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Abstract
Traditional deep ownership types gives a strong notion of aggregate
by enforcing the so-called owners-as-dominators property: every
path from a system root to an object must pass through its owner.
Consequently, encapsulated aggregates must have a single bridge
object that mediates all external interaction with its internal objects.

In this paper, we argue for a novel model of ownership that relaxes
the single bridge object constraint of traditional ownership types
and allows several bridge objects to collectively define an aggreg-
ate with a shared representation. We call such bridge objects om-
budsmen to emphasise their benevolent nature; all ombudsmen are
created internal to the aggregate, purposely.

The resulting system brings the aggregate notion close to the com-
ponent notion found in e.g., UML, and further allows expressing
common programming patterns such as iterators without resorting
to systems that give unclear guarantees, or require additional com-
plex machinery such as read-only references.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Object-Oriented Programming, Aliasing, Con-
finement

1. Introduction
In classic, Clarkean ownership types [7] aggregates fully encapsu-
late their representation; the only way for an external object to inter-
act with an aggregate’s representation is through public methods on
the aggregate’s single bridge object. This is called the owners-as-
dominators property and was first formulated by Clarke et al. [11].

The owners-as-dominators property of traditional ownership types
is very restrictive and, as previously identified [3, 5, 20, 21] pre-
vents common programming patterns that require multiple entry
points into a single representation. The canonical example of such
a pattern is an iterator to a linked list. Owners-as-dominators only
allows direct references to a list’s links from an iterator that cannot
escape the list itself, which renders it pretty useless in practise.

In ownership types, each object introduces a new context, a nes-
ted subheap, usually called this, which holds its representation
objects. Every object acts as the single entry point into its this
context from the outside and no facilities exist that allow two ob-
jects to share a common representation. The leftmost diagram in
Figure 1 shows an abstract picture of owners-as-dominators where
contexts are depicted as boxes with a singe entry point object de-
picted as a filled circle. Arrows denote references, and red arrows
are not allowed and programs which give rise to such references are
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rejected at compile-time. In terms of ownership diagrams, owners-
as-dominators guarantee that arrows cannot cross the boundary of
a context going inward. Consequently, d may not reference f, but e
may reference d.

a

b c
d

e f

a
b c

d

e f

Figure 1. Owners-as-dominators (left) and owners-as-ombudsmen
(right). The pink area denotes the shared aggregate context.

Contributions This paper contributes to the field of ownership
types by proposing a static ownership types system in which each
object gives rise to two contexts: rep and aggregate. The rep context
is the equivalent to the this context of classical ownership systems
and is defined solely by the object. The aggregate context, on the
other hand, is novel and denotes a set of objects potentially shared
between two or more objects at the same level or nesting, who
define the context together. The resulting ownership structure is
depicted to the right in Figure 1. The objects b and c now define
a common context (coloured pink), that is protected from external
access. We call b and c ombudsmen of their collaboratively defined
aggregate, and—as the graph depicts—each act as a bridge object
into two different, disjoint contexts.

Our design allows several objects to collaboratively construct an
aggregate object and define multiple interaction points for it. We
deliberately choose to limit objects to be part of a single aggregate,
as we believe this is what a programmer expects, i.e., it is “natural”.
Allowing multiple shared contexts is technically possible and a
straightforward extension of our system.

As a consequence of our ombudsman design, an additional number
of programming idioms can be expressed in ownership types sys-
tems, without compromising encapsulation. Owners-as-ombudsmen
has a clear encapsulation property, which should be easy to under-
stand and almost as powerful as owners-as-dominators.

Outline Section 2 describes the ombudsman concept in detail,
states the properties of the system informally and how to type it,
together with a couple of motivating examples. We then formally
describe the system in Section 3 together with the key theorems.
Section 4 discusses related work, Section 5 discusses encapsulation
invariants and feature interaction, and Section 6 concludes.
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2. Ombudsmen
Our proposal allows several objects—ombudsmen—to act as bridge
objects for a common aggregate. In terms of ownership types they
share a common context. Objects in this context are “ombudsman-
dominated”, meaning that

every path from a root in the system to an object in an
ombudsman-dominated context contains one of the
context’s ombudsmen.

In the example in Figure 1, b and c are ombudsmen for a collaborat-
ively defined aggregate. Their common aggregate context is depic-
ted as the pink area. In addition, b and c each have a private context.
The objects b and c, as well as objects in their private contexts, can
reference objects in the aggregate context (e.g., e refers d). Objects
outside b or c may not refer to objects in their aggregate context
(e.g., a may not reference d). Objects in the aggregate context can-
not reference the private contexts of their ombudsmen (e.g., d may
not refer to f).

As the leftmost picture of Figure 1 shows, in owners-as-dominators
systems, every context is nested inside some other context, and
references cannot cross a context from the outside to the inside.
With owners-as-ombudsmen, contexts on the same level of nesting
can share a common context, and references may cross from the
“private contexts” of these objects into their shared context.

2.1 Typing Ombudsmen

The type system that lets us express aggregate encapsulation with
multiple entry points is a straightforward extension of classic own-
ership types systems as found in e.g., Joe1 [8], Joline [9, 28] or OGJ
[25]. Classes are parametrised over permissions to access external
contexts and types instantiate those parameters with actual permis-
sions, so-called owner parameters. From now on, we will use the
word owner to denote a symbol in the program text that denotes a
run-time context.

The first owner parameter of a type is the owner of the instance,
available internally inside each class through the owner keyword.
Additionally, each class knows the owners rep, aggregate, and
bridge. The rep keyword denotes the private representation of the
object and is equivalent to this in traditional ownership systems;
aggregate denotes the (possibly) shared aggregate context; and
finally bridge denotes a bridge object of the same aggregate as the
current instance. Notably, if we think of an owner α as denoting the
set of objects owned by α, then bridge ⊆ owner.
In terms of the rightmost picture in Figure 1, the reference to b in c
may have the owner owner or bridge; e’s reference to d must have
the owner aggregate (from the view of b, inside e it is some other
owner parameter which will be bound to aggregate in b); and b’s
reference to e must have the owner rep.

Whether c refers to b as owner or bridge makes an important
difference. Only in the second case can c know that b belongs to the
same aggregate. In the first case, c simply would not know whether
b was an ombudsman for the same aggregate, or not. Consequently,
d can only be obtained from b if b has owner bridge. Otherwise,
the path could denote the representation of a different aggregate,
and would therefore not be safe to access.

A Small Example Figure 2 shows a minimal code example for
expressing a component with two provided services portOne and
portTwo, and a required service required. To a client, the objects
in portOne and portTwo are siblings to the component—they have
the same owner. Trying to obtain a reference to portTwo as an om-
budsman is not possible, since the component’s aggregate and the

client’s (if any) are not the same. Last, writing to a field contain-
ing an ombudsman is not possible externally, since external objects
cannot tell what objects are ombudsmen for the same aggregate.

Discussion Notably, the bridge owner is only used by ombuds-
men to identify other ombudsmen of the same aggregate. Any ref-
erence to an aggregate that is not internal to the aggregate or any
of its ombudsmen is an ombudsman by definition, and there is no
need to capture this in the type.

Well-formed construction of aggregate objects is one of the key
considerations of our system design. Any ombudsman has the
capability of constructing other ombudsmen and access the parts
of their interface that mention aggregate. All ombudsmen are
owned by owner (or its more specific subset context bridge), and
consequently—all dominating objects are siblings. Coalescing ex-
isting objects created outside an aggregate with an aggregate is
possible using ownership transfer [9, 22, 28]. In this case, one ob-
ject must act as the “initial object” and move the unique objects
into bridge. Such a method is easy to write and must be manually
specified to prevent external objects from creating ad-hoc ombuds-
men (see further Section 2.4) and thus get access to an aggregate’s
internals.

Although we have defined ombudsmen for the Joe/Joline family
of ownership systems [8–10, 24], we believe they could easily be
added to universe types [13, 21, 22] as well as OGJ [25], and
similar.

We now continue our introduction to ombudsmen by way of a few
example including two common programming idioms: components
and external iterators.

2.2 Motivating Example: Components

Standard UML components are implemented as aggregates of col-
laborating objects [4]. A component may provide several different
interfaces (aka required and provided services); different applica-
tions may use different interfaces or a combinations of different
interfaces.

class Component<owner> {
Data<aggregate> d = new Data<aggregate>;
IService<bridge> portOne = new ServiceX<bridge>(d);
IService<bridge> portTwo = new ServiceY<bridge>(d);
IServiceC<owner> required;
}

class Client<owner> {
Component<rep> c;
IService<rep> generator = ... ;

...
IService<rep> s1 = c.portOne;
c.required = generator;
IService<bridge> s2 = c.portOne; // Fails!!
c.portOne = c.portOne; // Fails!!
}

Figure 2. Defining a component with two provided services and
one required service.

With classic ownership types, a component that wishes to export
several different interfaces must do so through a single object if
encapsulation is to be retained. If each interface was implemented
as a separate object, the objects would not be able to share any
data unless that data could also be exposed outside the component,
which is likely to destroy verification properties. To implement
components with proper encapsulation, several objects must be
able to share a common representation that cannot leak.
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2.3 Motivating Example: Iterators with Ombudsmen

Figure 3 shows the ownership diagram for a linked list aggregate
and Figure 4 the source code. Modulo the use of the novel bridge
and aggregate owners, the code should be straightforward.

List Iterator

data

next
first cursor

Figure 3. Encoding Iterators Using an Ombudsman.

In the example, the list’s links are part of the aggregate, and the list
has no private data. Initially, the list object is the only ombudsman
through which the links can be manipulated. The iterator method
in the list class creates and returns an ombudsman in the form of
an iterator. As an ombudsman for the list aggregate, the iterator
may reference the list’s links in the cursor field. Any number of
iterators may exist; the pattern would even allow several list objects
that shared a common set of links—for whatever purpose.

Note that even though the first field in the list class is public, it
will only be accessible to objects inside the aggregate, including
other ombudsmen for the same aggregate. Thus, the list’s links
are properly encapsulated; they cannot be modified outside the
list aggregate. However, unlike classic ownership types, the list
aggregate has multiple ombudsmen, allowing access to the links
from several disjoint entry points.

2.4 Attaching Ombudsmen and Incremental Aggregate
Construction

Figure 5 shows an example of how external objects can be made
part of an existing aggregate. We call this attaching an ombudsman,
and makes use of ownership transfer in a straightforwardly fashion.
In the example, a unique iterator object is passed to the iterator
method, which is subsequently attached to the current aggregate by
moving it into the bridge context. Following the syntax of Joline
[9, 28], we use -- to denote destructively reading the contents of a
unique variable.

In a system using external uniqueness, such as Joline, any objects
in the aggregate context of the iterator will be moved into the list
aggregate. Thus, in systems supporting external uniqueness, ag-
gregates can be constructed incrementally by attaching ombuds-
men to each other, merging their aggregate contexts. This practise
is sound as the uniquely referenced ombudsman is always a dom-
inating node to any object inside its aggregate context, akin to the
relation between an owner and its this context in classical owner-
ship types.

3. Formalising Ombudsmen
Formalising ombudsmen is quite simple and the most relevant
changes are in the type rules (EXPR-SELECT), (EXPR-UPDATE) and
(EXPR-METHOD-CALL). Our formalism is inspired by [8, 28].

When reading or updating a field f of a non-bridge receiver x, f
may not point to objects in x’s aggregate. This is a straightforward
adaptation of the static visibility constraint of Clarkean systems that
reads rep ∈ Owners(τ)⇒ e = this, which our system also uses.
Further, if f under the same circumstances points to an ombudsman
of x’s aggregate, its type is reported to us as a sibling of x. This is
visible in (EXPR-SELECT), (EXPR-UPDATE).

class List<owner,data outside owner> {
public Link<aggregate,data> first;

Iterator<bridge,data> iterator() {
Iterator<bridge,data> iter =

new Iterator<bridge,data>();
iter.cursor = first;
return iter;
}
}

class Iterator<owner,data outside owner> {
Link<aggregate,data> cursor;

Object<data> next() {
Object<data> value = cursor.data;
cursor = cursor.next;
return value;
}
}

class Link<owner,data> {
Link<owner,data> next;
Object<data> data;
}

Figure 4. A list aggregate accessible via the list role and an iterator
role. In the formalism, we have elided explicit nesting relations
such as outside above.

Iterator<bridge,data> iterator(Iterator<unique,data> i) {
Iterator<bridge,data> iter = i--; // move into bridge
iter.cursor = first;
return iter;
}

Figure 5. Coalescing an external iterator into the list aggregate.

We consider only unary methods for simplicity and without loss of
generality. Ombudsman adaptation is employed to translate internal
to external types and there is an additional visibility constraint that
prevents calling methods that expect ombudsman arguments, unless
the receiver object is itself an ombudsman. The same constraint
must hold for field update. This is visible in (EXPR-UPDATE) and
(EXPR-METHOD-CALL).

Any type owned by bridge can be subsumed by the equivalent type
owned by owner, since for all contexts, bridge denotes a subset
of owner. This can be expressed trivially by adding an additional
subtyping rule, see (BRIDGE-OWNER-SUBSUMPTION).

Conventions and Conveniences We follow the practise of FJ [17]
and use an overbar notation for sequences of terms in the standard
fashion. For example, p denotes a sequence p1, . . . , pn and f : τ
denotes a sequence f1 : τ1, . . . fn : τn for n ≥ 0. To turn such a
sequence into a set, we write it within { }, e.g., {p} = {p | p ∈ p}.
Like many ownership types papers before us [7, 9, 11, 24, 28], we
sometimes write C〈σ〉 for a type C〈p〉 where σ is a map from the
names of the formal parameters of C to the actual parameters p. For
example, if C is declared class C〈owner, a, b〉 · · · in the program,
then if C〈p1, p2, p3〉 is a well-formed type, we sometimes write
C〈σ〉 for the implicitly defined σ = {owner 7→ p1, a 7→ p2, b 7→
p3}. As a further convenience, we sometimes write σp to mean
σ ∪ {owner 7→ p} and σp to mean σ ∪ {aggregate 7→ p} (used in
the dynamic semantics, possibly combined with σp).
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` P : τ P is a well-formed program with type τ
` C C is a well-formed class
` E, x : τ E is extended by a variable x with type τ
` E, p R q E is extended by a good nesting relation (R ∈ {≺∗

,�∗}) between contexts p and q
E; τ ` F F is a well-typed field declaration and does not over-

ride a field in a supertype
E; τ `M M is a well-typed method declaration overriding pre-

serves typing
E ` e : τ e is a well-formed expression with type τ
E ` p p is a good owner in the scope E
E ` pR q p is inside/outside q in the scope E;R ∈ {≺∗,�∗}
E ` p→ok q p may reference q in the scope E
E ` τ τ is a well-formed type in the scope E
E ` τ <: τ ′ τ is a subtype of τ ′ in the scope E

Table 1. Judgements in the static system.

3.1 Static Semantics

Syntax The syntax of our system is as follows:

P ::= C class Object〈owner〉 { } e (Program)
C ::= class C〈owner, p〉 extends D〈p〉 { F M } (Class decl.)
F ::= τ f (Field decl.)
M ::= τ m(τ x) { e } (Method decl.)
e ::= let x = e in e | x | x.f | x.f = y | (Expressions)

x.m(y) | null | new τ
τ ::= C〈p〉 | C〈κ〉 (Types)

where the grey box is an extensions in the dynamic semantics
for run-time types. Metavariables x, y are used for names of vari-
ables (including this), p, q for names of contexts (including rep,
owner, bridge and aggregate). For simplicity, local variables and
sequences are encoded using standard let-expressions.

For the static semantics, we use a type environment E of the stand-
ard fashion, containing mappings from local variables to types and
relations between contexts in the current scope: E ::= ε | E, x :
τ | E, p ≺∗ q | E, p �∗ q. Declarations and let-expressions
extend E in a straightforward fashion. Table 1 shows an overview
of the judgements used in our static system.

Class Table and Helper Predicates OmbudsmanAdaptation, a
key helper predicate, is defined thus:

OmbudsmanAdaptation(bridge, τ) = τ
OmbudsmanAdaptation(p, τ) = τ{owner/bridge}

where p 6= bridge is assumed in the last case. This predicate is
used to change the internal view of an object as a bridge object to
the current aggregate to the external view of an object—a bridge
object for some aggregate at the same nesting depth.

For every class C, we assume the existence of a class table CT (C),
such that if class C〈p〉 extends D〈σ〉 { F M }, CT (C) =
(F,M) ◦ σ(CT (D)). We define CT (Object) = (∅, ∅). Further,
we define lookup in the class table such that CT (C)(f) = F (f)
when F (f) 6= ⊥, else CT (C)(f) = σ(CT (D)(f)), and similar
for looking up m. F (f) = τ if τf ∈ F , else ⊥. Isomorphically,
M(m) = (τ1 → τ2, x, e) if τ2 m(τ1 x) { e } ∈M , else ⊥.

Given the class table, we can define lookup helper predicates in a
straightforward fashion.

FieldType(C, f) = CT (C)(f)

Signature(C,m) = fst(CT (C)(m))

Param(C,m) = snd(CT (C)(m))

Body(C,m) = trd(CT (C)(m))

Fields(C) = {f | CT (C)(f) 6= ⊥}
Owners(C〈p〉) = {p}

σ(C〈p〉) = C〈σ(p)〉

We assume the existence of a predicate Arity(C) that returns the
number of owner parameters, including owner, declared for the
class C, e.g., Arity(List) = 2 from the example in Figure 4.

Declarations A program is well-formed if all its classes are well-
formed and the starting expression of the program is well-typed.
For simplicity, the root class Object is treated special.

(WF-PROGRAM)

` C ε ` e : τ

` C class Object〈owner〉 { } e : τ

A class is well-formed if its fields and methods are well-formed,
the owner parameters passed to the super class are good (respect the
nesting), and owner is only used in the first position of the owner
formals.

(WF-CLASS)
E = owner ≺∗ world, rep ≺∗ owner, bridge ≺∗ owner, \
aggregate ≺∗ owner, p �∗ owner, this : C〈bridge, p〉

{q} ⊆ {p} owner 6∈ {p}
τs = D〈owner, q〉 E ` τs E; τs ` F E; τs `M

` class C〈owner, p〉 extends D〈q〉 { F M }

A field is well-typed if its type is valid in the current scope, and
there is no equi-named field in a superclass.

(WF-FIELD)
E ` C〈σ〉 E ` τ FieldType(C, f) = ⊥

E; C〈σ〉 ` τ f

A method is well-formed if its types are well-formed in the current
scope, its method body corresponds to the declared return type, and
overriding preserves types.

(WF-METHOD)
E ` C〈σ〉 E ` τ E, x : τ ′ ` e : τ

Signature(C,m) = ⊥ ∨ Signature(C,m) = σ(τ ′)→ σ(τ)

E; C〈σ〉 ` τ m(τ ′ x) { e }

Expressions Each expression is typed given the static type in-
formation E derived initially for each method in (WF-CLASS), and
extended with variables by (WF-METHOD) and (EXPR-LET). For sim-
plicity, we assume that all variables have unique names.

(EXPR-LET)
E ` e′ : τ ′ E, x : τ ′ ` e : τ

E ` let x = e′ in e : τ

(EXPR-VAR)
` E E(x) = τ

E ` x : τ

Reading a field of an object makes use of two key constraints: first,
the two visibility constraints that say representation objects may
only be accessed through the special this receiver, which is due to
Clarke et al. [11] and that aggregate objects may only be accessed
through ombudsmen. Last, we apply the OmbudsmanAdaptation
helper function that make ombudsmen appear as regular objects
when viewed externally.

(EXPR-SELECT)
E ` x : C〈σp〉

FieldType(C, f) = τ
rep ∈ Owners(τ)⇒ x = this

aggregate ∈ Owners(τ)⇒ p = bridge
OmbudsmanAdaptation(p, τ) = τ ′

E ` x.f : σp(τ ′)

4 2011/5/25



(EXPR-UPDATE) is very similar to (EXPR-SELECT), although it does
not use OmbudsmanAdaptation (that would not be sound as we
are writing, not reading a field—similar to wildcards in Java gener-
ics) and places an additional restriction on (EXPR-UPDATE): a field
holding an ombudsman can only be accessed through another om-
budsman.

(EXPR-UPDATE)
E ` x : C〈σp〉

FieldType(C, f) = τ
E ` y : σp(τ)

rep ∈ Owners(τ)⇒ x = this
bridge, aggregate ∈ Owners(τ)⇒ p = bridge

E ` x.f = y : σp(τ)

The static semantics for calling a method is straightforward and
contains the amalgamation of the restrictions of (EXPR-SELECT) and
(EXPR-UPDATE) as well as uses OmbudsmanAdaptation so that
returning a bridge object from an invocation on a non-bridge object
type loses its “bridge status” (from the view of the type system).

(EXPR-METHOD-CALL)
E ` x : C〈σp〉

Signature(C,m) = τ1 → τ2
E ` y : σp(τ1)

rep ∈ Owners(τ1) ∪ Owners(τ2)⇒ x = this
bridge, aggregate ∈ Owners(τ1)⇒ p = bridge
aggregate ∈ Owners(τ2)⇒ p = bridge

OmbudsmanAdaptation(p, τ2) = τ

E ` x.m(y) : σp(τ)

The static semantics for null and instantiation are straightforward.
Last, (EXPR-SUBSUMPTION) allows the type of an expression to be
subsumed into a supertype.

(EXPR-NULL)
E ` τ

E ` null : τ

(EXPR-NEW)
E ` τ

E ` new τ : τ

(EXPR-SUBSUMPTION)
E ` e : τ ′

E ` τ ′ <: τ

E ` e : τ

Type Environment Construction The static type environment E
follows standard practises.

(E-ε)

` ε

(E-VAR)
E ` τ x 6∈ dom(E)

` E, x : τ

(E-CONTEXT)
E ` q p 6∈ dom(E) R ∈ {≺∗,�∗}

` E, p R q

Contexts Statically, contexts are added to the environment in (WF-
CLASS). The only manifest owner is (WORLD).

(GOOD-CONTEXT)
` E p ∈ dom(E)

E ` p

(GOOD-WORLD)
` E

E ` world

Rules for nesting relations are straightforward and follow a wealth
of ownership papers in the Clarkean family.

(INSIDE)
` E p ≺∗ q ∈ E

E ` p ≺∗ q

(OUTSIDE)
` E q �∗ p ∈ E

E ` p ≺∗ q

(INSIDE-REFLEXIVE)
E ` p

E ` p ≺∗ p

(INSIDE-TRANSITIVE)
E ` p ≺∗ p′ E ` p′ ≺∗ q

E ` p ≺∗ q

Permissions Permissions in our system govern how references
may cross context boundaries. Inside nesting implies permission
to reference, just like in classical ownership types in (P-INSIDE).

(P-INSIDE)
E ` p ≺∗ q
E ` p→ok q

(P-REP)
` E p ∈ {bridge, aggregate}

E ` rep→ok p

Additionally, an ombudsman’s private representation may refer-
ence its aggregate in (P-REP).

Types and Subtyping In our system, a type is well-formed if
its owner has the right to reference all its owner parameters, and
additionally, the number of parameters must correspond to the class
declaration.

(GOOD-TYPE)

E ` p E ` p→ok p Arity(C) = |p, p|
E ` C〈p, p〉

Subtyping follows the same rules as for classic ownership types.
Reference permissions are propagated upward in the class hier-
archy by the forwarding in the class declaration, and the subtyping
relation is reflexive and transitive.

(SUBTYPE-DIRECT)
E ` C〈σ〉 class C〈· · ·〉 extends D〈q〉 · · · ∈ P

E ` C〈σp〉 <: D〈p, σ(q)〉

(SUBTYPE-TRANS)
E ` τ1 <: τ3 E ` τ3 <: τ2

E ` τ1 <: τ2

(SUBTYPE-REFLEXIVE)
E ` τ

E ` τ <: τ

The single novel subtyping rule in our system allows an ombuds-
man to be subsumed by its owner. This is required to safely export
an ombudsman outside of its (aggregate) representation without
compromising safety.

(BRIDGE-OWNER-SUBSUMPTION)
E ` C〈bridge, p〉 E ` C〈owner, p〉
E ` C〈bridge, p〉 <: C〈owner, p〉

As an example of the use of this practise, see the list iterator ex-
ample. Internally, the list’s view of its iterator is Iterator〈bridge,
data〉, but when obtained from some external object, the iterator’s
type is Iterator〈owner, data〉. This is sound since bridge always
denotes a subset of owner.

3.2 Dynamic Semantics

The dynamic semantics is a big-step operational semantics and
should be straightforward to follow. Objects are represented by
triples with a type compartment, aggregate context id α, and a
field compartment. Run-time types are the same as static types,
but static owner names are substituted for run-time contexts. Run-
time contexts are κ, either an object identity, an aggregate context
identifier α, or the special context world.

H ::= [ ] | H[ι 7→ (C〈κ〉, α, F )] (Heap)
B ::= ε | B, x 7→ v | B, p 7→ κ (Bindings)
F ::= [ ] | F [f 7→ v] (Fields)
v ::= ε | ι (Values)
κ ::= ι | α | world (Contexts)
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A configuration is a triple 〈H;B, e〉 of a heap H , bindings of vari-
ables to values and context names to contexts B, and an expression
e. The initial configuration is 〈[ ]; ∅, e〉 that is, an empty heap, empty
bindings and the program’s start expression.

Rules (D-LET) and (D-VAR) are unsurprising. (D-LET) evaluates the
expression e and binds the value v′ to the variable x in the environ-
ment under which e′ is evaluated. (D-VAR) just looks up the value
bound to x in the frame.

(D-LET)
〈H;B, e〉 → 〈H ′, v′〉

〈H ′;B, x 7→ v′, e′〉 → 〈H ′′, v′′〉
〈H;B, let x = e in e′〉 → 〈H ′′, v′′〉

(D-VAR)
B(x) = v

〈H;B, x〉 → 〈H, v〉
Looking up a field on an object receiver is straightforward. We
write H(ι.f) as a shorthand for F(f) when H(ι) = (C〈κ〉, α,F).

(D-SELECT)
B(x) = ι H(ι.f) = v

〈H;B, x.f〉 → 〈H, v〉
Updating a field on an object receiver is straightforward. We write
H(ι.f) := v as a shorthand for H[ι 7→ (C〈κ〉, α,F [f 7→ v])]
when H(ι) = (C〈κ〉, α,F).

(D-UPDATE)
B(x) = ι B(y) = v

〈H;B, x.f = y〉 → 〈H(ι.f) := v, ε〉

In our simple semantics, method calls are simply inlined in the
current expression, and all owner names are substituted for their
run-time equivalences, which are derived from the current this.
Furthermore, this is substituted for the current object, and the
parameter is substituted for the actual argument value.

(D-METHOD-CALL)
B(x) = ι B(y) = v H(ι) = (C〈σκ〉, α, )

Body(C,m) = e Param(C,m) = x
B′ = rep 7→ ι, bridge 7→ κ, this 7→ ι, x 7→ v, aggregate 7→ α

〈H;B′, σκ, e〉 → 〈H ′, v′〉
〈H;B, x.m(y)〉 → 〈H ′, v′〉

N.B., ε denotes the run-time representation of null.

(D-NULL)

〈H;B, null〉 → 〈H, ε〉
Object creation is simple due to the absence of constructors and
custom field initialisation. A fresh object has all its field initialised
to null and a fresh context α is picked to represent its aggregate,
unless it is a ombudsman, in which case the aggregate context is
that of the current object.

(D-NEW)
F = [f 7→ ε | f ∈ Fields(C)] ι is fresh

p 6= bridge⇒ α is fresh p = bridge⇒ α = B(aggregate)

〈H;B, new C〈p, p〉〉 → 〈H[ι 7→ (C〈B(p), B(p)〉, α,F)], ι〉
For brevity, we omit the straightforward error trapping rules for
dereferencing null pointers and propagating errors.

3.3 Meta Theory

In our reasoning about well-formedness, we rely on a combined
type environment and store type Γ ::= ε | Γ, x : τ | Γ, ι : τ | Γ, α :
κ | Γ, o ι : α. The entry α : κ maps an aggregate context α to the
owner κ of all its ombudsmen. In a similar fashion, the entry o ι : α
maps an object ι into an aggregate context α for which it acts as an

` Γ Γ is a well-formed store type
Γ ` 〈H;B, e〉 : τ
Γ ` 〈H;B, v〉 : τ

〈H;B, e/v〉 is a well-formed configuration
with type τ under Γ

Γ ` C〈κ〉 C〈κ〉 is a well-formed type under Γ

Γ ` κ→ok κ′ Objects in context κ have the permission to ref-
erence objects immediately in κ′ under Γ

Γ ` H H is a well-formed heap under Γ
Γ ` v : τ Value v has type τ under Γ

Table 2. Judgements in the meta-theoretic part of the formalism.

ombudsman. Table 2 overviews the judgements in the meta theory.

(Γ-ε)

` ε

(Γ-VAR)
x 6∈ dom(Γ) Γ ` τ

` Γ, x : τ

(Γ-OBJECT)
ι 6∈ dom(Γ) Γ ` τ

` Γ, ι : τ

The rules (Γ-BRIDGE) and (Γ-AGGREGATE) are key elements in our
system; in a well-formed store type, all ombudsmen of the same
aggregate have the same owner.

(Γ-BRIDGE)
Γ ` κ

α 6∈ dom(Γ)

` Γ, α : κ

(Γ-AGGREGATE)
` Γ o ι 6∈ dom(Γ)

α : κ ∈ Γ Γ(ι) = C〈σκ〉
` Γ, o ι : α

A well-formed heap can be extended by an object whose field
contents correspond to that of the class declaration. All ombudsmen
for the same aggregate must have the same owner.

(HEAP-[])
` Γ

Γ ` [ ]

(HEAP-OBJECT)
Γ(ι) = C〈σκ〉 Γ(o ι) = α Γ(α) = κ Γ ` H

Γ ` v : (σκα ∪ {rep 7→ ι, bridge 7→ κ})(τ)
Fields(C) = {f} FieldType(C, f) = τ

Γ ` H, ι 7→ (C〈σκ〉, α, [f 7→ v])

A configuration is well-formed given an environment Γ if its heap
is well-formed and its expression/value is well-typed.

(GOOD-CONFIGURATION)
Γ ` H Γ ` e {B} : τ {B}

Γ ` 〈H;B, e〉 : τ

(GOOD-FINAL-CONFIGURATION)
Γ ` H Γ ` v : τ {B}

Γ ` 〈H;B, v〉 : τ

We assume a function e/τ {B} that replaces static names of own-
ers in the domain of B with their dynamic counterparts, e.g.,
C〈p〉 {B} = C〈B(p)〉. The judgements Γ ` e : τ are copy and
patch from the corresponding E ` e : τ and therefore omitted.

(NULL-TYPE)
Γ ` τ

Γ ` ε : τ

(OBJECT-TYPE)
Γ(ι) = τ ′ Γ ` τ ′ <: τ

Γ ` ι : τ

Rules for good dynamic contexts are similar to their static counter-
parts.

(CONTEXT-WORLD)
` Γ

Γ ` world

(CONTEXT-OBJECT/AGGREGATE)
` Γ κ ∈ dom(Γ)

Γ ` κ

A type is well-formed if its owner has the right to reference the
remaining owner parameters.

(D-TYPE)

Γ ` κ→ok κ Arity(C) = |κ, κ|
Γ ` C〈κ, κ〉

Modulo for aggregates and bridges, relations between contexts are
not explicitly stored in Γ. Instead we infer them from the types
present in a well-formed Γ. Reflexivity and transitivity of this
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relation are trivial and therefore omitted.
(D-INSIDE)

` Γ Γ(κ) = C〈κ〉 κ′ ∈ κ
Γ ` κ ≺∗ κ′

(D-OMBUDSMAN)
` Γ Γ(α) = κ

Γ ` α ≺∗ κ

Last, a context κ may reference another context κ′ if an inside
relation can be inferred from the first to the second, or if the second
is an aggregate context and the first is inside an object defining it.

(D-MAYREF)
Γ ` κ ≺∗ κ′ ∨ Γ ` κ ≺∗ ι ∧ Γ(o ι) = κ′

Γ ` κ→ok κ′

We define → (“points to”) and w (“aggregates”) as binary rela-
tions between objects for some heap H such that ι → ι′ ⇐⇒
∃ f s.t. H(ι.f) = ι′ and ι w ι′ ⇐⇒ H(ι) = (C〈κ〉, α, ) ∧
H(ι′) = (C〈α, 〉, , ). We can now define “owners-as-ombudsmen”
as a straightforward extension to owners-as-dominators.

Theorem 1: Owners as Ombudsmen For any two objects ι1, ι2
in a well-formed heap, ι1 → ι2 ⇒ ι1 ≺∗ Owner(ι2) ∨ ∃ ι w
ι2 ∧ ι1 ≺∗ ι.

In plain language this states that if an object ι1 refers an-
other object ι2, then either ι2 is a dominator of that object
(the non-savvy ownership reader can consult e.g., Clarke’s
dissertation [7] for additional details), or ι2 is part of some
aggregate and ι1 is inside the private representation of this
aggregate.

Proof (Sketch) Assume the existence of two well-formed objects
ι1, ι2 such that ι1 → ι2 and ι1 6≺∗ Owner(ι2) and 6 ∃ ι w
ι2 ∧ ι1 ≺∗ ι. Clearly, for ι1 → ι2, the class of ι1 must be able
to name the owner of ι2. Statically, this owner must be either some
class parameter p, rep, aggregate, bridge or world. The last case
clearly must not be the case as world is outside anything. If the
owner is p, rep or owner, then clearly ι1 ≺∗ Owner(ι2) holds,
since rep = ι1 and ι1 ≺∗ owner and ι1 ≺∗ p follows from (D-
INSIDE). If the owner is aggregate, then by (HEAP-OBJECT), it must
dynamically be an α s.t. Γ(α) = κ and o ι2 : α ∈ Γ. Clearly,
this cannot be the case since then ι1 w ι2 which violates the initial
assumption. Now remains the case for bridge, which is similar to
owner due to the subsumption bridge 7→ κmade in (HEAP-OBJECT).
Thus, the proposition holds. 2

Theorem 2: Subject Reduction We prove subject reduction in the
standard fashion of progress plus preservation.

PROGRESS: If Γ ` 〈H;B, e〉 : τ , then 〈H;B, e〉 → 〈H ′, v〉 or
〈H;B, e〉 → NullPointerException.

Proof The proof is straightforward by structural induction on the
shape of e where most cases are immediate. The slightly more
intricate cases, (D-SELECT), (D-UPDATE) and (D-METHOD-CALL) are
all guarded by (∗-NPE) versions (elided in this presentation) of
the rule that handle null-dereferencing. By (HEAP-OBJECT), a well-
formed object (τ, α,F) has all its expected fields in F , with the
expected types, therefore, evaluation cannot get stuck accessing a
non-existent field, and a similar argument applies to method calls.
The only way evaluation can get stuck in our system is by infinite
recursion, which is a mere technicality which is easy too handle by
limiting stack space, see e.g., [14, 28]. 2

PRESERVATION: If Γ ` 〈H;B, e〉 : τ and 〈H;B, e〉 →∗ 〈H ′, v〉,
then exists Γ′ ⊇ Γ s.t. Γ′ ` 〈H ′;B, v〉 : τ .

Although B might be updated by evaluating e, such updates will
only be of local variables—not owners, which are the interesting
elements of B w.r.t. final configurations.

Proof The proof is straightforward by structural induction on the
shape of e. There are no surprising cases. 2

4. Related Work
Several researchers have proposed extensions or deviations from
traditional ownership types that overcome the single bridge object-
problem. The encapsulation property of Universe Types [21],
owners-as-modifiers, relaxes owners-as-dominators for read-only
references. Thus, traditional universe types can express the iterator
pattern, but only allow obtaining read-only references through list
data via the iterators (modulo expensive and unsafe downcasts).
Generic Universe Types [13] overcome this limitation, but do not
allow iterators that change its originating collection. In summary,
Universe types allow multiple entry points to aggregates, but only
one of these entry points may have mutating capabilities. Further-
more, the multiple entry points can be exported arbitrarily in the
system. Clarke et al. [10] similarly relax owner-as-dominators for
safe references (that may only be used to read immutable parts of
objects), and for references to immutable data.

In an ill-named paper, Boyapati et. al [5] allow relaxing owners-
as-dominators for instances of inner classes. A list may define
an inner iterator class that can be exported arbitrarily, but still
access the enclosing object’s representation. This allows expressing
mutating and non-mutating iterators, but at the same time destroys
the strong encapsulation, as there is no way for a type system to
detect whether a backdoor to an object’s representation exist or not.

Boyapati’s proposal is somewhat close in spirit to ours: a single
object starts as the initial bridge object for an aggregate, and may
create additional bridge objects internally. However, a closer look
reveals several shortcomings, which our system avoids:

Non-modular All bridge objects must be defined within a single
lexical scope which destroys separate compilation and prevents
reusing external classes for bridge objects (e.g., no common
iterator for different list classes);

Inflexible The initial bridge object must always be the outermost
enclosing class of the classes defining an aggregate, which is
inflexible. Also, it seems unlikely that external objects can be
attached as ombudsmen to an existing aggregate.

State confusion There is no support for distinguishing between
private state of the initial bridge object and the aggregate’s
representation. However, subsequent bridge objects may have
private state.

Ad Hoc encapsulation Boyapati’s bridge objects can be exported
arbitrarily high up in the nesting hierarchy, making it hard to
reason about the origins of changes and completely destroying
strong encapsulation.

The strength of Boyapati’s proposal is the ability to allow bridge
objects to escape arbitrarily outside their defining aggregate. The
downside of this flexibility is lack of flexibility in all other domains
and the unclear guarantees that this built-in back door gives the
system.

Lu et al. [20] overcome some of the limitations of Boyapati’s escap-
ing inner classes by allowing dynamically exposing internal repres-
entation through a “downgrading” operation. This voids the need of
a specific inner class for exposure, which allows separate compil-
ation and reuse, but just like with inner classes, their downgrading
operation destroys the strong notion of encapsulation resulting in
unclear properties of the resulting system. Shallow ownership (e.g.,
[2]) is reminiscent of downgrading in that an object internal to an
aggregate can arbitrarily pass on permission to reference aggreg-
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ate objects to an external object that it creates. Shallow ownership
however has no strong (or clear) encapsulation guarantee.

Ownership Domains [1] allows a programmer to manually specify
contexts and how objects in these contexts may refer to each other
by linking them. For instance, a list class may define a public do-
main for its iterators, which is linked to both the domain containing
the list links and the element domain. While this is straightforward
and gives plenty of flexibility ownership is not guaranteed by the
system but must be manually encoded by the programmer. Own-
ership domains suffer from problems similar to Boyapati’s inner
classes in that public domains are publicly accessible, and there-
fore an iterator may be arbitrarily exported.

CoBoxes [26] (and JCoBoxes [27]) are active-objects-like systems
with asynchronous message sends and futures. CoBoxes are similar
to our aggregates in that they are defined in terms of the objects
they contain and may have multiple entry-points into an aggregate.
However, neither CoBoxes nor JCoBoxes rely entirely on run-
time checks to protect a box’s innards, whereas our system can
express and check fortified aggregates with multiple entry points
at compile-time.

MOJO [6] and Mojojojo [19]1 support multiple ownership, which
is more general than our proposal. They can express multiple entry-
points into an aggregate, but the general nature of the system comes
at a cost of high complexity. Furthermore, (even though the papers
say very little about alias restrictions) multiple ownership in these
systems is a property of the type of the aggregate and the construc-
tion of aggregates may be done from the outside. In our system the
aggregate owner is only visible inside the ombudsmen. Thus, in our
system, aggregate ownership, population and extension is handeled
from the inside only, by the aggregate itself.

In the context of verification of object invariants, Barnett and Nau-
mann [3] define a friendship protocol in which a granting class can
give privileges to another friend class that allows invariants in the
friend to depend on fields in the granting class. Objects are con-
nected using an explicit attach construct, but there is no notion of
collaboratively defined state, and once a value of a field in a grant-
ing class has been obtained by a friend, the value may be exported
arbitrarily.

Last, Joe1 by Clarke and Drossopoulou [8] allow final variables to
be used as owners to externally name an object’s representation.
This relaxation is however only made for variables on the stack
and therefore cannot be used to express multiple entry points to
aggregates in a straightforward fashion.

5. Discussion
5.1 Owners as Ombudsmen

Owners-as-ombudsmen is a straightforward extension to owners-
as-dominators: the owners-as-dominators property holds for all ob-
jects in the rep context; objects inside aggregate contexts are in-
stead dominated by an unknown subset of objects of the directly
enclosing context. Thus, objects inside an aggregate context enjoy
a weaker encapsulation than objects that belong to a private repres-
entation which is precisely the intention of our proposal since many
aggregates cannot be expressed in the hierarchical fashion that deep
ownership types dictate.

5.2 Ombudsmen and Reuse

Internally, an object will not know whether it lives inside another
object’s private representation, or constructs an aggregate, which

1 Although MOJO and Mojojojo differ in expressiveness and technical
details they are very similar in spirit.

allows programmers to design objects without concern for how
they will be used in future systems. Consequently, an object cannot
know whether it is dominated by a single object or a collection of
several objects (which would presumably violate abstraction), but
we have yet to see programming patterns where this is an important
factor.

A small drawback of our system is that ombudsmen must be ex-
plicitly programmed as such since they must make use of the
aggregate context. Removing this restriction is simple, just allow
bridge objects to be given permission to reference aggregate ob-
jects, and involves the addition of a single type rule:

(P-OMBUDSMAN)
` E

E ` bridge→ok aggregate

This causes a problem with presenting a type of an ombudsman
external to the aggregate, since there is no external name for the
aggregate context. This can be solved using “lost owners” á la Gen-
eric Universe Types [12] i.e., C〈bridge, aggregate〉 will externally
be C〈owner, ?〉 where ? is an owner that cannot be named in the
current context.

5.3 Ombudsmen and Existing Ownership Systems

The idea of ombudsmen was conceived during our work on extend-
ing Joëlle [10], a language for safe, reliable and efficient parallel
programming based on the active object pattern [15]. To achieve
the necessary isolation for active objects, Joëlle relies on an “flat”
ownership types system where ownership forms a forest and every
active object is a root in a tree in the forest.

Our extension to Joëlle sports a type and effect system which is
an amalgamation of Greenhouse and Boyland’s OOFX [16] and
Clarke and Drossopoulou’s Joe1 together with support for extern-
ally unique (from Wrigstad’s Joline [9, 28]), immutable and safe
[23] references.

The ombudsman concept is easily combined with the concepts of
our our extension to Joëlle, and can make good use of them. In
Section 2.4, we showed how external uniqueness can be used to
allow the external creation of a bridge object for an aggregate.
Owner-polymorphic methods such as found in Clarke’s disserta-
tion or Joline can be used to temporarily export objects inside an
aggregate context past their ombudsmen, but only for the duration
of a method call.

When combining ombudsmen with an ownership-based effect sys-
tem, such as the one in Joe1 or our extension to Joëlle, the obvious
question arises, how to report an effect to an object in the shared ag-
gregate? The answer to the question is to externally report effects
under the shared aggregate as effects to owner. This is imprecise,
as not all objects in the owner context may access the aggregate.
Without additional machinery, like path dependent-types (see e.g.,
[8]), regions (see e.g., [16]) or data groups [18], distinguishing om-
budsmen for different aggregates is in any case impossible, so the
subsuming aggregate into owner for effects is required for sound-
ness.

6. Concluding Remarks
We have presented an extension to Clarkean ownership types that
slightly relaxes owners-as-dominators to enable multiple entry
points into a single aggregate. Our extension seems to work well
with existing deep ownership systems, and only requires two addi-
tional ownership contexts, aggregate and bridge, and minor exten-
sions to existing type rules. In terms of increasing complexity for
the programmer, we believe that multiple contexts of an object does
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not overly complicate programming, especially since the contexts
are limited to two, and the notion of owner specialisation, bridge
is a subset of owner, should be as straightforward as any simple
notion of regions.
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