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Abstract
In this work we present a formal system to annotate programs with
ownership types in a lightweight way, allowing only partial infor-
mation about object owners. We adapt the system of Clarke and
Drossopoulou to include gradual types of Siek and Taha. The re-
sulting framework allows one to annotate programs incrementally
with ownership types. For fully annotated programs the developed
formalism provides a static guarantee of the desired encapsulation
invariant, whereas for partially annotated programs necessary dy-
namic checks are inserted by the compiler.

1. Introduction
Ownership types provide a declarative way to statically enforce
the notion of encapsulation in object-oriented programs. A type
system that enables control over object ownership in Java-like
languages is usually plugged into the traditional syntax as a set
of type annotations. Variants of ownership types allow a program
to enjoy such computational properties as data race-freedom [7],
disjointness of effects [11], various confinement properties [33]
and effective memory management [8]. It also enables modular
reasoning using knowledge about aliasing [28].

However, the verbosity of ownership types seems to be a big
obstacle on the way of introducing them into mainstream program-
ming. Indeed, in order to enable the compiler to reason about alias-
ing, a programmer should provide full annotations for a program
or they should be inferred. Unlike traditional type schemes à la
Hindley-Milner, ownership annotations are mostly design-driven.
There is not much use in the inference of ownership types, when
no extra annotations is provided since the correct ownership typing
always exists [17]. But of course some annotations can be inferred
if the necessary amount of information is provided to indicate the
intent of the programmer. It would therefore be useful to have a
technique that helps to migrate smoothly from an ownership-free
program to an ownership-annotated one. For instance, one might be
interested in the run-time behaviour of objects with respect to some
regions: an object cannot leave its owner’s scope, i.e., it cannot be
assigned to fields of other objects outside of its owner’s scope (this
is so-called weak owners-as-dominators (OAD) invariant [29]). The
question is: must all types be annotated to ensure this behaviour?

Intuitively, one does not need to provide ownership annota-
tions for all types in the program in order to ensure the owners-
as-dominators invariant dynamically holds: we need only small
amount of hints to maintain the invariant. One can consider this
as dynamic checking for ownership structures. In addition, it would
be nice to reason about the invariant statically and even eliminate
some dynamic checks if sufficient amount of information is pro-
vided via annotations. This is the essence of gradual types: both
static and dynamic checking are possible in the same language by
allowing the programmer to control whether some parts of the pro-

gram can be checked statically or at run-time by adding or remov-
ing type annotations [31, 32].

In this paper we explore the idea of applying gradual types
to ownership typings and the ownership invariant. Our work is in
the spirit of BabyJ by Anderson and Drossopoulou [5]: complete
annotation implies the static guarantee of the desired invariant.
To this end, we introduce the notion of gradual ownership types
and the corresponding consistent-subtyping relation to reason about
ownership structures statically in the presence of only partially-
annotated types.

2. Motivation
The possibility of omitting some annotations enables the program-
mer to write the code that will not violate the invariant, but will
be checked dynamically if it is impossible to prove the correct-
ness at compile-time. This is useful for the incremental migrating
to ownership-aware code. By providing a minimal amount of an-
notations, one can test the program and figure out if the provided
annotations are safe or not.

In the case of ownership types, there are several ways to de-
fine which annotations are considered to be “primary”, i.e., defin-
ing the strategy of dynamic checks and, thus, should be provided
by the programmer. In this section we discuss two possible strate-
gies. Section 2.1 describes an approach “instances-first”, when the
minimal amount of annotations should be provided at allocations
sites to define the ownership restrictions. This approach will be
further formalized in the paper. In Section 2.2 we describe an al-
ternative design strategy “references-first” that allows annotations
to be omitted even on allocation sites.

2.1 “Instances-first” design of gradual types
Informally, the weak owners-as-dominators invariant [29] is as
follows. Given an object o and its owner, some other object α, then
every path in the object graph of a program from roots (i.e., objects
with no input edges) along objects’ field references that ends in o,
passes “through” α. This informal definition does not say a word
about annotations of fields, variables etc. Thus, all we need to know
to explore the run-time owners-as-dominators property is what each
object’s owner is. This is a necessary bit of information that should
be provided by the programmer. Any field or variable annotations
do not contribute somehow to this information, and gradual types
allow them to be omitted.

We present the series of examples to make this point clearer.
Figure 1 gives a motivating example taken from Clarke and
Drossopoulou [11]. Ownership annotations are attached to types
in angle brackets <...> similar to generics. One can notice that
only annotations emphasized by grayed boxes are necessary. First,
we cannot omit owner parameters in declarations of classes, such
as class List<owner,data>, since they define the discipline to
name each class’ owners and bind them to the owners declared in a
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class Link <owner,data> {

Link<owner,data> next;
Data<data> data;
Link(Link<owner,data> next, Data<data> data) {
this.next = next; this.data = data;

}
}

class List <owner,data> {

Link<this,data> head;
void add(Data<data> d) {

head = new Link <this, data> (head, d);

}
Iterator<this,data> makeIterator() {

return new Iterator <this, data> (head);

}
}

class Iterator <o,d> {

Link<o,d> current;
Iterator(Link<o,d> first) {
current = first;

}
void next() { current = current.next; }
Data<d> elem() { return current.data; }
boolean done() { return (current == null); }

}

Figure 1. A list and its iterator: example code with optional and
necessary ownership annotations in the “instances-first” gradual
ownership types discipline

superclass. Eventually, this defines the runtime ownership mapping
from the class’ parameters to the owners of the instances allocated
within methods of a class. Second, we should keep the owner-
ship arguments at object allocation sites, such as, for instance,
new Link<this, data>(), because they describe actual ownership
structure of particular objects.

To illustrate the idea of gradual ownership typings, consider the
following code fragment, which violates the ownership invariant:

List<?, ?> list = new List<p, world>();
Iterator<?> iter = list.makeIterator();
ElementFactory<?> factory = new ElementFactory<p>();
factory.iterator = iter; // invariant violation

We intentionally left only the minimal necessary amount owner-
ship annotations to show how the invariant imposed by them can be
violated at run-time. All non-mandatory annotations are replaced
by unknown owners “?”. Later in the paper, types with no annota-
tions are just syntactic sugar for types with all ownership annota-
tions unknown, e.g., List≡ List<?,?>. The object of type Iterator
created in and returned by the method makeIterator of the object
list has the object list as its owner. It is permitted to use iter
within the stack frame where its owner list is available. This dis-
cipline is referred as dynamic aliasing [11]. However, the invariant
is violated the moment iter is assigned to the field iterator of the
object factory: the latter has some object p as its owner, but not
list or iter, which would be valid.

The described violation could be detected statically in the pres-
ence of full ownership annotations. Otherwise the invariant viola-
tion should be prevented by a run-time check.

2.2 “References-first” design of gradual types
One could imagine the idea of a factory object that creates objects
not belonging to anyone. Later these objects might find their own-
ers, by being assigned to some other object’s fields with explicitly

class ObjectFactory {
static Object<?> createUnadopted() {
return new Object<?>() {...}

}
}
class Adopter<p> {
Object<p> adoptedChild;
void adopt() {
ObjectFactory factory = new ObjectFactory();
Object<?> unadopted = factory.createUnadopted();
adoptedChild = unadopted;

}
}

Figure 2. Objects with non-specified owners as an example of the
“references-first” discipline of gradual ownership types

specified owners. The fragment of code in Figure 2 provides some
intuition about this idea. An instance of the class ObjectFactory
creates an object with an unspecified owner. In the method adopt()
the instance of the class Adopter parametrized by an owner p as-
signs this object to its field, thus, specifying unadopted’s owner to
p. The “references-first” design strategy allows even more relaxed
ownership annotations: ownership annotations can be omitted on
both allocation sites and references. In the most relaxed case, only
ownership class parameters should be declared, but this also could
be implemented by introducing some default agreements (e.g., each
class has only one ownership parameter). However, this approach
requires a run-time mechanism to monitor assignments and argu-
ment passing in order to fix concrete owners in the run-time struc-
ture of objects.

We keep the discussion of the various design choices for the
future work and dedicate the rest of this paper to the “instances-
first” design strategy.

3. Combining Gradual Typing and Ownership
In this section we provide the definition of the syntax of JO?, and
the static semantics of type checking in the presence of unknown
owners. Following the road of gradual types it seems to be a natu-
ral idea to introduce a notion of the special unknown owner “?”.
Unlike the static approach of quantifying ownership types with
wildcards [9], program points annotated with “?” in a gradually-
typed language help to intentionally omit the pieces information
that should be checked at run-time via checks inserted by the com-
piler.

3.1 Syntax
In order to formalize the notion of gradual ownership types, we
define the language JO? as an extension of the system JOE1 of
Clarke and Drossopoulou [11] with the unknown owner “?”. Effect
annotations and sub-effecting from JOE1 are omitted as irrelevant
to the topic and for the sake of simplicity. The unknown owner “?”
can appear in ownership annotations just like a normal owner.

In JO?, we distinguish between concrete and abstract owners.
Concrete owners are represented syntactically by owner and term
variables, dependent owners and actual owners such as world and
heap locations. The unknown owner “?” is considered abstract
in the sense that it is present as an owner only syntactically in
the static semantics of the language and does not provide any
information about the corresponding run-time owner. zc.i denotes
the i-th dependent owner of the object referred by the term variable
z, whose statically known class type is c. Dependent owners are
not supposed to be specified by the programmer. Instead, they
are inferred by the compiler. The purpose of dependent owners
is similar to existential owners: they keep an information about
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c ∈ ClassName
class ∈ Class ::= class c〈αi∈1..n〉

extends c′〈ri∈1..n′〉
{fd j∈1..m methk∈1..p}

f ∈ FieldName
fd ∈ Field ::= t f
m ∈ MethodName

meth ∈ Method ::= t m(t x) {e}
e ∈ Expr ::= z | let x = b in e

x,y ∈ TermVar
z ∈ Var ::= this | x
b ∈ Comp ::= z. f | z. f = z | z.m(z) |

new c〈ri∈1..n〉 | null
α ∈ OwnerVar
r ∈ ConcreteOwner ::= z | α | k

u ∈ KnownOwner ::= r | zc.i

p,q ∈ Owner ::= u | ?
k ∈ ActualOwner ::= world | . . .
s ∈ SourceType ::= c〈ui∈1..n〉
t ∈ Type ::= c〈pi∈1..n〉 | s

P ∈ Program ::= {class j | j ∈ 1..m};e

ι ∈ Location
w ∈ VarOrLoc ::= z | ι

v ∈ Value ::= ι | null
κ ∈ ActualOwner ::= . . . | ι

Figure 3. Static and dynamic aspects of JO?

the origin of some owner arguments without knowledge about the
nature of the owners. The following code fragment provide some
intuition about dependent owners:

class E <owner, q> {
D<?> d = new D<q>();

}
class D<owner> {
E<owner> e;
void use(D<owner> arg) {...}
void exploit(E<owner> arg) {
this.e = arg;

}
}
E<p> e = new E<p, world>();
D<?> d = e.d; // implicitly, d: D<dD.1>
d.use(d); // coarsening, but no type cast required
d.exploit(e); // dynamic type cast required

Without dependent owners we would lose precision when
checking types.

Figure 3 provide the definition of the full syntax of JO?. Pro-
grams in our calculus are in the a-normal form, i.e., all intermedi-
ate expressions are named. Thus, there is no need in plain variable
assignments such as z = y. Also, this allows local variables to be
used as owners, as long as they do not escape the scope of a local
stack frame.

3.2 Environments and owners
A typing environment E binds variables and heap locations with
types and defines ordering assumptions on owners with respect to
the within relation ≺∗.

E ∈ Env ::= /0 | E,w : s | E,r ≺∗ r′

The dynamic semantics is defined in Section 4 in terms of
an explicit binding of free variables, rather than via substitution.

The presence of binding environment in the typing judgements
does not affect the static semantics of JO?, but we will need it
to establish equalities between typing environments and dynamic
bindings doing the proof of the type preservation theorem. To avoid
duplicating work, we include a binding list in the assumption set of
most judgements. The bindings B map context variables to actual
contexts and variables to values:

B ∈ Binding ::= /0 | B,α = k | B,z = v

The relation of a well-formed pair E;B ` � is described via
rules via rules (IN-BIND1), (IN-BIND2) and (IN-BIND3) in Fig-
ure 8. Note, owners in types are defined modulo equality in the
binding list. To keep the presentation tractable, we omit explicit
mentioning of the rules dealing with such equalities. We also use
three helper functions to operate with types and classes: owner,
owners and arity.

owner(c〈〉) , world

owner(c〈pi∈1..n〉) , p1, where n > 0
owners(c〈pi∈1..n〉) , pi∈1..n

arity(c) , n, where class c〈αi∈1..n〉{. . .} ∈ P

The definition of well-formed owners in typing environment E is
shown in Figure 4 (E;B ` p). The rules (OWN-DEPENDENT)
and (OWN-UNKNOWN) are specific for the gradual type system.
(OWN-DEPENDENT) ensures that the dependent owner is valid in
any environment, even if the corresponding variable is not present
in the environment. The index i may not exceed the arity of the
class c. This might seem odd, but, in fact, this relaxation still does
not allow dependent owners to “escape” the local context. The rule
(OWN-UNKNOWN) states that the unknown owner is valid in any
environment.

3.3 Owners ordering
The type system tracks two orders: the order of owners (≺∗)
and the ordering of types imposed by the subtyping relation (≤).
The definition of owner orderings distinguishes between known
owners, such as term variables, locations, dependent owners and
owner variables, and unknown owners. In Figure 4 the tradi-
tional order relation is defined for known owners only, and a new
one, consistent-subowner (E;B ` p� p′) is handled via three
new rules: (SUBOWN-LET), (SUBOWN-RIGHT) and (SUBOWN-
INCLUDE). The notion of owners ordering is tightly bound with the
notion of the well-formed typing environment:

Definition 3.1 (Well-formed typing environment). A typing en-
vironment E is well-formed if ≺∗ is a partial order on {r | r ∈
dom(E)}.

Unlike the plain ordering of owners, the owner consistency re-
lation is not transitive, so E;B ` q � ? and E;B ` ? � p do
not imply E;B ` q � p unless q = p = ?. The rule (SUBOWN-
INCLUDE) states that the subowner relation ≺∗ on concrete own-
ers implies consistent-subowner relation. Types can be constructed
from any class using any owner from a scope (including an un-
known owner “?”), as long as the correct number of arguments are
supplied and the owner (the first parameter), if present, is provably
consistently-inside all other parameters. The corresponding relation
E;B ` t is defined in Figure 5. This is a relaxed requirement to en-
sure that the owners-as-dominators property is maintained. We can
statically ensure that all known owners do not break the property
and the rest (involving “?”) will be postponed to run-time checks
by the compiler.

3.4 Type consistency and subtyping
We would like to compare types containing an unknown owner “?”
as an owner parameter taking the subtyping relation into the ac-
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count. Every type in the system can be thought as a pair c〈σ〉, where
c is a class name corresponding to some definition in a class table
and σ = {αi 7→ pi | i ∈ 1..arity(c)} is a substitution from the formal
owner parameters of class c to owner arguments, either concrete or
abstract. Since two types sharing the same class name can differ in
the owner substitutions, we define the type consistency relation ∼
on types parametrized with partially known and dependent owners
via the rules in Figure 5 (the relation E;B ` t ∼ t ′). The type con-
sistency relation answers the question: which pairs of static types
could possibly correspond to comparable run-time types?

The definition of the subtyping is standard and is taken from the
JOE1 calculus (Figure 5). In order to eliminate non-determinacy
from the type-checking algorithms one should design a relation
which will combine two kinds of subsumption of types: type con-
sistency and subtyping. This relation is used then in type rules
whenever an implicit upcast is necessary [30]. Siek and Taha sug-
gest a way to design such consistent-subtyping relation for the cal-
culus Ob<: of Abadi and Cardelli [1]. However, the proposed ap-
proach handles structural rather than nominal subtyping, which
is typical for Java-like languages and is the norm in mainstream
object-oriented programming languages. Therefore, one additional
contribution of this work is integrating a consistent-subtyping rela-
tion into a type system with nominal subtyping and parametrized
types.

If two types t = c〈σ〉 and t ′ = c′〈σ′′〉 are related via the
consistent-subtyping relation, i.e., t . t ′, they can differ along both
directions: the type consistency relation ∼ and the subtyping rela-
tion ≤. This is illustrated by the diagram on the left:

c′〈σ′〉

c〈σ〉

.
<<yyyyyyyy

c′〈σ′〉 ∼ // c′〈σ′′〉

c〈σ〉
.

;;wwwwwwwww
≤

OO

This intuition is formalized via the rule (GRAD-SUB) in Fig-
ure 5.

3.5 The type rules
Typing rules for expressions are standard (Figure 6). Following the
standard approach, instead of using subsumption, we use the con-
sistent subtype relation where it is necessary [30]. m]m′ denotes
the disjoint union of finite maps m and m′, requiring that their do-
mains are disjoint. σz is the substitution σ]{this 7→ z} for any
substitution σ. The helper function fill (Definition 3.2) converts de-
clared types with unknown owners to types with dependent owners
to track owner dependencies.

Definition 3.2 (Type conversion).

fill(x,c〈pi∈1..n〉) , c〈qi∈1..n〉 where qi =
{

xc.i if pi = ?
pi otherwise

The rules for class typing remain unchanged from the original
work on JOE1. The class Object is located on the top of class hi-
erarchy and it has only one owner parameter. A program is a set of
classes and an expression. It is well-formed if its constituent classes
are well-formed and an expression is well-typed. The system we
consider has only trivial order on owners. More expressive possi-
bilities exist, for example, by declaring the expected relationship
between owner parameters of a class [13].

4. Operational semantics of JO?

This section provides the definition of dynamic semantics of JO?.
The small-step operational semantics of JO? is presented in Fig-
ure 7. The semantics is in the form of a small-step CEK-like ab-
stract machine with a single-threaded store H, binding environment

B and explicit continuations K [18]. We have chosen this model
since it can be easily extended with new types of computations and
expressions.

H ∈ Heap , Location ⇀ Object
o ∈ Object ::= 〈c〈ki∈1..n〉, [ f 7→ v f∈dom(Fc)]〉
K ∈ Continuation ::= mt | call(x : Jt,σK,e,B,K)

An object is represented by its runtime ownership structure (i.e.,
its class name and actual ownership parameters: either world or
some non-null heap locations). A heap H is a partially defined
map from locations to objects. Finally, a continuation K is infor-
mally a serialized “next step of computation”. The empty con-
tinuation mt corresponds to the empty control stack which is a
case at the beginning and at the correct and of the program exe-
cution. call(x : Jt,σK,e,B,K) describes the discipline of “popping
the stack” when an actual method ends its execution and its caller’s
local environment B should be restored. A variable x to which the
result of the method will be assigned is annotated with the origi-
nal return type t of the called method and the local substitution σ.
These annotations can be obtained during the type-checking phase
via the conclusion of the rule (T-CALL). The annotations do not
affect the dynamic semantics and are used only for the soundness
proof. The following proposition states the equivalence between the
semantics of JOE1 and JO? by construction [16].

Proposition 4.1 (Equivalence of Semantics). ∀ H, H ′, B, v, e ∈
JOE1∩ JO?,

〈H;B;e〉=⇒ 〈H ′;v〉 ⇐⇒ ∃B′.〈H,B,e,mt〉 ⇒∗ 〈H ′,B′,v,mt〉.

5. Compilation Semantics of JO?

This section describes the procedure of type-based compilation of
programs in JO? into an extended language with run-time checks.

5.1 Intuition: boundary checks and type casts
In the original work on gradual types, Siek and Taha introduce type
casts in order to ensure that the run-time structure of a λ-expression
corresponds to the type imposed either by type specification or
type-checking rules [32]. Later, in the work on gradual typing
for objects, the type casts are imposed by partially provided type
annotations and the structure of objects [31]. To get some intuition
on run-time checks in the case of ownership types, we first recall
the owners-as-dominators invariant as it is defined by Östlund and
Wrigstad [29]. To state the invariant we need a definition of a heap
flattening.

Definition 5.1 (Heap flattening).

Ĥ , {(ι ≺∗ o),(ι : c〈o,ki∈2..n〉) | (ι 7→ 〈c〈o,ki∈2..n〉, [. . .]〉) ∈ H}

The notation Ĥ is used also to flatten a heap H into a typing
environment.

Definition 5.2 (Owners-as-Dominators Invariant). OAD(H), for
all locations ι, ι′ and actual owners o,

H(ι) = 〈c〈ki∈1..n〉, [ f 7→ v f∈dom(Fc)]〉
fi 7→ ι′

owner(H(ι′)) = o

 ⇒ Ĥ; /0 ` ι≺∗ o

Now it is time to look back to the type checking rules and
describe in detail how they relax the ownership invariant statically.
Informally, the work of the relaxed invariant check is contained in
the rules (EXP-CALL), (EXP-METHOD) and (EXP-UPDATE) due to
the presence of the relation . in the premises. But the only place
where the owners-as-dominators invariant can actually be broken
is by a bad field assignment, which makes field assignments good
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candidates for extra run-time checks. We will refer to this specific
kind of dynamic checks as boundary checks.

Method calls and returns cannot violate the ownership invari-
ant, but they allow some dynamic boundary checks to be avoided
thanks to type refinement. It is important to notice that type casts are
needed whenever additional information about types needs to be re-
gained. In general such places occur whenever a value is assigned
to a local variable or field or passed to or returned from a method. In
the system we consider only method calls and returns and assign-
ments to fields, as let-expressions are not annotated with types
and the types are inferred.

Essentially, type casts and boundary checks are two orthogonal
procedures. The former are standard for gradual type systems and
perform a postponed check that the run-time structure of a datatype
corresponds to the programmer’s expectations. The latter are par-
ticular to systems with ownership types: they postpone the check
that the program does not violate the OAD invariant. Section 5.5
provides a two-pass type-directed algorithm to sequentially insert
both of these types of checks into the program code.

5.2 Syntax of checks
The syntax is extended for dynamic type casts and boundary
checks. First, we introduce two types of statements. Second, we
define a new sort of continuation fail(k) to denote the result of
failing casts and boundary checks.

b ∈ Comp ::= . . . | 〈t〉z | z. f ← z
K ∈ Continuation ::= . . . | fail(K)

We refer to the extended version of JO? as JO+
? . Casts and checks

are not supposed to be put in by the programmer. They are inserted
instead by the cast and check insertion procedures described in
Section 5.5. The statement 〈t〉z ensures that the run-time type of
an object referred to by z matches the type t. The statement x. f ← y
imposes the check that a field reference from x to y via the field
f would not violate the ownership invariant and performs the field
update.

5.3 Type coercion
If two types are related via., there is a freedom to choose the run-
time semantics of type casts. In the original work on gradual types
for objects, the authors chose to check the subtyping at run-time
via type casts (i.e., move along the y-axis on the picture from Sec-
tion 3.4). More concretely, given t . t ′′, an intermediate type t ′ such
that t ∼ t ′ is built statically. So, only the subsumption t ′ ≤ t ′′ is to
be checked at run-time, and this is implemented via the mechanism
of type casts. In our case the definition of . already gives us an
algorithm to compute an “upper-left mediator”. Following the rule
(GRAD-SUB), we compute the type c′〈σ′〉 that is on one class-level
with the target type c′〈σ′′〉 for the upcast.

Lemma 5.3 (Inversion lemma for.). If E;B ` t . t ′, then there
exists a type t ′′ such that E;B ` t ≤ t ′′ and E;B ` t ′′ ∼ t ′.

The dynamic type cast is then to be used to check the run-
time consistency of two types with gradual owners. To construct an
“upper-left” mediator type we need an extra helper function. The
function t ↑ c computes a basic type of the type t sought for the
definition of the consistent subtyping with resect to the supertype
of t at class c.

Definition 5.4 (Type coercion (↑)).

c〈σ〉 ↑ c , c〈σ〉
c′〈σ〉 ↑ c , d〈α j 7→ σ(p j) j∈1..m〉 ↑ c

where class c′〈αi∈1..n〉
extends d〈p j∈1..m〉{. . .}

and class d〈α j∈1..m〉{. . .}.

In words, the partially defined function ↑ pulls up the informa-
tion from the substitution σ of an initial type c〈σ〉 until it reaches a
desired superclass c. If the class hierarchy Object is reached with-
out making a match, the function is undefined. Define ↑ on pairs of
types as follows:

t ↑ c〈σ〉 , t ↑ c.

(t ↑ t ′) ∼ // t ′

t
.

<<zzzzzzzzzz

≤

OO

The following lemma states the basic properties of ↑.
Lemma 5.5 (Basic properties of ↑). For all E, B, t, t ′,

1. (t ↑ t) = t

2.
E;B ` t
E;B ` t ′

(t ↑ t ′) 6=⊥

 implies E;B ` t ≤ (t ↑ t ′)

3. E;B ` t . t ′ implies E;B ` (t ↑ t ′) ∼ t ′

5.4 “More defined than” and “specified” relations
Our next step is to figure out what particular checks should be per-
formed at run-time. Actually, all relations between known owners
might be already inferred at the type checking stage and, thus, stat-
ically checked via the rules for owner ordering as it was discussed
in Section 5.1. Since the consistency on owners is symmetric, the
uncertainty can be caused by the lack of information about owners
both from the side of a source and target type. By source types we
mean the inferred types of call arguments, method results and val-
ues to be assigned to fields. Target types are those to which the cast
is made, namely, declared types of parameters, method returns and
fields.

The relation C is is designed to answer the question: does the
left operand satisfy all constraints imposed by known owners of the
right operand?

Definition 5.6 (t is more defined than t ′).

t C t ′ , t . t ′ and {i | qi 6= ? ∧ pi 6= qi}= /0

where (t ↑ t ′) = c〈pi∈1..n〉 and t ′ = c〈qi∈1..n〉
If for some concrete owner qi of the right operand, the corre-

sponding owner of the left operand pi is either unknown or is some
dependent owner, the function returns false. We use C to detect
where type casts should be inserted.

The lack of information in the target type can lead to the vio-
lation of the ownership invariant. Such places in code are candi-
dates for boundary check insertion. We use the predicate specified
to answer the question does the target type provide enough static
information about its owners to ensure the invariant preservation?

Definition 5.7 (t specifies its owner). specified(t), p1 6= ?, where
t = c〈pi∈1..n〉

If the information about the first owner parameter of the source
type or target type is not known statically, the OAD invariant cannot
be guaranteed. A boundary check should be inserted in this case.

The type rules for type casts and boundary checks are present on
Figure 8. It is important to notice, that for JO+

? we use a different
typing relations, namely, `C and `C

B . Generally, these two relations
are similar to the original ` for JO?. One significant difference
is that all the occurrences of . in the typing of statements are
now concentrated in the rule (T-CAST). In the rest of rules . is
replaced byC (grayed parts). The rule (T-CHECK) ensures the type
conformance via C, but not the preservation of the OAD invariant:
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this is postponed until run-time. The rule (T-CHECK) is targeted to
ensure the OAD invariant. We postpone the detailed definition of
the relations `C and `C

B until Section 5.5.

5.5 Type-guided program translation
We adopt the idea of Siek and Taha [31] to define a type-directed
type cast and boundary check insertion relation on expressions and
methods (Figures 8, the relations C

 and B
 , respectively). We dis-

tinguish insertions of type casts and boundary checks as two differ-
ent procedures. First, the cast are inserted into a program. Boundary
check insertion translation works subsequently on the program with
inserted casts. This is an example of a staged translation, guided by
the gradual type system: each next step of the translation eliminates
an aspect of uncertainty, caused by non-complete type annotations.

Type cast insertion C
 is a first stage of the complete gradually-

typed program translation. Figure 8 provides the definition of se-
lected rules for the relation E ` e1

C
 e2 : t. The relation sub-

sumes the gradual type system and also specifies how to produce
the translation. The translation can be performed only for well-
typed expressions and methods.

Each inserted cast creates a fresh variable and increases the
depth of the processed let-expression whenever the consistent-
subtyping relation is mentioned in the premise of a typing rule. The
cast insertion relation for expressions is written E ` e1

C
 e2 : t

and holds if, under the assumptions from E, expression e1 is trans-
lated into expression e2 and the type of e1 is `-determined as t. In
the same way it is defined for methods. The rules for classes and a
whole program are straightforward and omitted.

Type cast insertions are type-guided: we do not insert a cast or
a boundary check if we get positive answers from the predicate
C. This is why we describe the helper function C that optionally
inserts type-casts. We use the non-recursive local decomposition of
an expression e via the context G.

The following lemma holds for the relation C
 with respect to

the `C -typing.

Lemma 5.8 ( C
 is type-sound for expressions). If E ` e C

 e′ : s
then E `C e′ : s.

Boundary check insertion B
 is a second stage of the whole

translation. The only one type statement that can be affected by B
 

is a field update since it is only one that can possibly break the OAD
invariant. The helper function B is defined to optionally replace
plain assignments with boundary-checked field assignments if not
enough type informations about primary owners is provided. For
the rest of statements, expressions and methods, B

 is just the
identity. The translation B

 works on top of the `C -well-typed
program.

Lemma 5.9 ( B
 is `C

B -sound for expressions). If E ` e′ B
 e′′ : s

then E `C
B e′′ : s.

The complete translation of the gradually-typed program is de-
fined as follows:

Definition 5.10 ( ). E ` e e′ : s iff E ` e C
 e′′ : s and

E ` e′′ B
 e′ : s for some e′′ ∈ JO+

? .

Theorem 5.11 (Complete program translation is `C
B -sound.). E ` e : s

iff E ` e e′ : s and then E `C
B e′ : s.

5.6 Semantics of dynamic type casts and boundary checks
To define the procedure of checking dynamic type casts, we first
need a bit of machinery to relate syntactic types with dynamic types
extracted from the object heap during the program execution. We

define a helper relation to compute the dynamic structure of a type
H; B ` t n t ′ (Figure 8).

The statement Ĥ ` s C t ′ in the premise of the rule (CAST-
CHECK) might seem odd since the check uses not the pure subtyp-
ing but the “more defined than” relation on types. However, there
is nothing wrong since all owners of the left operand s are known
and to satisfy the relation all the actual owners of its “upper-left”
mediator should match actual owners of the type t ′. The semantics
of type cast only cares about known owners in t ′. The test ι ≺∗ o
can be performed at run-time by checking whether o is ι or some
transitive owner of ι—this information is available in objects.

6. Type Safety
The type safety of JO? is a corollary of the correctness of the
type-guided program translation with respect to program typing
and the type safety of the extended language JO+

? with type casts
and boundary checks. The translation relation E ` e1 e2 : s can
be extended for classes and programs. For instance, we denote
P1;e1  P2;e2 if a program P2;e2 is obtained from P1;e1 by the
compositional type-directed translation.

Proposition 6.1 (Check insertion and gradual typing).

` P;e iff ∃P′,e′. P;e  P′;e′

The soundness result with respect to the OAD invariant relies
on three facts:

1. An initial configuration of any program does obey the OAD
invariant;

2. The subject reduction theorem guarantees the type preservation
for subsequent configurations;

3. Making a step from any well-typed configuration obeying the
OAD invariant, preserves the invariant.

In the remainder of this section we formalize these statements.
The operational formalism we use is a stack-based abstract ma-

chine (continuations form a stack-like structure) with a single-
threaded heap, so need to separate environments for heap objects
and references in stack frames. We define a heap typing environ-
ment E as follows:

E ∈ HeapEnv ::= /0 | E , ι : c〈ki∈1..n〉 | E , ι≺∗ k

Below in this section we assume that static typing environments
E defined in Section 3 contain only term and owner variables
in their domain, but not heap locations. The rules in Figure 8
describe the relation of well-formed triples (E ,E;B ` �) as
well as equivalences between possible owners: static and dynamic
(E ,E;B ` r = r′). We define well-typed heaps to connect heap
typing environments with actual run-time heaps (E ` H). The
last clause Ĥ ⇒ E in the premise of the rule (HEAP) is the key in-
gredient to define correct run-time heaps (Definition 6.2). It states
that the environment E provides no more information than can be
obtained from the flattened heap via the standard rules.

Definition 6.2 (Heap entailment). E ⇒ E ′ iff E , /0 ` H for all
statements H ∈ E ′

Stack typings are defined as lists of typing environments:

E ∈ StackEnv ::= Nil | E •E

Stack typing is well-formed if all its constituents are well-formed.
The functions head and tail are defined for stack typings as stan-
dard ones for lists. We use the notation E0 = head(E), E1 =
head(tail(E)) etc. Finally, we define the typing relation for pairs
〈e,K〉 where e ∈ Expr and K ∈ Continuation (E ;E;B � 〈e,K〉).
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Lemma 6.3 (Initial state typing). E ,E;B `C
B e : t iff

E ,(E •Nil);B � 〈H,B,e,mt〉
for some initial heap H such that E ` H.

Definition 6.4 (Heap environment extension). An environment E ′
is an extension of E (written E ′� E) if and only if E ⊆ E ′

Definition 6.5 (Stack typing evolution). We say that a stack typing
E transforms to a stack typing E ′ (written E  E ′) if one of the
following holds:

• E ′ = E ′ •E for some E ′
• E ′ = tail(E)
• E ′ = (E0,x : t)• tail(E) for some t and x /∈ dom(E0)

We use ∗ for the reflexive-transitive closure of .

Theorem 6.6 states the subject reduction invariant.

Theorem 6.6 (Subject reduction in JO+
? ). If e ∈ Expr in JO+

? ,
S = 〈H,B,e,K〉, E ,E � S for some well-formed E ,E and S ⇒ S ′
then E ′,E ′ � S ′ for some well-formed E ′,E ′ such that E ′ � E
and E ∗ E ′.

Theorem 6.7 is a key crucial for the type safety. It ensures that
for all well-formed states, if it is possible to make a next step in the
operational semantics, then the OAD invariant is preserved for the
heap component of the resulting state.

Theorem 6.7 (OAD preservation in JO+
? ). If e ∈ Expr in JO+

? ,
S = 〈H,B,e,K〉, E ;E � S , OAD(H) and S ⇒ S ′ for some S ′ =
〈H ′, , , 〉 then OAD(H ′).

We define the predicate NPE for null-pointer error on states as
follows:

Definition 6.8 (Null-pointer error states). The state S = 〈H,B,e,k〉
is stuck because of null-pointer dereferencing (NPE(S)) iff e =
D[y] for some y and B(y) = null, where D is defined below:

D ::= let x = [ ].m(y′) in e | let x = ([ ]. f = y′) in e |
let x = [ ]. f in e

The NPE-states are terminal for execution traces in the provided
semantics of JO?/JO+

? , since there is no transition rules for them.
We avoid addressing NonNull-annotations and corresponding static
safety results in this work.

Definition 6.9 (Initial state). Assume P;e to be a program in JO+
? ,

H = {world 7→ •}, B = {this 7→ world} is an initial binding
environment. Then the initial configuration of P;e is init(e) =
〈H,B,e,mt〉.

Following [14], we introduce a class World with no owner pa-
rameters to represent the object corresponding to the owner of
world-annotated instances, and for the completeness we need to
provide its type. One can see that taking E = {world : World} and
E = {this : World}•Nil, we obtain /0 `C

B P;e⇒ E ,E � init(e)
by Lemma 6.3. Theorem 6.10 ends our tool-chain of safety state-
ments.

Theorem 6.10 (Static type safety of JO?). If P;e  P′;e′ and
init(e′)⇒∗ S , then one of the following statements holds:

(a) S = 〈H,B,v,mt〉 for some H,B and v (final state);
(b) NPE(S) (null-pointer error);
(c) ∃S ′ : S ⇒ S ′ (progress);
(d) S = 〈H,B,b, fail(K)〉 where b = 〈t〉y or b = z← y for some

H,B, t,y,z and K (OAD violation attempt).

Combined Theorems 6.7 and 6.10 state that the provided grad-
ual type system ensures that (a) during a program execution no

ownership invariant will be violated, and (b) fully-annotated well-
typed programs will be executed until the result value or a null-
pointer error state with no ownership invariant violation.

7. Related Work
The idea of combining static and dynamic type checking is close to
the work of Flanagan on hybrid types [20]. Hybrid types may con-
tain refinements in the form arbitrary predicates on underlying data.
The type checker attempts to satisfy the predicates statically using a
theorem prover. According to the classification proposed by Green-
berg et al. [22], systems with hybrid and gradual types are related
to the class manifest systems, i.e., those which contain additional
constraints on data as part of types and enable a type checker to
reason about them. Their counterparts are latent systems, in which
contracts are purely dynamic checks [19].

Gordon and Noble in the work on dynamic ownership introduce
ConstraintedJava, a scripting language that provides dynamic own-
ership checking [21]. The authors suggest a dynamic ownership
structure consisting of an owner pointer in every object. Opera-
tions are provided to make use of and change these owner pointers.
The semantics of the language relies on a message-passing protocol
with a specific kind of monitoring.

Existential ownership types [24] are a mechanism that enables
parameterisation of types, as well as owners, and enables variant
subtyping of owners based on existential quantification [10]. This
approach allows owner-polymorphic methods to be elegantly im-
plemented and it distinguish objects with different and equal un-
known owners. Existential quantification also helps to implement
effective run-time downcasts in the presence of ownership types:
subtype’s inferred owners are treated as existential ones [35]. The
key difference between these approaches and our approach is that
existential ownership expresses don’t know whereas gradual types
express don’t care concerning the unknown owners.

Algorithms for ownership inference are a domain of large inter-
est nowadays. They address a similar problem to ours: take a “raw”
program and produce reasonable ownership annotations. The pi-
oneering work on dynamic ownership types’ inference is Wren’s
master’s thesis [34]. The work provides a graph-theoretical back-
ground for the runtime inference. The author formulates the sys-
tem of equations to assign annotations to particular object alloca-
tion sites, based on an object graphs’ evolution history. However,
no proof of correctness of these equations is provided as well as it
as conditions for the uniqueness of the solution.

Milanova and Liu present a static analyses to infer ownership
and universe annotations according to two different ownership pro-
tocols: the owner-as-dominator and the owner-as-modifier [26].
Both analyses are based on the context-insensitive points-to anal-
ysis, therefore they do not distinguish between different allocation
and call sites. However, thanks to some Java-related heuristics, the
presented analyses handle some idiomatic cases, and better preci-
sion is obtained. The proof of correctness of the build dominance
abstraction is present, although it does not rely on the abstract
interpretation-like nature of the points-to analysis. More general
points-to analysis-based algorithm to infer ownership and unique-
ness is presented by Ma and Foster [25]. The algorithm combines
constraint-based intraprocedural and interprocedural analyses. The
collected information about encapsulation properties is not mapped
to a type system. Points-to analysis-based approach for the gen-
eral inference of type qualifiers in Java is also described by Green-
fieldboyce and Foster [23]. The authors provide a formal frame-
work JQual for type qualifier inference in a simple object-oriented
language and use it for two particular applications. A user of the
framework must, however, formulate the property of interest in
terms of type qualifiers, not the program behaviour.
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Moelius and Souter [27] employ a variation of an escape anal-
ysis [6] to infer ownership annotations. The presented algorithm
allows borrowing references to be returned from methods and as-
signed to object fields. No assumptions on ownership parameterisa-
tion is made, consequently the algorithm results in a large number
of parameters. Dietl et al. present a static analysis to infer Universe
types [15] according to the set of generated constraints [17]. Con-
straints of the Universe type system are encoded as a boolean satis-
fiability problem. The described constraint-based analysis is close
to traditional control-flow analyses via abstract interpretation. No
formal proof of the correspondence of the obtained result to the
original type system is provided.

Aldrich et al. present AliasJava, a capability-based alias annota-
tion system for Java that makes alias patterns explicit in the source
code [4]. The provided system of annotations allows both notions
of uniqueness and ownership-style encapsulation to be captured.
The programmer need only provide a small amount of annotations
to indicate the intent to encapsulate some parts of the program and
the rest of alias annotations will be inferred.

8. Conclusion
In this work we applied the notion of gradual types to ownership
types systems and the ownership invariant in a Java-like language.
The resulting formalism is an extension of the language JOE1 by
Clarke and Drossopoulou. We introduced the notion of gradual
ownership types and corresponding consistent-subtyping relation
to reason about ownership structures statically in the presence of
statically unknown owners. For fully annotated programs the devel-
oped formalism provides static guarantee of the ownership invari-
ant, whereas for partially annotated programs the dynamic checks
necessary to ensure the invariant are inserted by the compiler.

In our work we mainly addressed extending a fixed host lan-
guage (e.g., Java) with domain-specific annotations to ensure own-
ership and gradual migration from “raw” code to annotated code.
Modern systems with aliasing-aware annotations usually require
significant changes in the structure of the host language and its se-
mantics [3, 12]. It is still a matter of discussion, how gradual typing
could be useful for such specialized formalisms. The Blame calcu-
lus enables a programmer to reason about the causes of dynamic
constraints violation via the mechanism of label passing and vari-
ant blames [2]. It would be interesting to explore the application of
the formalism to object-oriented aliasing invariants.
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E;B ` p E;B ` p ≺∗ p′

(OWN-WORLD)
E;B ` �

E;B ` world

(OWN-VARLOC)
E;B ` w : t

E;B ` w

(OWN-UNKNOWN)
E;B ` �
E;B ` ?

(OWN-DEPENDENT)
i ∈ 1..arity(c)

E;B ` xc.i

(OWN-VAR)
E;B ` � α ≺∗ p ∈ E

E;B ` α

(IN-ENV)
E;B ` �

α ≺∗ r ∈ E

E;B ` α ≺∗ r

(IN-REFL)
E;B ` r

E;B ` r ≺∗ r

E;B ` p ≺∗ p′ E;B ` p � p′

(IN-WORLD)
E;B ` r

E;B ` r ≺∗ world

(IN-TRANS)
E;B ` r ≺∗ r′

E;B ` r′ ≺∗ r′′

E;B ` r ≺∗ r′′

(IN-THIS)
E;B ` w : t
r=owner(t)

E;B ` w ≺∗ r

(SUB-DEP1)
E;B ` xc.i

E;B ` p � xc.i

(SUB-DEP2)
E;B ` xc.i

E;B ` xc.i � p

(SUB-LEFT)
E;B ` p

E;B ` p � ?

(SUB-RIGHT)
E;B ` p

E;B ` ? � p

(SUB-INCL)
E;B ` r ≺∗ r′

E;B ` r � r′

Figure 4. Well-formed owners and owner ordering

E;B ` p ∼ p′ E;B ` t ∼ t ′

(CON-REFL)
E;B ` p

E;B ` p ∼ p

(CON-RIGHT)
E;B ` p

E;B ` ? ∼ p

(CON-LEFT)
E;B ` p

E;B ` p ∼ ?

(CON-DEPENDENT1)
E;B ` p E;B ` xc.i

E;B ` p ∼ xc.i

(CON-DEPENDENT2)
E;B ` p E;B ` xc.i

E;B ` xc.i ∼ p

(CON-TYPE)
E;B ` c〈pi ∈ 1..n〉 E;B ` c〈qi ∈ 1..n〉

pi ∼ qi, ∀ i∈1..n

E;B ` c〈pi ∈ 1..n〉 ∼ c〈qi ∈ 1..n〉

E;B ` t ≤ t ′ E;B ` t . t ′ E;B ` t

(SUB-REFL)
E;B ` t

E;B ` t ≤ t

(SUB-TRANS)
E;B ` t ≤ t ′ E;B ` t ′ ≤ t ′′

E;B ` t ≤ t ′′

(SUB-CLASS)
E;B ` c〈σ〉

class c〈αi∈1..n〉 extends c′〈ri∈1..n′ 〉{...}
E;B ` c〈σ〉 ≤ c′〈σ(ri)i∈1..n〉

(GRAD-SUB)
E;B ` c〈σ〉 ≤ c′〈σ′〉

E;B ` c′〈σ′〉 ∼ c′〈σ′′〉
E;B ` c〈σ〉 . c′〈σ′′〉

(G-TYPE)
arity(c)=n

E;B ` p1 � pi ∀i ∈ 1..n

E;B ` c〈pi ∈ 1..n〉

Figure 5. Type consistency and subtyping

E;B ` b : s

(T-NEW)
E;B ` c〈ri∈1..n〉

E;B ` new c〈ri∈1..n〉 : c〈ri∈1..n〉

(T-LKP)
E;B ` z : c〈σ〉

Fc( f )=t

E;B ` z. f : σz(t)

(T-LET)
E;B ` b : t

E,x : fill(x,t);B ` e : s

E;B ` let x=b in e : s

(T-UPD)
E;B ` z : c〈σ〉 Fc( f )=t

E;B ` y : s

E;B ` s . σz(t)

E;B ` z. f =y : σz(t)

(T-CALL)
E;B ` y : s M T c(m)=(y′,t→t ′)

E;B ` z : c〈σ〉 E;B ` s . σz(t)

σ′≡σ]{y′ 7→y}
E;B ` z.m(y) : σ′z(t

′)

E ` t ′ m(t y) {e} E ` c ` P; e

(VAL-w)
E;B ` � w : s ∈ E

E;B ` w : s

(VAL-NULL)
E;B ` t

E;B ` null : t

(METHOD)

E,y : fill(y,t) ` e : s E ` s . t ′

E ` t ′ m(t y) {e}

(CLASS-OBJECT)

` class Object〈α1〉 { }

(CLASS)
E≡α1 ≺∗ world,(α1 ≺∗ αi)i ∈ 2..n,this : c〈αi∈1..n〉
E ` c′〈σ〉 owner(c〈αi∈1..n〉)=owner(c′〈σ〉)
{ fi∈1..m}∪(Fc′ )= /0 E ` t j∈1..m E ` methk∈1..p

∀ m ∈ names(methk∈1..p)
∪ dom(M T c′ )


M T c(m)≡t→t ′

M T c′ (m)≡t ′′→t ′′′

t≡σ(t ′′) t ′≡σ(t ′′′)

` class c〈αi∈1..n〉 extends c′〈σ〉 {t j f j∈1..m methk∈1..p}

(PROGRAM)
` class j ∀class j ∈ P

E ` e : t

E ` P; e

Figure 6. Typing rules

〈H,B,e,K〉⇒〈H ′,B′,e′,K′〉

(E-LKP)
B(y)=ι H(ι). f =v

〈H,B,let x=y. f in e,K〉⇒〈H,B[x 7→v],e,K〉

(E-UPD)
B(y)=ι B(y′)=v H(ι)=o

H ′=H ] ι7→o[ f 7→v]

〈H,B,let x=(y. f =y′) in e,K〉⇒〈H ′,B[x 7→v],e,K〉

(E-NEW)
ι is fresh

H ′≡H ] ι7→〈c〈B(ri)i ∈ 1..n〉,[ f 7→null f ∈ dom(Fc)]〉
〈H,B,let x=new c〈ri ∈ 1..n〉 in e,K〉⇒〈H ′,B[x 7→ι],e,K〉

(E-CALL)
B(y)=ι B(y′)=v H(ι)=〈c〈σ′〉,[ f 7→v f ∈ dom(Fc)]〉

Mc(m)=(x′,e′,{αi 7→ri ∈ 1..n})
B′={αi 7→σ′(ri)i ∈ 1..n,this7→ι,x′ 7→v}

〈H,B,let x:Jt,σK=y.m(y′) in e,K〉⇒〈H,B′,e′,call(x:Jt,σK,e,B,K)〉

(E-RETURN)

〈H,B,y,call(x:Jt,σK,e,B′,K)〉⇒〈H,B′[x 7→B(y)],e,K〉
(E-FINAL)

〈H,B,y,mt〉⇒〈H,B,B(y),mt〉

Figure 7. Small-step operational semantics of JO?

9



Local context
G ::= [ ] | let x=z.m([ ]) in e | let x=(z. f =[ ]) in e

Return context
F ::= [ ] | let z=b in F

Conditional cast insertion
CE 〈t1,t2〉 , λe. if t1 C t2 then e

else let y′=〈t2〉y in G[y′]
where y′ is fresh, e=G[y]

Conditional check insertion
BE 〈t〉 , λb@(z. f =y). if specified(t) then b else z. f←y

E ` e C
 e′ : s E ` e B

 e′ : s

(C-UPD)
E ` z : c〈σ〉 Fc( f )=t E ` y : s

E ` s . σz(t) E,x : fill(x,σz(t)) ` e1
C
 e2 : s′

E ` let x=(z. f =y) in e1
C
 

CE 〈s,σz(t)〉(let x=z. f =y in e2) : s′

(C-CALL)
E ` z : c〈σ〉 M T c(m)=(y′,t→t ′) E ` y : s

E ` s . σz(t) σ′≡σ ] {y′ 7→ y}
E,x : fill(x,σ′z(t

′)) ` e1
C
 e2 : s′

E ` let x=z.m(y) in e1
C
 

CE 〈s,σz(t)〉(let x=z.m(y) in e2) : s′

E ` t ′ m(t y) {e} C
 t ′ m(t y) {e′}

(C-METHOD)
E ` e1 : s E ` s . t ′

E,y : fill(y,t) ` e1
C
 e2 : s e2=F [z]

E ` t ′ m(t y) {e1}
C
 

t ′ m(t y) {F [CE 〈s,t ′〉(z)]}

(B-UPD)
E ` z : c〈σ〉 Fc( f )=t E ` y : s

E ` s C σz(t)

E,x : fill(x,σz(t)) ` e1
B
 e2 : s′

E ` let x=(z. f =y) in e1
B
 

let x=BE 〈σz(t)〉((z. f =y)) in e2 : s′

H; B ` t n t ′ 〈H,B,e,K〉⇒〈H ′,B′,e′,K′〉

(TYPE-INSTANCE)

∀ i ∈ 1..n qi=



k if


pi=xc. j

H(B(x))=〈t,[...]〉
k=owner j(t↑c)

pi if pi is actual
B(pi) if pi is concrete
? otherwise

H;B ` c〈pi∈1..n〉 n c〈qi∈1..n〉

(CAST-CHECK)
H;B ` t n t ′ B(y)=ι

H(ι)=〈s,[...]〉 Ĥ ` s C t ′

H;B ` cast(t,y)

(E-CAST1)
B(y)=null ∨ H;B ` cast(t,y)

B′ = B[x 7→ B(y)]

〈H,B,let x=〈t〉y in e,K〉⇒〈H,B′,e,K〉

(E-CAST2)
B(y)6=null H;B 0 cast(t,y) k 6=fail( )

e=(let x=〈t〉y in e′)

〈H,B,e,K〉⇒〈H,B,e,fail(K)〉

(BOUNDARY-CHECK)
B(x)=ι B(y)=ι′

H(ι′)=〈c〈o,...〉,[...]〉 Ĥ; /0 ` ι≺∗o
H;B ` boundary(x,y)

(E-BOUNDARY1)
(B(y′)=null ∨ H;B ` boundary(y,y′))

B(y)=ι B(y′)=v H(ι)=o
H ′=H ] ι 7→ o[ f 7→ v] B′=B[x 7→ v]

〈H,B,let x=(y. f←y′) in e,K〉⇒〈H ′,B′,e,K〉

(E-BOUNDARY2)
B(y′)6=null H;B 0 boundary(y,y′)

K 6=fail( ) e=(let x=(y. f←y′) in e′)

〈H,B,e,K〉⇒〈H,B,e,fail(K)〉

E;B `C b : s

(T-CAST)
E;B ` y : s E;B ` t

E;B ` s . t

E;B `C 〈t〉y : t

(T-UPD’)
E;B ` z : c〈σ〉 Fc( f )=t

E;B ` s C σz(t) E;B ` y : s

E;B `C z. f =y : σz(t)

(T-CALL’)
E;B ` y : s M T c(m)=(y′,t→t ′)

E;B ` z : c〈σ〉 E;B ` s C σz(t)

σ′≡σ ] {y′ 7→ y}
E;B `C z.m(y) : σ′z(t

′)

(METHOD’)
E,y : fill(y,t);B ` e : s

E;B ` s C t ′

E;B `C t ′ m(t y) {e}

E;B `C
B b : s

(T-CHECK)
E;B ` z : c〈σ〉 Fc( f )=t

E;B ` y : s E;B ` s C σz(t)

E;B `C
B z. f←y : σz(t)

(T-UPD”)
E;B ` z : c〈σ〉 Fc( f )=t E;B ` y : s

E;B ` s C σz(t) specified(σz(t))

E;B `C
B z. f =y : σz(t)

E ,E;B ` � E ,E;B ` r = r′

(BINDING-OWNER)
α R r ∈ E E ,E;B ` k R r
α /∈ dom(B) R ∈ {≺∗,�∗}

E ,E;B,α=k ` �

(BINDING-VALUE)
E ,E;B ` v : s z : s′ ∈ E s′=c〈σ〉 z /∈ dom(B)

E ,E;B ` s ≤ c〈σ ] {zc. j 7→ owner j(s↑c)}〉
E ,E;B,z=v ` �

(IN-BIND1)
E ,E;B ` �
α=k ∈ B

E ,E;B ` α=k

(IN-BIND2)
E ,E;B ` �
z=ι ∈ B

E ,E;B ` z=ι

(IN-BIND3)
E ,E;B ` � E ,E;B ` z=v

E ,E;B ` z : c〈σ〉 E ,E;B ` v : s

E ,E;B ` zc.i=owneri(s↑c)

E ` ι 7→ o : s E ` H E ;E;B � 〈e,K〉

(HEAP-OBJECT)
o≡〈c〈σ〉,[ f 7→ v f ∈ dom(Fc)]〉

E ; /0 ` c〈σ〉 E ; /0 ` ι≺∗owner(c〈σ〉)
E ; /0 ` v f : s E ` s C σι(Fc( f )) ∀ f ∈ dom(Fc)

E ` ι 7→ o : c〈σ〉

(HEAP)
ι:t ∈ E E ` ι 7→ o:t
∀ι 7→ o ∈ H Ĥ⇒E

E ` H

(TC-MT)
E ,E;B `C

B e : s

E ;E•Nil;B � 〈e,mt〉

(TC-FAIL)
E ;E;B � 〈e,K〉

E ;E;B � 〈e,fail(K)〉

(TC-CALL)
E ,E0;B `C

B e : s E ,E0;B ` s C t
∀r ∈ dom(σ) (E ,E0,B ` r=r′)⇔(E ,E1,B′ ` σ(r)=r′)

E ,E1,(x : fill(x,σ(t))),E;B′ � 〈e′,K〉
E ;E0•E1•E;B � 〈e,call(x : Jt,σK,e′,B′,K)〉

E ,E � 〈H,B,e,K〉
(T-STATE)

E ` H E ,E;B � 〈e,K〉
E ,E � 〈H,B,e,K〉

Figure 8. Casts and boundary checks: auxiliary definitions, the translation and the extended small-step operational semantics. Selected
typing rules of `C and `C

B , well-formed bindings, heaps and continuations.
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