Flowchart of NSGAII

1. Generate initial population: size N
2. Evaluate fitness
3. Non-dominated Ranking
 - Selection
 - Crossover
 - Mutation
4. Evaluate fitness
 - Combine Parent and Children Populations
5. Non-dominated Ranking and Crowding distance
6. Select N individuals
7. Stop?
 - Yes: Return the final Pareto Front
 - No: Go back to step 2
NSGAII — Elitism

- Elitism: Keep the best Parent Child individuals from the parent and child population.
NSGAII — Elitism

Child population

Parent population

Combined population

Elitist selection

New population

Rank 1

Rank 2

Rank 3

Rank 4

Rank 5+

Rank 1

Rank 2

Rank 3

Rank 4

Rank 5

Rank 6

Rank 7+

Rank 1

Rank 2

Rank 3
Crowding distance

- $c = a + b$
- Ends have infinite crowding distance
SPEA2

- SPEA2: Improving the Strength Pareto Evolutionary Algorithm
- Compared to SPEA:
 - **Fitness assignment** scheme is used, which takes for each individual into account how many individuals it dominates and it is dominated by.
 - Fitness is **NOT** based on objective function values
 - Objective function values determine **dominance** relation
 - A **nearest neighbour density estimation** technique is incorporated which allows a more precise guidance of the search process.
 - A new **archive truncation method** guarantees the preservation of boundary solutions.
Flowchart of SPEA2

1. Initial **Population**, and empty **Archive** (maxSize: S)
2. **Fitness Assignment**: both **Population** and **Archive**
3. Copy non-dominated solutions in **Population** and **Archive** to **new Archive**
4. Remove duplicates and dominated solutions in **Archive**
5. **Archive Truncation**
 - delete if |Archive| > S
 - add dominated ones if |Archive| < S
6. **Generate offsprings**: Binary tournament selection on **Union**, then crossover, mutation
7. Combine **Population** and **Archive** to **Union**
8. **Stop**?
 - Yes: Return the Solutions in **Archive**
 - No: Environmental selection
9. **Fitness Assignment**:
 - both **Population** and **Archive**
Fitness Assignment

- Each individual both dominating and dominated solutions are taken into account
- \(\text{Fitness } F(i) = \text{Raw fitness } R(i) + \text{Density } D(i) \)
 - Nondominated: \(F(i) < 1 \); dominated: \(F(i) \geq 1 \)
- Raw fitness \(R(i) \):
 - Strength value \(S(i) \), representing the number of solutions (in both Population and Archive) \(i \) dominates:
 \[
 S(i) = |j| j \in (Pop + Arch) \land i \succ j |
 \]
 - Raw fitness \(R(i) \): is determined by the strengths of its dominators in both archive and population:
 \[
 R(i) = \sum_{j \in (Pop + Arch), j \succ i} S(j)
 \]
- Density \(D(i) \):
 - Additional density information is incorporated to discriminate between individuals having identical raw fitness values.
 - \(k \)-th nearest neighbour method: the inverse of the distance \(\sigma_{ik} \) (in objective space) to the \(k \)-th nearest neighbour (in both archive and population) as the density estimate:
 \[
 D(i) = \frac{1}{\sigma_{ik}^k + 2} \quad k = \sqrt{|Pop| + |Arch|}
 \]
Archive Truncation

- if $|\text{Archive}| < S$, add dominated ones based on the fitness values
- if $|\text{Archive}| > S$, delete crowded ones based on density measure

Figure 2: Illustration of the archive truncation method used in SPEA2. On the right, a nondominated set is shown. On the left, it is depicted which solutions are removed in which order by the truncate operator (assuming that $N = 5$).