

Hard-to-Answer Questions about Code

Thomas D. LaToza
Institute for Software Research

School of Computer Science
Carnegie Mellon University

tlatoza@cs.cmu.edu

Brad A. Myers
Human Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

bam@cs.cmu.edu

Abstract
To build new tools and programming languages that make
it easier for professional software developers to create, de-
bug, and understand code, it is helpful to better understand
the questions that developers ask during coding activities.
We surveyed professional software developers and asked
them to list hard-to-answer questions that they had recently
asked about code. 179 respondents reported 371 questions.
We then clustered these questions into 21 categories and 94
distinct questions. The most frequently reported categories
dealt with intent and rationale – what does this code do,
what is it intended to do, and why was it done this way?
Many questions described very specific situations – e.g.,
what does the code do when an error occurs, how to refac-
tor without breaking callers, or the implications of a spe-
cific change on security. These questions revealed
opportunities for both existing research tools to help devel-
opers and for developing new languages and tools that
make answering these questions easier.

Categories and Subject Descriptors D.2.6 [Software
Engineering]: Programming Environments; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and En-
hancement.

General Terms Experimentation, Human Factors

Keywords program comprehension, developer questions

1. Introduction
A central part of developers’ work is answering questions
about code [19][15][24]. Better understanding what ques-
tions developers ask and the challenges developers face
answering these questions has several benefits. When these
questions match challenges addressed by existing tools or
language features, they provide evidence that the chal-
lenges addressed are important and scenarios for conduct-
ing evaluations: do they help developers more effectively
answer these questions compared to their existing ap-
proaches? For questions that are not directly supported by
existing approaches, these questions reveal opportunities
for new tools and programming languages. These questions
capture a problem developers experience: approaches that
support these questions can help address this problem.

We conducted a survey of professional software devel-

opers to discover questions about code that developers per-
ceive to be hard-to-answer. Respondents reported 371 ques-
tions. We then grouped these questions into 94 distinct
questions spanning 21 categories. Figure 1 lists the five
most frequently reported categories. Many questions were
highly focused around specific hypotheses, situations, or
proposals relevant to the developer’s current task and men-
tal model of the code. For example, rationale questions
asked why a specific decision was made or even why a
specific alternative was not chosen. Questions about what
code does were often scoped to a situation – e.g., what hap-
pens when an exception occurs or an operation times out.
Thus, our results suggest that a key design goal for tools or
languages is to better use the situations described in devel-
opers’ questions to focus and filter the information they
provide to developers.

In some cases, we found research tools that might help
answer the questions developers ask. For example, the
concurrency question “What threads reach this code?” is
answered directly by thread coloring [28]. In other cases,
we only found research tools for related questions or which
do not work in the situations that developers identified. For
example, thin slicing helps traverse data flow, but only
backwards, not for the forward questions developers also
reported. Other questions revealed open, unexplored re-
search areas – e.g., what is the policy for doing this, or how
can this code be generalized? Each of these questions might
serve as inspiration for new tools or language features.

In this paper, we report 94 hard-to-answer questions
about code, discuss challenges developers face when an-
swering them, and speculate on how new tools or languages
might make these questions easier to answer.

2. Related work
Several studies have examined developers’ information
needs and reported them using lists of questions developers
ask. At the most general level, developers ask “why” (ra-
tionale), “how” (implementation), “what” (meaning of

Rationale (42): Why wasn’t it done this other way? (15)
Intent and implementation (32): What does this do (6) in this
case (10)? (16)
Debugging (26): How did this runtime state occur? (12)
Refactoring (25): How can I refactor this (2) without breaking
existing users(7)? (9)
History (23): Who, when, how, and why was this code changed
or inserted? (13)
Figure 1. The 5 most frequently reported question categories,
each category’s most frequent question, and the number of re-
ports in parenthesis.

Copyright is held by the author/owner(s). This paper was pub-
lished in the proceedings of the Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU) at
the ACM Onward! and SPLASH Conferences. October, 2010.
Reno/Tahoe, Nevada, USA.

variables), “whether” (if code exhibits behavior), and “dis-
crepancy” (observations do not match expectations) [21].

One study found 21 questions about interactions with
code, other artifacts, and teammates [15]. When writing
code, developers seek functionality to reuse and informa-
tion on how to reuse it. Developers submitting a change ask
if it is correct, whether it follows team conventions, and
what changes it should include. Triaging a bug determines
if it is a legitimate problem worth fixing. When receiving a
new bug, developers reproduce it to determine what it
looked like and when it occurs before asking about its
cause. Developers ask design questions about code’s ra-
tionale and implications of a change. Our respondents re-
ported 11 of these 21 questions, which are denoted below
with a citation (i.e., [15]).

Anther study identified 44 questions about code [24].
Developers begin coding tasks by finding focus points cor-
responding to domain concepts or application functionality
and work outward following relationships between methods
and classes. Developers ask higher-level questions about
relationships between multiple methods and classes, includ-
ing questions about control and data flow. Our respondents
reported 25 of these 44 questions and are cited below or
were elsewhere in our survey. Another study identified 78
questions that involve integrating information in code,
work items, change sets, teams, comments, and the web [7].
Our respondents reported 10 of these questions.

Our results build on these studies by using survey data,
rather than observations, to sample more questions, focus-
ing on questions that developers perceive to be hard-to-
answer rather than all questions, and identifying 67 ques-
tions that have not been previously reported.

3. Method
We conducted a survey of software developers at Microsoft
as part of a larger study investigating reachability questions
[19]. We invited approximately 2000 developers to partici-
pate by randomly sampling all developers at Microsoft. 469
developers responded. The complete survey included sev-
eral demographic items, ratings of 14 control flow related
questions, and a free response item about other hard-to-
answer questions. This paper focuses on answers to the free
response item, which was completed by 179 developers.
149 were individual contributor developers, 22 were lead
developers, and 8 were architects. Respondents ranged in
development experience from 3 months to 39 years (me-
dian 10 years) and had spent from 0 to over 8 years work-
ing on their current codebase (median 1 year). 68% agreed
that they were “very familiar with my current codebase”.
Respondents reported their team was currently in a variety
of life cycles phases: 19% planning, 33% implementation,
42% bug fixing, and 6% other. Respondents reported
spending anywhere from 0 to 100% of their time editing,
understanding, or debugging code (median 50%).

After being primed by rating specific control flow ques-
tions in the first section, developers answered the free re-
sponse question “What other hard to answer questions
about code have you recently asked?” Responses included
both questions and whole stories illustrating the factors that
developers perceived made these questions challenging. To
analyze responses, we broke up each answer into individual
questions, yielding 371 questions and clustered them into
categories using the underlying intent of the question –
what did developers want to know by answering the ques-

tion? For example, “Why did this happen?” was a question
about runtime behavior, not rationale. Finally, within each
category, we clustered each into distinct questions.

4. Results
Developers reported hard-to-answer questions about 21
different categories across three topics: changes, properties
of elements, and relationships between elements. For each
category, we list each distinct question reported and the
number of reports in parenthesis, discuss examples of hard-
to-answer questions, and speculate on how tools might help
answer these questions.

4.1 Questions about Changes

4.1.1 Debugging (26)
How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team’s component caused this bug? (1)
Developers faced with unexpected runtime behavior ask
hard-to-answer questions about why or how some runtime
state did or did not occur. Runtime state included changes
to data, memory corruption, race conditions, hangs,
crashes, failed API calls, test failures, and null pointers.
Developers wondered about differences between execu-
tions – why functionality did not work on some browsers –
or the circumstances necessary for the bug to occur. Envi-
ronments that could not be recreated locally and crash
dumps were particularly challenging to debug. When de-
bugging, developers did not always seek to devise a fix –
some simply wanted to trace the flaw far enough to under-
stand which team should be assigned the bug.

Several of these questions are supported by research
tools. Omniscient debuggers, such as the WhyLine [16],
record and play back traces or even support directly asking
why a behavior did or did not occur. However, these tools
are not applicable in situations such as debugging crash
dumps. Mining change histories sometimes helps determine
the developer who should fix a bug [2], but not when the
developer must first debug to localize the failure.

4.1.2 Implementing (19)
How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What’s the best design for implementing this? (7)
Developers with partially formed ideas for a change asked
hard-to-answer questions about how to implement it.
Changes included connecting together components, inte-
grating code, reusing a library, determining how to cor-
rectly set a field of a shared data structure, implementing
tests, editing protocols, and changing exception policies. In
some cases, developers sought only implementations sub-
ject to fixed constraints such as API backwards compatibil-
ity. When reusing functionality, developers asked about
differences between similar methods or objects to decide
which to pick. Finally, developers weighed design quality
tradeoffs – where should functionality be located between
callers or callees or in classes or layers.

Pattern catalogs (e.g., [8]) aim to help developers gener-
ate implementations for challenging problems and better
understand relationships between alternatives. But they
likely capture only a few of the patterns used in practice –
most challenging changes developers reported are not cov-
ered by any catalog. Moreover, they provide only general
solutions – to the extent that challenges lie in understanding
the characteristics of a situation, they may help less.

4.1.3 Policies (15)
What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)
When designing a change, developers ask questions about
relevant precedents or policies such as when resources
could be freed, design pattern use, security, configuration
settings, error logging, exceptions, versioning, installation
infrastructure, and expected public APIs. Helping develop-
ers find policies is an open, unexplored problem.

4.1.4 Rationale (42)
Why was it done this way? (14) [15][7]
Why wasn’t it done this other way? (15)
Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)
Rationale questions were the most frequently reported
category of questions, similar to a previous study [20]. De-
velopers attempted to understand the rationale for surpris-
ing design decisions by contemplating what hidden criteria
motivated the choice [18]. Surprising decisions included
naming, code structure, inheritance relationships, where
resources are freed, code duplication, lack of instrumenta-
tion, lack of refactoring, reimplimenting instead of reusing,
algorithm choice, optimizations, where behavior is imple-
mented, parameter validation, visibility, and exception
policies. Some questions explicitly referenced alternatives
the developer expected to see. Others speculated whether
the decision reflected a hack made in haste, was errone-
ously overlooked, reflected a lack of knowledge, was the
right decision to make at the time, or was a considered
judgment reflecting a deeper understanding of the problem
[15]. In other cases, developers were extremely surprised
(How did this work?) and nearly convinced that the deci-
sion was a bug. While some rationale questions could be
answered by implementing a change and testing, most of
the reported decisions concerned non-functional properties
where testing or verification is not possible.

Despite their prevalence, effective support for answering
rationale questions remains an open problem. A popular
strategy – ask an expert teammate [20] – interrupts the
teammate, interrupts the question asker when the teammate
is unavailable, and does not work when the teammate has
left the company. Many questions concerned decisions
about design, algorithm choice, and other issues that are
important but difficult to test. Systems for explicitly repre-
senting rationale have been devised, but have mostly fo-
cused on higher-level decisions earlier in the life cycle [23].
Systems for browsing code history (see 4.1.5) may help.
Comments might also help, but require future questions to
be anticipated, the comments to be correctly updated, and
the author to make the time investment. Moreover, some
questions reflected questions about decisions that are infre-
quently commented.

4.1.5 History (23)
When, how, by whom, and why was this code changed or
inserted? (13)[7]
What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]
Has this code always been this way? (2)
What recent changes have been made? (1)[15][7]
Have changes in another branch been integrated into this
branch? (1)
One strategy for answering rationale questions is to find the
code’s creation in history to understand its context and mo-
tivation. Developers ask questions about who made the
change, the date, content, and rationale for code’s existence
and to what else it was related. In other situations, develop-
ers wanted to know the entire history of a block of code,
rather than its most recent change. Sometimes, developers
were interested in the design or intent behind how abstrac-
tions had evolved. Developers also tracked history between
version control systems and determined if changes had
been migrated between branches. Confirming previous
findings, developers were usually interested in history at
the level of a code snippet [12], while many existing tools
require searching through all changes at the file level to
find changes to a snippet.

Research systems have been built to connect code snip-
pets to related historical artifacts including commit com-
ments, bug descriptions, and emails. For example, Deep
Intellisense [12] mines linkages between artifacts and rec-
ommends artifacts based on the currently selected code.

4.1.6 Implications (21)
What are the implications of this change for (5) API clients (5),
security (3), concurrency (3), performance (2), platforms (1), tests
(1), or obfuscation (1)? (21) [15][24]
When proposing a change, developers ask questions about
its effects to determine constraints that should be respected,
other changes that might be necessary, or if the change is
worth making [18]. In contrast to how questions with con-
straints but no proposals, developers had proposals and
wanted to find constraints. When changing functionality
exposed to other components or other teams, developers
wondered if changes would cause bugs elsewhere or re-
quire versioning to keep existing behavior. Developers
wondered if changes could introduce security concerns or
timing issues such as deadlocks or how a change would
affect performance characteristics such as execution time or
network or disk usage.

While implementing and testing a change can help an-
swer some implication questions, many of the questions
require better tool or language support.

4.1.7 Refactoring (25)
Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)
Developers ask questions when simplifying or generalizing
code by refactoring. Developers look for refactoring candi-
dates – obsolete code, duplicated functionality, or redun-
dant data between equally accessible structures. Developers
consider the design qualities of the existing design, ask if it

is possible to refactor, and if so, how? Most how questions
involved generating proposals subject to constraints im-
posed by maintaining compatibility with callers. Finally,
developers consider whether the benefits of the refactoring
outweighed the costs, especially with respect to the time
investment to make the change. Challenging refactorings
developers reported included changing a method’s scope,
moving functionality between layers, changing the imple-
mentation of configuration values, making operations more
data driven, or generalizing code to be more reusable.

Modern development environments can automatically
perform certain refactorings by checking for necessary pre-
conditions and updating the code. However, support is lim-
ited to low-level, focused changes – e.g., moving code
between methods or renaming methods – and does not di-
rectly support the higher-level changes developers reported.
Code duplication detectors (e.g., [14]) can find syntacti-
cally similar code snippets, but are not capable of finding
redundant functionality or data.

4.1.8 Testing (20)
Is this code correct? (6) [15]
How can I test this code or functionality? (9)
Is this tested? (3)
Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)
Developers checking their changes for mistakes ask testing
questions. Developers wondered if code was correct – if it
did what the comments implied or the callers expected,
worked in situations with multiple users or servers, and if it
had security vulnerabilities. Developers asked how to test
code which depended on an external API or with error
paths and how to check for memory leaks, race conditions,
or hangs. Developers wondered if existing unit tests al-
ready exercised functionality or codepaths. When discover-
ing problems, developers wondered if there was a problem
with the test, the documentation, or the code.

Research and industrial tools exist to automatically
check for memory leaks (e.g., [6]), race conditions (e.g.,
[1]), and hangs [4] without any developer input. Research
tools also test robustness by deriving program inputs to run
a program through its paths (e.g., [9]). However, tools test-
ing for correct behavior require a specification of correct
behavior to check. More work remains to help developers
more effectively and easily capture expected behavior.

4.1.9 Building and branching (11)
Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)
What do I need to include to build this? (3)
What includes are unnecessary? (2)
How do I build this without doing a full build? (1)
Why did the build break? (2)[59]
Which preprocessor definitions were active when this was built?
(1)
Developers asked a variety of questions about how to build
or use a version control system. Developers contemplating
a change wondered if they should start a new branch or
keep coding on the main branch. When a bug fix was made
for an old version, developers asked how to migrate it to
the substantially changed current version. When making a
change, developers asked what includes or dependencies to
add; when inspecting code, they asked which ones were no
longer necessary. Developers sought to learn the minimal

number of packages necessary to rebuild, rather than trig-
ger a time-consuming full build. Faced with intermittently
breaking builds, developers sought to understand their cir-
cumstances. After building, developers wondered what the
preprocessor had done – which definitions were active.

IDEs such as Eclipse automatically add and remove in-
clude statements in many situations. Helping developers
more easily understand build problems and manage
changes between branches is an open research area.

4.1.10 Teammates (16)
Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)
When trying to understand unfamiliar or complicated code,
developers often try to find an owner or expert. Research
tools more directly answer these questions [22]. Other
questions expressed developers’ frustration at teammates
for not doing things the “right way” by following conven-
tions or coding styles, such as using a C style in C#, using
outdated style, or writing hacks. No research has yet inves-
tigated how consensus on such conventions forms.

4.2 Questions about Elements
4.2.1 Intent and Implementation (32)
What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]
Developers ask questions about both what code is supposed
to do – intention – and what it actually does. They ask
about the intention of code, SQL queries, structures, ob-
jects, files, and components. Most “What does this do?”
questions were not about everything code does but about a
specific situation – an exception or error, a slow or timed-
out operation, multiple threads, boot up, or execution on a
server farm. Developers ask about how code’s behavior
maps to specific code – how optimized code implements an
algorithm, how an exception could be thrown, how binding
work, or how a class implements application functionality.
Comments and design documents seek to answer these
questions, but again require the questions to be anticipated
and an investment in writing and updating them.

4.2.1 Method properties (2)
How big is this code? (1)
How overloaded are the parameters to this function? (1)

4.2.2 Location (13)
Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)
When considering reuse, developers asked if the functional-
ity they desired was already implemented. Developers
faced challenges locating the definition of types referenced
in code – picking the definition referenced by include files,
understanding type renames done at compilation, and navi-
gating between multiple files defining the same class.

The WhyLine [16] lets users select a user interface ele-
ment at runtime to find the code implementing its recent
behavior. Better search tools for reusing functionality have
been designed for reusing APIs (e.g., [11]) but not for reus-
ing code within a codebase.

4.2.3 Performance (16)
What is the performance of this code (5) on a large, real dataset
(3)? (8)
Which part of this code takes the most time? (4)
Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)
How many of these objects get created? (1)
Developers ask questions about performance. Developers
sought to localize poor performance to specific code to
understand where improvements should be made. This was
particularly challenging when the hotspots in the optimized
version shipped to users differed from the hotspots in the
debug build used for profiling. Developers also sought to
understand the memory usage of stack allocations done in
recursive methods and the number and size of objects cre-
ated. Profilers provide performance data about code includ-
ing execution time, hotspots, memory usage, and object
creation counts. It is unclear what missing functionality
could be added.

4.2.4 Concurrency (9)
What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)
Developers ask both if multi-threaded behavior is possible
– if multiple threads could reach code or a data structure –
and if code has already been designed for multithreading.
Thread coloring documents and checks expectations about
the thread safety of code and threads that may reach it [28].

4.3 Questions about Element Relationships

4.3.1 Contracts (17)
What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)
What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)
What is responsible for updating this field? (1)
When understanding relationships between methods and
callers, developers ask questions about both the assump-
tions currently made by an implementation and all assump-
tions that could be made. Assumptions included constraints
on parameters such as ordering or size and the possible
states a program might be in. Developers asked about what
errors or exceptions could be returned and the conditions
under which they are generated. Developers also asked
about constraints on variables: if it was a 0-based or 1-
based index or what constituted typical values.

Assertions and contracts specify and check constraints
on both pre- and postconditions (e.g., [3]) and on ordering
relationships between methods [26]. Checked Exceptions
[10] specify some of the exceptions that can be thrown but
not the conditions under which they are thrown. However,
contracts only describe assumptions that the original devel-
oper decided to express, not all possible assumptions the
code makes or that could be made. Moreover, little is
known about the assumptions developers make and the
ability of existing notations to express them.

4.3.2 Control flow (19)
In what situations or user scenarios is this called? (3) [15][24]

What parameter values does each situation pass to this method?
(1)
What parameter values could lead to this case? (1)
What are the possible actual methods called by dynamic dispatch
here? (6)
How do calls flow across process boundaries? (1)
How many recursive calls happen during this operation? (1)
Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)
What is catching this exception? (1)
When investigating relationships between methods, devel-
opers ask questions about control flow such as the situa-
tions or user scenarios in which methods are called, how
they differ with parameter values, and what parameter val-
ues were necessary to reach specific code within a method.
Determining calls from a method was challenging in the
presence of dynamic dispatch – calls to interfaces, signal-
ing events, or changing bound properties. Developers ask
both about how frequently methods are called and if they
are never called and dead. Modern development environ-
ments provide views for traversing through callers and
callees but do not directly answer any of these questions.

4.3.3 Dependencies (5)
What depends on this code or design decision? (4)[7]
What does this code depend on? (1)
In contrast to questions about the implications of a specific
change, dependency questions ask about code affected by
any possible change to code or a design decision. Design
structure matrices let developers express dependencies be-
tween decisions [27], but tools to reverse engineer them
from code (e.g., [13]) are limited to use relationships be-
tween packages or call relationships between methods.

4.3.4 Data flow (14)
What is the original source of this data? (2) [15]
What code directly or indirectly uses this data? (5)
Where is the data referenced by this variable modified? (2)
Where can this global variable be changed? (1)
Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1)
[24]
What resources is this code using? (1)
Developers ask questions about how data flows through
code – where it originates, where it goes, and how it is ag-
gregated, translated, or transformed. Developers ask both
about where global variables or data flowing through a
variable could be modified and how a piece of code modi-
fies a data structure or uses resources.

Research tools exist to track data back to its original
source [25], but do not currently support tracking it for-
ward. We are not aware of any tools that let developers see
where data referenced by a variable may be modified or
how code interacts with data structures or resources.

4.3.5 Type relationships (15)
What are the composition, ownership, or usage relationships of
this type? (5) [24]
What is this type’s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)
When investigating classes or interfaces, developers ask
hard-to-answer questions about relationships between

types. Questions were more challenging for classes span-
ning modules or projects that were not open in the devel-
opment environment. Modern development environments
depict type hierarchies and in-heritance relationships. UML
reverse engineering tools depict composition and usage
relationships between types [17]. Ownership systems (e.g.,
[5]) specify and check ownership relationships.

4.3.6 Architecture (11)
How does this code interact with libraries? (4)
What is the architecture of the code base? (3)
How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)
When understanding architecture, developers ask questions
about interactions between code and libraries or how func-
tionality is organized into layers. Research tools exist to
reverse engineer UML sequence diagrams describing inter-
actions between code and other components [17]. Diagrams
can help document architecture, but tool support for syn-
chronizing them with evolving code is limited.

5. Limitations
Our study was limited to a single organization and its proc-
esses, practices, and conventions. While there is a huge
variability amongst teams within Microsoft, other organiza-
tions with radically different processes or tools may have
different questions. By using a survey to gather a large cor-
pus of questions, rather than direct observations, our data is
based on self-reports that are subject to biases in perception
of difficulty and what developers are able to recall.

6. Conclusions
A better understanding of developers’ information needs
may lead to new tools, programming languages, and proc-
esses that make hard-to-answer questions less time con-
suming or error prone to answer. By focusing on real
questions that developers ask and experience problems an-
swering, new approaches are more likely to be useful and
help developers be more effective.

Acknowledgments
This study was conducted during a visit to the Human Interactions in
Programming Group at Microsoft Research. This research was funded in
part by NSF grant CCF-0811610 and through the EUSES consortium
under NSF grant ITR CCR-0324770.

References
[1] Abadi, M., Flanagan, C., and Freund, S. N. (2006.) Types for safe

locking: Static race detection for Java. In TOPLAS, 28(2), 207-255.

[2] Anvik, J, Hiew, L, and Murphy, G.C. (2006). Who should fix this
bug? In Proc. of the Int’l Conf. on Soft. Eng. (ICSE).

[3] Burdy, L., Cheon, Y, Cok, D., Ernst, M., Kiniry, J., Leavens, G.T.,
Leino, K.R.M., and Poll, E. (2003). An overview of JML tools and
applications. In International Journal on Software Tools for Tech-
nology Transfer, 7(3), 212-232.

[4] Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., and Vardi,
M. (2007). Proving that programs eventually do something good. In
Principles of Programming Languages (POPL).

[5] Dietl, W. and Muller, P. (2005). Universes: lightweight ownership
for JML. In Journal of Object Technology, 4(8).

[6] Erickson, C. (2003). Memory leak detection in C++. In Linux J., 110
(Jun. 2003), 8.

[7] Fritz, T., and Murphy, G.C. (2010). Using information fragments to
answer the questions developers ask. In Proc. of the Int’l Conf. on
Soft. Eng. (ICSE), 175-184.

[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (2003) Design
patterns: elements of reusable object-oriented software. Addison –
Wesley.

[9] Godefroid, P., Klarlund, N, and Sen, K. (2005). DART: directed
automated random testing. In PLDI.

[10] Goodenough, J.B. (1975). Exception handling: issues and a proposed
notation. In Communications of the ACM (CACM), 18(12), 683-693.

[11] Hoffmann, R., Fogarty, J., and Weld, D.S. (2007). Assieme: finding
and leveraging implicit references in a web search interface for pro-
grammers. In UIST, 13-22.

[12] Holmes, R., and Begel, A. (2008). Deep intellisense: a tool for rehy-
drating information. In Proc. Mining Software Repositories (MSR).

[13] Jordan, E., Sangal, N., Sinha, V., and Jackson, D. (2005). Using
dependency models to manage complex software architecture. In
Proc. OOPSLA.

[14] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: a multi-
linguistic token-based code clone detection system for large scale
source code. In TSE, 28(7).

[15] Ko, A. J., DeLine, R., and Venolia, G. (2007). Information needs in
collocated software development teams. In ICSE, 344-353.

[16] Ko, A.J., and Myers, B.A. (2008). Debugging reinvented: asking and
answering why and why not questions about program behavior. In
Proc. of the Int’l Conf. on Soft. Eng. (ICSE).

[17] Kollmann, R., Selonen, P., Stroulia, E., Systä, T., and Zündorf, A.
(2002). A study on the current state of the art in tool-supported
UML-based static reverse engineering. In WCRE.

[18] LaToza, T.D., Garlan, D., Herbsleb, J.D., and Myers, B.A. (2007).
Program comprehension as fact finding. In FSE.

[19] LaToza, T.D., Myers, B.A. (2010). Developers ask reachability
questions. In Proc. of the Int’l Conf. on Soft. Eng. (ICSE).

[20] LaToza, T.D., Venolia, G., and DeLine, R. (2006). Maintaining
mental models: a study of developer work habits. In Proc. ICSE.

[21] Letovsky, S. (1986). Cognitive processes in program comprehension.
In Empirical Studies of Programmers.

[22] Mockus, A., and Herblseb, J. (2002). Expertise browser: a quantita-
tive approach to identifying expertise. In Proc ICSE.

[23] Moran, T. P. and Carroll, J. M., Eds. (1996). Design rationale: con-
cepts, techniques, and use. Lawrence Erlbaum Associates, Inc.

[24] Sillito, J., Murphy, G.C., and De Volder, K. (2008). Asking and
answering questions during a programming change task. In Transac-
tions on Software Engineering (TSE), 34(4).

[25] Sridharan, M., Fink, S.J., and Bodik, R. (2007). Thin slicing. In
Programming Language Design & Implementation (PLDI).

[26] Strom, R.E., Yemini, S. (1986). Typestate: a programming language
concept for enhancing software reliability. In Transactions on Soft-
ware Engineering (TSE), 12(1), 157-171.

[27] Sullivan, K.J., Griswold, W.G., Cai, Y., and Hallen, B. (2001). The
structure and value of modularity in design. In Proc. FSE.

[28] Sutherland, D. (2008). The code of many colors: semi-automated
reasoning about multi-thread policy for Java. Dissertation, Carnegie
Mellon University.

