
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2018

TRIMESTER 2

SWEN225

SOFTWARE DESIGN

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

Question Topic Marks

1. Modelling 30

2. Design Patterns 30

3. Functional Design 30

4. Design by Contract 30

Total 120

SWEN225 Page 1 of 16

Student ID: .

1. Modelling (30 marks)

(a) (15 marks) A library offers both books and magazines to its users. Both books and
magazines have titles and magazines additionally have an issue number. A single
user may have up to 10 items on loan. Books can be loaned for up to five weeks
and magazines up to three weeks. Users can make reservations for items and will be
served according to their position in the reservation queue. Ensure that your design
can be easily extended to deal with more library items such as DVDs.

Draw a UML class diagram using classes, associations, multiplicities, and inheri-
tance that models the above library system. Make sure to use appropriate names for
classes, association labels, and attribute names. Do not include any operations. For
labelling associations use either labels for the whole association or role names at the
association ends.

SWEN225 Page 2 of 16

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN225 Page 3 of 16

Student ID: .

(b) (15 marks) A cleaning robot is idle per default. After 48 hours of inactivity or when
the user presses the “clean” button on a remote control, the robot starts cleaning the
floor. The robot is capable of running in a “normal clean” and a “deep clean” mode.
It will change to either mode depending on whether the user presses the “normal”
or the “deep” button on the remote control. The remote also has buttons “fast” and
“slow” which the user may press for noisier or quieter operation correspondingly. At
any point in time during cleaning the robot’s battery level may become low in which
case it will move to the charging station. After it has charged itself, it will continue
with the cleaning operation (in the “normal clean” mode).

Draw a UML state diagram using states, transitions, concurrent states and substates
as you see fit. Make sure to use appropriate names for states and transition labels.

SWEN225 Page 4 of 16

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN225 Page 5 of 16

Student ID: .

2. Design Patterns (30 marks)

(a) (6 marks) Briefly describe three advantages of using the Model-View-Controller
design.

(b) (6 marks) Name one design pattern used in the Model-View-Controller design.
Briefly explain what the participants are and what their roles are.

SWEN225 Page 6 of 16

Student ID: .

(c) (6 marks) The Composite pattern poses a challenge when used in a statically typed
language like Java. Briefly explain what this challenge is by explaining what the
problem is and what the forces at play are.

(d) (6 marks) Name a design pattern that you haven’t discussed so far that helps to
achieve low coupling, briefly explain how it decreases coupling, and briefly describe
the resulting advantages.

(e) (6 marks) Tick all true statements. Ticking incorrect statements incurs a penalty.

Language design may be informed by design patterns.
Design patterns allow to reuse substantial amounts of pre-written pattern code.
Design patterns embody good designs.
Design patterns only make sense for object-oriented languages.
Design patterns are a good way to pass on best-practice.
It is easy to recognise design patterns in code due to the standardised names.

SWEN225 Page 7 of 16

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN225 Page 8 of 16

Student ID: .

3. Functional Design (30 marks)
Consider the following interface for representing shapes.

1 interface MutableShape {
2 // Check whether point contained in shape

3 public boolean contains(int x, int y);
4 // Move shape by amount in x and y directions.

5 public void move(int dx, int dy);
6 }

(a) An important aspect of the functional programming paradigm is that methods are
side-effect free. Briefly discuss whether or not one would expect implementations of
the following methods to be side-effect free.

i. (3 marks) Shape.contains(int,int)

ii. (3 marks) Shape.move(int,int)

(b) (4 marks) Consider the following alternative design for representing shapes:

39 interface FunctionalShape {
40 // Check whether point contained in shape

41 public boolean contains(int x, int y);
42 // Move shape by amount in x and y directions.

43 public FunctionalShape move(int dx, int dy);
44 }

Briefly discuss how instances of FunctionalShape should behave compared
with those of MutableShape:

SWEN225 Page 9 of 16

Student ID: .

(c) Consider the following implementation of the MutableShape interface:

8 class MutableRect implements MutableShape {
9 private int x, y, w, h;

10

11 public MutableRect(int x, int y, int w, int h) {
12 this.x=x; this.y=y; this.w=w; this.h=h;
13 }
14

15 public boolean contains(int px, int py) {
16 return px >= x && px < (x+w)
17 && py >= y && py < (y+h);
18 }
19

20 public void move(int dx, int dy) { x+=dx; y+=dy; }
21 }

i. (5 marks) Briefly discuss why MutableRect is not considered immutable.

ii. (5 marks) Briefly discuss how you would update this class to use a functional
design and implement FunctionalShape.

SWEN225 Page 10 of 16

Student ID: .

(d) Consider the following implementation of the MutableShape interface:

23 class MutableUnion implements MutableShape {
24 private final MutableShape left, right;
25

26 public MutableUnion(MutableShape l, MutableShape r){
27 left=l; right=r;
28 }
29

30 public boolean contains(int x, int y) {
31 return left.contains(x,y) || right.contains(x,y);
32 }
33

34 public void move(int dx, int dy) {
35 left.move(dx, dy); right.move(dx, dy);
36 }
37 }

i. (5 marks) Briefly discuss whether MutableUnion.contains(int,int)
can be considered side-effect free or not.

ii. (5 marks) Briefly discuss how you would update this class to use a functional
design and implement FunctionalShape.

SWEN225 Page 11 of 16

Student ID: .

4. Design by Contract (30 marks)
Consider the following interface for a byte buffer:

1 public interface ByteBuffer {
2 // Get the number of bytes currently stored in the buffer.

3 // Has no effect on the state of the buffer.

4 public int size();
5

6 // Get the maximum number of bytes which can be stored in

7 // the buffer. Cannot be less than the number of bytes

8 // stored in the buffer. Has no effect on the state of

9 // the buffer.

10 public int capacity();
11

12 // Write zero or more bytes into this buffer from a given

13 // array (which cannot be null). There must be enough

14 // capacity to hold the bytes being written. Afterwards,

15 // the size of the buffer is increased accordingly.

16 public void write(byte[] bytes);
17

18 // Read n bytes from this buffer into a given array (which

19 // cannot be null). The number of bytes being read cannot

20 // be negative and cannot exceed the number of bytes

21 // currently stored in the buffer. Afterwards, the size

22 // of the buffer is decreased accordingly.

23 public void read(byte[] bytes, int n);
24 }

(a) For each method listed below, provide appropriate preconditions and postconditions
using only the public methods of Bytebuffer:

i. (2 marks) int size()

REQUIRES:

ENSURES:

ii. (2 marks) int capacity()

REQUIRES:

ENSURES:

SWEN225 Page 12 of 16

Student ID: .

iii. (2 marks) void write(byte[] bytes)

REQUIRES:

ENSURES:

iv. (2 marks) void read(byte[] bytes, int n)

REQUIRES:

ENSURES:

(b) (4 marks) The precondition/postcondition of a method often itself includes calls to
other methods. Briefly discuss why such methods should be side-effect free giving
examples from the ByteBuffer interface.

SWEN225 Page 13 of 16

Student ID: .

(c) Consider the following implementation of ByteBuffer which compiles without
error:

1 public class MyByteBuffer implements ByteBuffer {
2 private byte[] bytes;
3 private int size;
4

5 public MyByteBuffer(int n) {bytes = new byte[n];}
6

7 public int size() { return size; }
8

9 public int capacity() { return bytes.length; }
10

11 public void write(byte[] src) {
12 if (src == null) { return; }
13 System.arraycopy(src, 0, bytes, size, src.length);
14 size = size + src.length;
15 }
16

17 public void read(byte[] target, int n) {
18 if(n>=16) {throw new IllegalArgumentException();}
19 size = size - n;
20 System.arraycopy(bytes, size, target, 0, n);
21 }
22 }

i. (2 marks) Give an appropriate class invariant for the MyByteBuffer class.

ii. (5 marks) Can your class invariant ever be violated? Justify your answer.

SWEN225 Page 14 of 16

Student ID: .

(d) Briefly discuss whether the following methods violate Liskov’s Substitution Princi-
ple with respect to ByteBuffer:

i. (3 marks) MyByteBuffer.write(byte[])

ii. (3 marks) MyByteBuffer.read(byte[], int n)

iii. (5 marks) Assume “class C implements I”. Briefly discuss how pre-
conditions and postconditions of methods in Imay differ from the corresponding
methods in C without violating Liskov’s Substitution Principle.

* * * * * * * * * * * * * * *

SWEN225 Page 15 of 16

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN225 Page 16 of 16

