
Victoria University of Wellington, School of Engineering and

Computer Science

SWEN221: Software Development

Test 1 (worth 20% of overall mark)

Chuckie Egg

This test is about a computer game called Chuckie Egg that was originally released for the ZX Spectrum
and BBC Micro in 1983. You may read about this game here https://en.wikipedia.org/wiki/

Chuckie_Egg and play it online here http://bbcmicro.co.uk. In the game, the player explores a
hen house collecting eggs by navigating platforms and ladders, whilst avoiding the hens on patrol. The
game is won if the player manages to collect all the eggs; likewise, the game is lost if the player is
captured by a hen or falls through the bottom of the hen house. The aim of this test is to complete a
program that checks a sequence of moves in the game of Chuckie Egg is valid:

platform

egg
hen

player

ladder

In this test, we are using a simplified version of the game. In particular, there are no seeds or elevators
and the player cannot jump.

Download. You can download the code provided for the SnakeFall program here:

http://ecs.victoria.ac.nz/~djp/files/tt_egg_2021.jar

You will find several Java source files, including a JUnit test file.

1

ASCII Representation. In the JUnit tests, the board is represented using an array of ASCII
characters. The following illustrates such a board and its ASCII representation:

4

0

3 7 9

1

4

2

8

3

3

4

0

5

1

6

1

7

0 2 5 26

7| |

6| |

5| p # * |

4| ====#== |

3| O # q # |

2| *======# |

1| == # |

0| === |

012345678901234

Here, the player is represented using “O”, an egg using “*”, the platforms using “=”, the ladders
using “#” and the hens using “p” (facing right) and “q” (facing left).

An input sequence consists of a sequence of letters “U” (up), “D” (down), “L” (left), “R” (right)
optionally followed by “!” (game won) or “?” (game lost). An example input sequence is “LLUUR”.

1 Basic Moves (worth 5%)

Begin by importing the code provided into Eclipse and running the JUnit tests. A number of tests
are failing because of a problem in the method PlayerMove.apply():

• The player appears to always move right, regardless of what is specified in the input sequence.

Having fixed this bug, you should find tests test 01. . .test 10 now pass.

2 Obstructions (worth 10%)

A large number of tests are failing due to problems related to the detection of obstructions during
movement of the player. Specifically, an obstruction is something the player cannot move through
(e.g. a platform). If the player attempts to move into an obstruction, they should be prevented (i.e.
the player remains in the same place). Currently, the method PlayerMove.apply() does not consider
obstructions at all. The method Tile.isObstruction() is provided to aid in identifying which tiles
are obstructions. Having fixed these bugs, you should find tests test 11. . .test 20 now pass.

3 Collecting Eggs (worth 15%)

You should find that some or all of the tests test 21,. . .,test 30 currently fail. This is because the
method GameOver.apply() has not been properly implemented. This method is called when either
“!” or “?” occurs at the end of the input sequence and indicates that, after the last move, the game
is either won (“!”) or lost (“?”).

There are several problems to fix:

1. If the game is indicated as won, but the player has not yet collected all the eggs then a GameError

exception should be thrown.

2. Likewise, if the game is indicated as lost but the player remains on the board, then the game is
not actually finished and a GameError exception should be thrown.

3. Finally, the player cannot carry on moving after the game is finished.

Having fixed these issues, you should find tests test 21. . .test 30 now pass.

2

4 Gravity (worth 30%)

Some or all of the tests test 31,. . .,test 40 currently fail because the game does not implement
gravity. If, after the player has moved, they are unsupported by a platform then gravity applies
(ignoring ladders for now). In such case, the player is moved downwards until they are supported (i.e.
lands on a platform) or the game is over (i.e. because they fell off the board or collected the last egg).
The following illustrates a single move right where gravity is applied:

Here, we see the player initially moves right and then gravity automatically drops the player down
to the platform below. An empty method Game.applyGravity() is provided for implemented this
feature. Having fixed the issues related to gravity, you should find tests test 31. . .test 40 now pass.

5 Ladders (worth 20%)

Some or all of the tests test 41,. . .,test 52 currently fail because the game does not yet support
ladders. To fix this, there are several challenges:

1. Creating a Ladder class, and ensuring it is instantiated in Game.createPieceFromChar().

2. Updating Player to record whether the player is on a ladder (or not).

3. Updating PlayerMove.apply() to determine when the player is on a ladder. Note the ASCII
representation of the player on a ladder is “@”. The following illustrates:

3|== # |

2| #=|

1| @ |

0| ====|

012345

4. Updating PlayerMove.apply() so that, when the player is on a ladder, they can move up and
down it.

Having correctly implemented the above, you should now be passing at least tests test 41,. . .,test 43.
However, more work is required to pass the remainder for this section (test 44,. . .,test 52).

3

6 Hens (worth 20%)

Some or all of the tests test 53,. . .,test 70 fail because there is currently no support for hens. Some
notes about hens:

• (Movement). Hens move either left or right. A hen moving in a given direction continues
until it reaches the end of the platform (or is obstructed). Notice from page 2 that the ASCII
representation of a hen depends on the direction it is moving.

• (Turning). Once a hen has reached the end of a platform (or is obstructed), the hen will turn
around and then begin moving in the opposite direction. This process requires one time step.
For simplicity, we assume hens are obstructed by platforms, ladders and eggs.

• (Game Over). The game is over when a hen catches the player. Note, the player cannot “move
through” a hen under any circumstance.

For simplicity, you can assume hens never meet each other. Having implemented this feature, you
should find tests test 53. . .test 70 now pass.

Submission.

Your test solution should be submitted electronically via the online submission system:

https://apps.ecs.vuw.ac.nz/submit/SWEN221/Terms_Test_1

Late submissions will get zero marks (unless you have arranged this with us, which will only be in
exceptional circumstances). The minimum set of required files is:

chuckie/Game.java

chuckie/events/Event.java

chuckie/events/GameOver.java

chuckie/events/PlayerMove.java

chuckie/io/GameError.java

chuckie/io/Parser.java

chuckie/tiles/Egg.java

chuckie/tiles/Platform.java

chuckie/tiles/Player.java

chuckie/tiles/Tile.java

chuckie/util/Position.java

4

