parseTuple() {
match(’(’);
Expr l = parseExpr();
match(’,’);
Expr r = parseExpr();
match(’)’);
return new Tuple(l,r);

}
public Expr parseNumber() {
char c = input.charAt(offset);
return new Number(Integer.parseInt("" + c));

}
public void match(char c) {
if(input.charAt(offset++) != c) {

throw new RuntimeException("error");
}

}
}

SWEN 430 Page 4 of 23



Student ID: . . . . . . . . . . . . . . . . . . . . . . . .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 5 of 23



Student ID: . . . . . . . . . . . . . . . . . . . . . . . .

2. Types and Type Checking (20 marks)
Consider the following simple imperative language and its corresponding typing rules.

s ::= (Statements)

| T x = e (Declarations)

| x = e (Assignments)

| s ; s (Sequence)

| e (Expressions)

e ::= (Expressions)

| c (Integers)

| x (Variables)

| ∗e (Dereference)

| new e (Allocation)

T ::= (Types)

| &T (Reference type)

| int (Int type)

| void (Void type)

` c : int
(T-INT)

x : T ∈ Γ
Γ ` x : T

(T-VAR)

Γ ` e : &T

Γ `∗e : T
(T-Deref)

Γ ` e : T
Γ ` new e : &T

(T-New)

Γ ` x : T Γ ` e : T
Γ ` T x = e : void

(T-Decl)

Γ ` x : T Γ ` e : T
Γ ` x = e : void

(T-Assign)

Γ ` s1 : T1 Γ ` s2 : T2
Γ ` s1 ; s2 : T2

(T-Seq)

(a) (5 marks) For each of the following typing judgements identify a suitable typing environ-
ment Γ, or explain why no such typing environment exists.

Γ ` x = 1 : void

Γ = {x 7→ int}

Γ ` &int x = new y ; z = ∗y : void

None exists because y cannot be both &int and int

Γ ` x = new y ; ∗x : int

Γ = {x 7→ &int, y 7→ int}

Γ ` y = x ; &int x = new 1 : void

Γ = {x 7→ &int, y 7→ &int}.

Γ ` x = y ; y = ∗x : void

None exists because no valid type for x exists (e.g. not &int, nor &&int, etc)
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(b) Suppose the language were extended with a statement “delete e” which deallocates mem-
ory as in WHILE. For example, “delete p” deallocates the memory referred to by p.

i. (4 marks) Provide a suitable typing rule for this statement.

Γ ` e : &T

Γ ` delete e : void

ii. (5 marks) Executing “&int p = new 1 ; . . . ; delete p” can result in a stuck pro-
gram. Briefly, discuss what this means using an example to illustrate.

A program is stuck if it cannot continue executing, but has not yet reduced to a value.
For example, the sequence “&int p = new 1 ; delete p ; delete p” will become
stuck on the last statement since the memory referred to by p was already deallocated.

iii. (6 marks) Introducing the delete statement means the simple progress theorem shown
in lectures no longer holds for our language. Briefly, discuss what this means.

The progress theorem states that a well-typed program is not stuck (either its a value or
it can reduce). Unfortunately, the delete statement means that well-typed programs
can get stuck. For example, the program “&int p = new 1 ; delete p ; delete p”
is well typed but gets stuck. The reason this happens is that the typing environment
doesn’t include information about whether heap data has been deallocated or not.
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3. Static Analysis (20 marks)
This question concerns the uniqueness analysis developed for WHILE which determines, at each
point, whether or not a variable is defined. A variable is defined after it has been assigned a
value, but may become undefined if its value is consumed (e.g. moved to another variable). For
simplicity, assume all references &T are unique references. For example, &int is a reference

to an int variable and, furthermore, must be the only reference to that variable. The following
illustrates:

1 &int p = new 123;
2 &int q;
3 // p is defined, q is undefined
4 if x >= 0 {
5 q = p;
6 // p is undefined, q is defined
7 }
8 // p and q are undefined

(a) (5 marks) Explain briefly, using an example, why any algorithm for uniqueness analysis
must be conservative (i.e. imprecise) in some way.

Static analyses cannot reason with perfect precision, and must draw safe (i.e. conservative)
conclusions. In uniqueness analysis, for example, the analysis may not know for sure
whether a variable was moved or not. But if it thinks it could be, then it must assume it has
moved. For example, consider this variation on the program above:

1 assert x < 0;
2 ...
3 &int p = new 123;
4 &int q;
5 if x >= 0 { q = p; }

In this example, we know that q is never moved and, hence, is defined after the last state-
ment. But, our uniqueness analysis cannot reason about conditions in this way.

(b) (5 marks) Using examples to illustrate, explain briefly why a depth-first traversal algorithm
is insufficient for implementing the uniqueness analysis.

A depth-first traversal visits every node in the control-flow graph exactly once. However,
this is not sufficient for tracking uniqueness information around loops. Consider the fol-
lowing:

1 &int p = new 123;
2 while x < n {
3 &int q = p;
4 }
5 return p;

A depth-first traversal of the CFG for this graph will, in essence, take two paths: 1→ 2→
5 and 1→ 2→ 3. In both of these paths, uniqueness information appears correct. In order
to catch the problem, we must propagate information coming out of 3 back around the loop
so that it eventually propagates into 5.
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(c) A variable x is consumed by a statement if it must be undefined after that statement to

preserve uniqueness. The method consume(s) returns the set of variables consumed by

evaluating statement s .

i. (6 marks) Sketch an implementation of consume(s) for statements x = e ,

assert e , delete e , expressions x , x == y , new e and types int , &int .

You may assume typeOf(x) returns the declared type of a variable x .

consume(assert e) = ∅
consume(delete e) = consume(e)

consume(x = e) = consume(e)

consume(x == y) = ∅
consume(new e) = consume(e)

consume(x) = ∅, if typeOf(x)=int
= {x}, if typeOf(x)=&int
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ii. (4 marks) Using consume(s) , give appropriate dataflow equations for the unique-
ness analysis.

UNIQIN(0) = ARGS(0)

UNIQIN(v) =
⋂

w→v∈E

UNIQOUT(w)

UNIQOUT(v) = (UNIQIN(v)− consumed(v)) ∪ DEFAT(v)
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4. Java Bytecode (20 marks)

(a) Consider the following method written in Java bytecode:

boolean f(int[], int);
0: iconst_0
1: istore_3
2: iload_3
3: aload_1
4: arraylength
5: if_icmpge 24
8: aload_1
9: iload_3
10: iaload
11: iload_2
12: if_icmpne 17
15: iconst_1
16: ireturn
17: iload_3
18: iconst_1
19: iadd
20: istore_3
21: goto 2
24: iconst_0
25: ireturn

i. (5 marks) In the box below, give Java source code equivalent to the bytecode above:

NOTE: Appendix A on p21 provides an overview of bytecode instructions for reference.

1 public boolean contains(int[] items, int item) {
2 int i = 0;
3 while(i < items.length) {
4 if(items[i] == item) {
5 return true;
6 }
7 i= i + 1;
8 }
9 return false;

10 }
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(b) (2 marks) Branch instructions in Java bytecode use relative addressing. Briefly, explain
what this means.

Relative addressing means that the operand in the instruction identifies the target address as
an offset from the current bytecode. The alternative is absolute addressing where the full
address is encoded in the instruction.

(c) (6 marks) Using an example to illustrate both Java source and the generated bytecode,
explain what is meant by the term short circuiting.

Short circuiting is where the right-hand side of a logical operator (e.g. &&) is not executed
when the outcome of the operator is already known. For example, consider this program:

1 public int filter(int item) {
2 if(item < 0 || item > 16) { return 0; }
3 else { return item; }
4 }

This would be translated into something like this:

1 0: iload_1
2 1: iflt 10
3 4: iload_1
4 5: bipush 16
5 7: if_icmple 12
6 10: iconst_0

We see that if the first condition is true, the second condition is not even evaluated.
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(d) (7 marks) Translate the following method into Java bytecode:

1 public void fill(int[] items, int item) {
2 for(int i=0;i!=items.length;i=i+1) {
3 items[i] = item;
4 }
5 }

1 public void fill(int[], int);
2 iconst_0
3 istore_3
4 .L1
5 iload_3
6 aload_1
7 arraylength
8 if_icmpeq L2
9 aload_1

10 iload_3
11 iload_2
12 iastore
13 iload_3
14 iconst_1
15 iadd
16 istore_3
17 goto L1
18 .L2
19 return
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5. Machine Code (20 marks)

Consider the following program written in WHILE:

1 int max(int x, int y) {
2 if(x < y) { return y; }
3 else { return x; }
4 }

(a) (6 marks) In the box below, translate the above program into X86_64 machine code. You
should assume: (1) parameters x and y are passed in the %rdi and %rsi registers

respectively; (2) the return value is passed in the %rax register; (3) all other registers are
callee-saved.

NOTE: Appendix B on page 22 provides an overview of x86_64 instructions for reference.

1 max:
2 cmpl %rdi, %rsi
3 jge .L2
4 movl %rdi, %eax
5 ret
6 .L2:
7 movl %rsi, %eax
8 ret
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(b) On X86_64, the rbp register normally holds the frame pointer.

i. (4 marks) Briefly, discuss what the frame pointer is used for.

The frame pointer points to the start of the method’s stack frame, and is used to access
local variables to the method stored on the stack frame. Space may also be used for
parameters and return values if/when these are not being passed in registers.

ii. (4 marks) Briefly, discuss whether a frame pointer is needed for method max() .

A framepointer is not required for method max() because all local variables can be
stored in registers and, hence, a stack frame is not required.

(c) (6 marks) Briefly, discuss why register allocation is important for the performance of
compiled programs.

Register allocation is important because reading / writing values from registers is much
faster than from main memory. Thus, allocating variables into registers improves overall
performance, especially if those variables are accessed many times. For example, if there
is a loop then it is desirable to have all variables used in that loop stored in registers.
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6. Memory Models (20 marks)

(a) In the following litmus tests, x and y are shared variables, whilst r1 and r2 are local

variables. Assume all variables are initialised with 0 .

i. (5 marks) Under the Sequential Consistency model, can executing following program
ever leave both r1=1 and r2=1 at the end? Justify your answer.

Thread 1 Thread 2
r1 = x; r2 = y;
y = 1; x = 1;

No. Either r1 = x or r2 = y is always executed before the other instructions

and, hence, either r1 or r2 must be zero.

ii. (5 marks) Under the Total Store Ordering (TSO) model, can executing the following
program ever leave both r1=0 and r2=0 at the end? Justify your answer.

Thread 1 Thread 2
y = 1; x = 1;
r1 = x; r2 = y;

Yes. Assume the sequence y=1 ; x=1; r1=x; r2=y; . Under TSO, both writes

to x and y maybe stuck in the store buffer when both r1=x and r2=y are exe-
cuted.

SWEN 430 Page 18 of 23



Student ID: . . . . . . . . . . . . . . . . . . . . . . . .

(b) A data race can occur when two threads access the same shared variable at the same time.

i. (2 marks) Can a data race occur if both threads read from the shared variable?

No, at least one write is required for a data race.

ii. (2 marks) Briefly, discuss how data races can cause variables to be assigned unexpected
values.

If a variable is read and written at the same time, this can result in tearing. Specifically,
where the value read contains part of the old value and part of the new value.

(c) (6 marks) Let c be an instance of Channel (defined below) and suppose Thread 1

repeatedly calls c.write(1) and Thread 2 repeatedly calls c.read() .

1 class Channel {
2 private int value = 0;
3 private volatile boolean ready = false;
4

5 public void write(int v) {
6 value = v;
7 ready = true;
8 }
9 public int read() {

10 while(!ready) { }
11 return value;
12 } }

On Java 5 (or later) can Thread 2 ever read the value 0 ? Justify your answer.

No. Since ready is marked volatile this has a synchronising effect in Java 5 or later.
In effect, this means any access to this variable introduces a memory barrier which syn-
chronises all cached variables with main (i.e. shared) memory. For example, on X86 this
would result in the store buffer for each processor being flushed.

* * * * * * * * * * * * * * *
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Appendix A: Java Bytecodes

aaload
Load reference element from array onto
stack.

. . . , aref, index⇒ . . . , ref

aastore
Store reference element into array from
stack.

. . . , ref, index, val⇒ . . .

aload n Load reference from local variable n onto
stack.

. . .⇒ . . . , ref

areturn Return reference from method. . . . , ref⇒ . . .
arraylength Push array length on stack. . . . , aref⇒ . . . , int

astore n Store reference into local variable n from
stack.

. . . , ref⇒ . . .

bipush c Load integer byte constant c onto stack. . . .⇒ . . . , int
dup Duplicate top item on stack. . . . , val⇒ . . . , val, val
iadd Add two ints on stack. . . . , int, int⇒ . . . , int
iaload Load int element from array onto stack. . . . ref, index⇒ . . . val
iastore Store int element into array from stack. . . . ref, index, val⇒ . . .
iconst_c Load integer constant c onto stack. . . .⇒ . . . , int
idiv Divide two ints on stack. . . . , int, int⇒ . . . , int

iload n Load int from local variable n onto
stack.

. . .⇒ . . . , int

imul Multiply two ints on stack. . . . , int, int⇒ . . . , int
ineg Negate int on stack. . . . , int⇒ . . . , int
invokeinterface Invoke interface method. . . . , oref[val, [val, . . .]]⇒ [val]

invokespecial
Invoke special instance method (e.g. ini-
tialisation).

. . . , oref[val, [val, . . .]]⇒ [val]

invokestatic Invoke static method. . . . [val, [val, . . .]]⇒ [val]
invokevirtual Invoke instance method. . . . , oref[val, [val, . . .]]⇒ [val]
ireturn Return int from method. . . . , int⇒ . . .
istore n Store int into local variable n from stack. . . . , int⇒ . . .
isub Subtract two ints on stack. . . . , int, int⇒ . . . , int

if<cond>
Branch if int comparison with zero suc-
ceeds.

. . . , int⇒ . . .

if_acmp<cond> d Branch to d if reference comparison suc-
ceeds.

. . . , ref, ref⇒ . . .

if_icmp<cond> d Branch to d if int comparison succeeds. . . . , int, int⇒ . . .

ldc c Load constant (e.g. integer or string) c on
stack.

. . .⇒ . . . , int

new C Create a new object of class C. . . .⇒ . . . , ref
goto d Branch unconditionally to d. . . .⇒ . . .
pop Pop top item off stack. . . . , val⇒ . . .
return Return from method. . . .⇒ . . .
sipush c Load integer word constant c onto stack. . . .⇒ . . . , int
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Appendix B: x86 64 Machine Instructions

movq $c, %rax Assign constant c to rax register
movq %rax, %rdi Assign register rax to rdi register
addq $c, %rax Add constant c to rax register
addq %rax, %rbx Add rax register to rbx register
subq $c, %rax Substract constant c from rax register
subq %rax, %rbx Subtract rax register from rbx register
cmpq $0, %rdx Compare constant 0 register against rdx register
cmpq %rax, %rdx Compare rax register against rdx register

movq %rax, (%rbx) Assign rax register to dword at address rbx
movq (%rbx),%rax Assign rax register from dword at address rbx
movq 4(%rsp),%rax Assign rax register from dword at address rsp+4
movq %rdx, (%rsi,%rbx,4) Assign rdx register to dword at address rsi+4*rbx

pushq %rax Push rax register onto stack
pushq %c Push constant c onto stack
popq %rdi Pop qword off stack and assign to register rdi

jz target Branch to target if zero flag set.
jnz target Branch to target if zero flag not set.
jl target Branch to target if less than (i.e. sign flag set).
jle target Branch to target if less than or equal (i.e. sign or zero flags set).

ret Return from function.
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